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Abstract

Human and animal African trypanosomiasis (HAT & AAT, respectively) remain a significant

health and economic issue across much of sub-Saharan Africa. Effective control of AAT and

potential eradication of HAT requires affordable, sensitive and specific diagnostic tests that

can be used in the field. Small RNAs in the blood or serum are attractive disease biomarkers

due to their stability, accessibility and available technologies for detection. Using RNAseq,

we have identified a trypanosome specific small RNA to be present at high levels in the

serum of infected cattle. The small RNA is derived from the non-coding 7SL RNA of the pep-

tide signal recognition particle and is detected in the serum of infected cattle at significantly

higher levels than in the parasite, suggesting active processing and secretion. We show

effective detection of the small RNA in the serum of infected cattle using a custom RT-qPCR

assay. Strikingly, the RNA can be detected before microscopy detection of parasitaemia in

the blood, and it can also be detected during remission periods of infection when no parasi-

taemia is detectable by microscopy. However, RNA levels drop following treatment with try-

panocides, demonstrating accurate prediction of active infection. While the small RNA

sequence is conserved between different species of trypanosome, nucleotide differences

within the sequence allow generation of highly specific assays that can distinguish between

infections with Trypanosoma brucei, Trypanosoma congolense and Trypanosoma vivax.

Finally, we demonstrate effective detection of the small RNA directly from serum, without

the need for pre-processing, with a single step RT-qPCR assay. Our findings identify a spe-

cies-specific trypanosome small RNA that can be detected at high levels in the serum of cat-

tle with active parasite infections. This provides the basis for the development of a cheap,

non-invasive and highly effective diagnostic test for trypanosomiasis.
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Author summary

African trypanosomes cause significant disease in humans and animals across sub-Saha-

ran Africa. For both human and animal infections diagnostics that can accurately identify

an active infection are lacking–this is particularly the case in animal disease where most

diagnosis is based upon clinical signs, which is not a specific or sensitive means of detect-

ing infection. There is therefore a significant unmet need for a pathogen marker of active

infection that accurately indicates whether an animal or human is currently infected.

Through analysing the blood of cattle infected with trypanosomes, we identified a short

sequence of RNA that was present at very high levels. This small RNA derives from the

trypanosome genome, and we could identify its presence in the genome of all three species

that are responsible for human and animal disease. We were able to design species-specific

tests, and showed that in samples from infected animals the assays were more sensitive

than the traditional microscope-based detection, importantly the signal disappeared rela-

tively quickly after successful treatment, and when treatment failed, the assay was able to

accurately identify when infection persisted. We also demonstrated that the causative

agent of human trypanosomiasis secretes the marker at similar levels to that seen in the

animal-infective trypanosomes. Therefore, we have discovered a marker of trypanosome

infection that is present at high levels in the blood of infected animals, disappears quickly

upon successful treatment, but is effective at detecting instances of unsuccessful treatment

and persistent infection. This represents a potentially powerful diagnostic tool for human

and animal trypanosomiasis.

Introduction

African trypanosomes, vector borne protozoa transmitted by tsetse flies (Glossina species),

cause Human African Trypanosomiasis (HAT) and Animal African Trypanosomiasis (AAT)

across sub-Saharan Africa. AAT, caused by Trypanosoma congolense, Trypanosoma vivax and

Trypanosoma brucei, infects approximately 70 million and kills 3 million cattle per year, and is

one of the most significant infectious disease constraints upon agriculture in the region [1].

HAT is caused by two variants of T. brucei, T. b. gambiense and T. b. rhodesiense, and in recent

years the impact of this disease has been significantly reduced through active case detection,

with<3,000 cases reported in 2015, down from ~50,000 in 2000 [2, 3]. However, new and

improved tools are required for both diseases; for AAT as a tool to begin to reduce the current

significant infection burden, and for HAT to facilitate the delivery of the WHO aim of HAT

elimination by 2030 [4, 5].

The ability to diagnose active infections is currently still a significant challenge for both

AAT and HAT. While there have been substantial efforts to develop new effective diagnostics

for HAT, currently the gold standards remain microscopy (with methods that concentrate–

e.g. microhaematocrit centrifugation, quantitative buffy coat or mini anion exchange centri-

fuge technique (mAECT) [6–9]–all providing increased sensitivity) and the card agglutination

test (CATT)–an antibody agglutination test based upon several VSGs expressed by T. b. gam-
biense [10] (for the latter assay there has also been recent adaptation to a rapid diagnostic test

platform [11, 12]). While some molecular tests (e.g. loop mediated isothermal amplification–

LAMP) have demonstrated promise [13], and for LAMP this has included the development of

field-applicable kits, these have not been widely utilised in the field [14]. Tests based on anti-

body and DNA have their well-recognised limitations (differentiating between exposure and

infection for the former and the potential for DNA persistence following treatment, as well as
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contamination, for the latter), and a test that enabled sensitive and specific detection of active

infection would be a significant advance. For AAT, diagnosis is still largely symptomatic with

inherent non-specificity given lack of pathognomonic clinical signs, and occasionally micros-

copy may be employed [15]. Investment in development of diagnostics for AAT is increasing,

with recent efforts defining antibody-based capture techniques for antigens that have been

described as conserved and highly expressed [16–18]. Indeed, this approach has resulted in the

first commercial diagnostic being brought to market in 2017 (VerY Diag, CEVA). Therefore,

available methods for both HAT and AAT have their limitations–the requirement for a test

that enables detection of active infection remains–both for potential utility in the field and

to improve, for example, accurate assessment of clinical efficacy of drugs and vaccines

(increasing areas of interest for AAT). An ideal marker for active infection is a pathogen-

derived molecule that is present in high enough levels in infected animals/patients to enable

sensitive detection, has properties that enable assignment to pathogen and species to a high

level of confidence, and, additionally, reduces in levels quickly following removal of the patho-

gen (e.g. by chemotherapy).

Small RNAs have received much interest as potentially useful diagnostic biomarkers, partic-

ularly in human medicine and cancers [19]. This is due to higher expression of particular

small RNAs (e.g. microRNAs [miRNAs]) in cancer cells. In these cases, diagnosis requires con-

firmation of higher levels of the small RNA species in comparison to non-affected cells/tissues.

For application to pathogens in contrast, the test would aim to identify the binary presence or

absence of a pathogen marker, a much simpler threshold to define. Trypanosomes produce

multiple small RNAs (although do not produce miRNAs) and in the best-characterised species,

T. brucei, there has been description of the small RNAome [20]. The T. brucei genome includes

identification of small RNA encoding loci, including rRNA, snoRNA, tRNA and siRNA [21,

22] (albeit only a proportion of these have been functionally validated). In addition, several

reports have outlined the RNA species secreted/excreted in the form of vesicles by related try-

panosomatids such as Trypanosoma cruzi and Leishmania major [23, 24]. There is less infor-

mation for T. congolense and T. vivax, although both species have annotated genomes available

with predicted small RNA-encoding genes [21, 25].

In the current study we describe a trypanosome small RNA species that is present in the

serum of infected animals at high levels. This small RNA is a 26-nucleotide segment of the 7SL

long non-coding RNA (‘7SL RNA’); the latter is usually described as a cytoplasmic non-coding

RNA that is part of the signal recognition particle (SRP) involved in protein translocation

across cell membranes. The 7SL-derived small RNA (hereafter termed ‘7SL-sRNA’) sequences

are species-specific, enabling the design of tests that differentiate between T. congolense, T.

vivax and T. brucei. The 7SL-sRNA is present at high levels in infected animals (equivalent to

levels of highly expressed bovine miRNAs), enabling robust detection both before detection by

microscopy and during periods of infection with subpatent parasitaemia. Importantly, follow-

ing post-curative treatment the levels of the 7SL-sRNA drops to undetectable levels. Therefore,

we believe that the 7SL-sRNA represents a suitably sensitive and specific marker for detection

of active infection in trypanosomes, with potential utility for both HAT and AAT.

Materials and methods

Ethics statement

Animal experiments were carried out at the Roslin Institute, University of Edinburgh under

the auspices of Home Office Project License number 60/4394. Studies were approved by the

Roslin Institute Animal Welfare and Ethical Review Board (study numbers L172 and L223).

Care and maintenance of animals complied with University regulations and the Animals
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(Scientific Procedures) Act (1986; revised 2013). Protocol plans for studies carried out at Clin-

vet were submitted to the Institutional Animal Care and Use Committee (IACUC), which

issued certificates of approval. The protocol was designed to allow the use of the study animals

in compliance with the Clinvet policy on the ethical use of animals, using the most recent ver-

sion South African National Standard (SANS) 10386 (The care and use of animals for scientific

purposes). Approved study numbers were CV 15/192 and CV 16/306.

In vivo infections

Samples from infected animals derive from two sources; (i) experimental infections carried

out at the Roslin Institute (T. brucei and T. congolense) and (ii) experimental infections carried

out as part of candidate drug testing by GALVmed/Clinvet (T. congolense and T. vivax).

i. Experimental infections of cattle (post-weaning male Holstein-Friesian cattle approximately

4–6 months of age; n = 4 per trypanosome species) were carried out in vector proof contain-

ment at the Roslin Institute. 1 x 106 trypanosomes (T. brucei AnTat 1.1 or T. congolense
IL3000) were inoculated intravenously via the jugular vein, and infections followed for 28

days. Parasitaemia was measured every two days in jugular blood samples by the quantita-

tive buffy coat technique [26]. Serum or plasma was also prepared at each sampling time-

point; for plasma, blood was centrifuged at 1500 x g for 15 minutes at room temperature

and supernatant (plasma) was removed.

ii. Samples were received (GALVmed/Clinvet) from in vivo studies in groups of cattle that

aimed to test clinical efficacy of a candidate trypanocidal drug. Experimental animals (Hol-

stein-Friesian, male and female, 2 months post-weaning and at least 4 months of age) were

infected by intravenous injection via the jugular vein, 21 cattle with T. vivax (STIB 719) and

21 cattle with T. congolense (KONT 2/133), with approximately 1 x 105 viable parasites in

fresh cow blood. Animals were divided into control (3 animals) and experimental groups

(18 animals; 3 groups of 6). Upon reaching first peak of parasitaemia, the control group was

treated with saline and the 3 sample groups of experimental animals were treated with dif-

ferent dosages of the candidate trypanocide drug, both administered intramuscularly. A

rescue treatment was administered for both control and experimental animals when parasi-

taemia persisted for 7 consecutive days, or clinical signs warranted intervention, in the

form of isometamidium chloride (1 mg/kg) or diminazene aceturate (7 mg/kg). Infection

levels were determined by microscopy every 2 to 3 days [27] and plasma samples were col-

lected for RNA extraction and 7SL-sRNA determination at approximately weekly intervals.

Plasma was prepared by centrifuging blood at 1800 x g for 10 minutes at room temperature

and removing supernatant (plasma).

In vitro culture

T. congolense IL3000 BSF parasites were cultured in TcBSF3 medium [28] supplemented with

20% adult goat serum (Gibco), 0.12 mM 2-mercaptoethanol and penicillin/streptomycin and

incubated at 34˚C, 5% CO2. Cells were routinely passaged and maintained at a density between

5 × 104 cells/mL and 3 × 106 cells/mL, unless stated otherwise.

T. brucei Lister 427 cells were cultured in HMI-11 [29] supplemented with 10% FBS, 0.2

mM 2-mercaptoethanol and penicillin/streptomycin, and maintained at 37˚C, 5% CO2. Cells

were maintained between 2 × 104 cells/mL and 2 × 106 cells/mL. Bloodstream forms of group

1 T. b. gambiense strain ELIANE were cultured in HMI-9 supplemented with 20% serum plus,

as previously described [30].

A trypanosome small RNA is a marker of active infection
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RNA extraction

RNA extractions were conducted using the TRIzol LS reagent (Invitrogen) following the man-

ufacturer’s instructions. 250 μL of starting material in the form of serum/plasma for in vivo
experimental infections carried out at the Roslin Institute (T. brucei and T. congolense) was

used; where the sample was less than 250 μL, distilled water was added to make up the volume.

For in vivo samples received from GALVmed/Clinvet, RNA was extracted from 125 μL of

plasma with distilled water added to make up the volume to 250 μL. In cases where in vitro cul-

ture supernatants were used for RNA extraction, 500 μL supernatant was centrifuged at 2,000

× g for 10 minutes to remove cells from the medium. Subsequently, 250 μL supernatant was

used for downstream experiments.

RNA deep sequencing

Libraries were prepared using the TruSeq Small RNA library preparation kit (Illumina) with

10 μL total RNA as starting material (quantity of total RNA for each sample: uninfected

serum– 39ng, infected sample 1 – 230ng, infected sample 2 – 270ng, parasite cell pellet–

2.1μg). Samples were enriched using 15 cycles of PCR and library products of 145–160 bp were

gel purified, quantified and pooled for sequencing. The library pool was sequenced using a

HiSeq 2500 with 50-base single end reads and V4 chemistry.

RT-qPCR

A species-specific 7SL-derived small RNA stem loop primer-probe detection assay was opti-

mised, using custom primer and probe mixes made by Life Technologies, based on specific

sequences (Custom TaqMan Small RNA assay, cat. number: 4398989 [assay IDs T. brucei:
CTFVKNM; T. congolense: CTRWEM9; T. vivax: CTDJXGZ]). Reverse transcription was car-

ried out using a commercial cDNA Reverse Transcription Kit (Applied Biosciences, cat. num-

ber: 4368814), replacing the random primers with the aforementioned TaqMan assay primer.

Typically, 100 ng RNA was used per 15 μL reaction. The following thermocycling conditions

were applied for the RT reaction: 16˚C for 30 minutes, 42˚C for 30 minutes and 85˚C for 5

minutes to inactivate the reverse transcriptase.

In vivo RNA samples from the GALVmed/Clinvet trial were isolated from plasma derived

from heparinised blood and therefore required 2 units of Bacteroides Heparinase 1 (New

England BioLabs, cat. number: P0735) per RT reaction.

Subsequent to the RT reaction, a qPCR was performed using a commercial kit (TaqMan

universal PCR master mix, Thermo, cat. number: 4304437), according to manufacturer’s

instructions. At this stage, 1 μL custom prime-probe was also added to the qPCR reaction,

along with 1.5 μL RT reaction. The qPCR cycling profile was as follows: 50˚C for 2 minutes,

95˚C for 10 minutes and 40 cycles of 95˚C for 15 seconds and a probe detection step of 60˚C

for 1 minute.

When serum was used as a substrate for RT-qPCR, samples were heat treated at 65˚C for 15

minutes and 6 μL of the serum used per RT reaction. Single step RT-PCR reactions were per-

formed according to manufacturer’s guidelines (TaqMan RNA-to-Ct 1-Step Kit, Life Technol-

ogies, cat. number: 4392653). Single step RT-PCR reactions were performed using the

TaqMan small RNA assay primer and primer-probe mixes mentioned previously.

Bioinformatics

Raw RNA deep-sequencing data were subject to quality control using FastQC (v0.11.5) [31].

Adapter sequences were then removed from the reads, and data was filtered for read length
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between 20 and 39 base pairs using cutadapt v1.7.1 (parameters: “–a TGGAATTCTCGGG

TGCCAAGG–m 20 –M 39”) [32] Reads were subsequently aligned to the T. congolense IL3000

genome (TriTrypDB, v9.0), using Novoalign (v3.02.12, Novocraft Technologies), with the fol-

lowing parameters: “–l 20 –t 30 –h 60 –m–o SAM”. To quantify the alignments, the python

tool HTSeq-count was used with default parameters [33] with the T. congolense IL3000 tran-

script reference file in .gff format downloaded from TriTrypDB (v9.0) [21]. Data was normal-

ised by calculating reads per million (RPM): all read counts in a sample were first summed and

the sum divided by 1 million to generate a “per million” scaling factor. Read counts were sub-

sequently divided by this scaling factor to generate the RPM value for each gene. Raw and pro-

cessed data is available through GEO accession number GSE122858.

Results

Small RNA derived from the non-coding 7SL is detected at high levels in

the serum of infected cattle

Small RNAs in blood represent attractive diagnostic biomarkers as they tend to be relatively

stable, are easily accessible, and sensitive technologies exist for direct detection from serum

samples. To test whether trypanosomes secrete or excrete small RNAs during in vivo infec-

tions, total RNA was extracted using Trizol LS from serum samples obtained from two cattle

experimentally infected with the livestock trypanosome T. congolense (samples taken at day 19

post-infection, parasitaemia at time of isolation approximately 5 x 106 /mL), serum from an

uninfected control cow, and an in vitro-derived T. congolense cell pellet (approximately 4 x 107

cells). The RNA was submitted for small RNA deep sequencing, selecting for RNAs between

20- and 39-bp long. The resulting reads were aligned to the T. congolense genome (TriTrypDB

v9.0) using novoalign with strict parameters (one mismatch per read and a homopolymer filter

score of 60; normalised results and alignment statistics, are available in S1 Table and S2 Table).

A total of 15,645,557 and 16,770,619 reads were obtained for the two samples from infected

cattle after filtering for read length between 20-bp and 39-bp. Of these, 4.2% (654,025 reads)

and 1.3% (218,788 reads) were uniquely mapped to the T. congolense genome. 6,290,490 reads

were obtained from the uninfected cattle sample, with only 0.03% (1,804 reads) aligning

uniquely to the T. congolense genome. Reads were also aligned to a bovine genome (Bos taurus,
UMD [34] (S2 Table). These results indicated that 87.4%, 87.3% and 78.6% of reads from the

first infected, second infected and uninfected cattle samples, respectively, aligned to the bovine

genome (including both uniquely aligned and multimapped reads).

A total of 9,439,764 reads were generated from RNAseq of the T. congolense cell pellet sam-

ple, with 11.5% (1,084,005 reads) and 58.9% (5,557,663 reads) unique and multimapped reads

aligning to the T. congolense genome, respectively. The relatively high number of unmapped

reads (2,787,320; 29.5%) in this sample with respect to the T. congolense genome is explained

by the comparatively incomplete assembly and annotation of the reference T. congolense
genome when compared to, for example, the genome of T. brucei.

Subsequent analysis showed that the majority of mapped reads in the uninfected cattle sam-

ple that mapped to the T. congolense genome aligned to ribosomal RNA (rRNA) loci, the

sequences of which are known to be deeply conserved in eukaryotes [35]. For this reason,

rRNA alignments were omitted from downstream analyses as a data filtering step as they are

therefore unlikely to be useful molecular diagnostic targets. Read counts from annotated

regions of the T. congolense genome were generated using HTSeq-count, resulting in total read

counts mapping uniquely to annotated features of 42,302 and 18,230 for the two infected

samples, 322,385 for the pellet sample and 524 for the uninfected sample. Read counts were

normalised for library depth (reads per million; RPM). Strikingly, after eliminating reads
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associated with rRNA loci, the majority of reads from both infected serum samples originated

from one specific 26-bp sequence (Fig 1; normalised dataset in S1 Table). Indeed, there was a

substantial difference between the abundance of this small RNA and the next most abundant

Fig 1. RNA-sequencing of serum isolated from T. congolense-infected cattle reveals a parasite-specific 7SL-derived small RNA. A) Read

counts normalised by RPM of the ten most abundant small RNAs detected in T. congolense-infected serum (Gene IDs: 1 –TcIL3000_8_

ncRNA004; 2 –TcIL3000_10_12320; 3 –TcIL3000_0_34310; 4 –TcIL3000_0_tRNA019; 5 –TcIL3000_10_tRNA006; 6 –TcIL3000_10_12310; 7 –

TcIL3000_0_25440; 8 –TcIL3000_10_tRNA003; 9 –TcIL3000_10_tRNA002; 10 –TcIL3000_0_14280). B) Visualisation of the location of the

7SL-sRNA identified at high abundance in infected serum. The panels below show read alignments of the 26-bp sequence in two serum

samples from infected cattle, as well as read count from an in vitro-derived T. congolense cell pellet and an uninfected serum control, in the

form of histograms. Also visible is a smaller peak corresponding to a potential passenger strand. C) The mfold web server was used to generate

the predicted secondary structure of the T. congolense 7SL RNA. The 7SL-sRNA is highlighted in red.

https://doi.org/10.1371/journal.pntd.0007189.g001
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small RNA observed in infected serum, as well as uninfected and cell pellet controls (Fig 1A,

detailed in Table 1). The reduced levels of the small RNA in the cell pellet sample relative to

the serum samples and subsequent analysis of culture supernatant (see below & Fig 2), suggests

that the RNA species is rapidly secreted/excreted from the cell post-processing. Further analy-

ses indicated that the sRNA uniquely mapped to a single copy locus on chromosome 8 that

comprised part of the 275-bp 7SL RNA gene (Signal Recognition Particle (SRP) RNA, T. con-
golense Gene ID: TcIL3000_8_ncRNA004; T. brucei Gene ID: Tb927.8.2861) (Fig 1B), and is

henceforth referred to as “7SL-sRNA”. The full secondary structure of the 7SL RNA is shown

in Fig 1C, with 7SL-sRNA highlighted in red. Notably, a sequence corresponding to the 7SL-

sRNA complementary strand was also detected in the RNAseq data, although at approximately

ten-fold lower abundance, suggesting the existence of a passenger strand following processing

of the 7SL-sRNA (Fig 1B). There were no sequences corresponding to the host 7SL RNA

detected, suggesting that generation of a small RNA from the 7SL RNA is specific to trypano-

somes and not a general feature of 7SL RNA processing.

RT-qPCR assay targeting trypanosome 7SL small RNA is highly sensitive

and species-specific

The 7SL-sRNA sequence of T. congolense was aligned to the genome assemblies of several spe-

cies of African trypanosome to determine whether related trypanosome species encode for the

7SL-sRNA species. Sequences corresponding to the 7SL-sRNA were clearly identifiable in the

genomes of all related trypanosome species examined, suggesting expression of 7SL-sRNA

may be a common feature of African trypanosomes, and indeed, related trypanosomatids.

Whilst no sequence variation was observed across any of the T. brucei subspecies (specifically

T. b. brucei, T. b. gambiense, T. b. rhodesiense and T. b. evansi), there were several nucleotide

polymorphisms relative to the T. brucei sequence in both the T. vivax and T. congolense
sequences, raising the possibility that specific assays could be designed to distinguish between

the three primary livestock trypanosome pathogens (Fig 2A). To investigate this further, cus-

tom-designed primers were developed using existing stem-loop technology for each individual

species and RT-qPCR experiments performed (Fig 2B). Each primer set was applied to RNA

extracted from serum samples from cattle experimentally infected with each species to test for

cross-reactivity. Results show that sequence divergence of the 7SL-sRNA is sufficient to enable

the design of RT-qPCR assays that differentiate between T. vivax, T. congolense and T. brucei
with no detectable cross-reactivity (Fig 2C). Importantly, when applied to supernatants

derived from the human-infective T. b. gambiense (ELIANE strain) the T. brucei RT-qPCR

Table 1. Normalised read counts (RPM) of the 10 most abundant small RNAs detected in T. congolense-infected host serum (excluding rRNA).

Gene ID Infected

serum 1

Infected

serum 2

In vitro
cell pellet

Uninfected serum

TcIL3000_8_ncRNA004-1 793,414.02 734,064.73 11,114.04 13,358.78

TcIL3000_10_12320–2 37,752.35 66,867.80 64,959.60 9,541.98

TcIL3000_0_34310–1 26,901.80 38,069.12 30,655.89 3,816.79

TcIL3000_0_tRNA019-1 9,503.10 12,506.86 8,924.11 1,908.40

TcIL3000_10_tRNA006-1 9,384.90 15,304.44 3,694.34 0.00

TcIL3000_10_12310–1 9,290.34 18,211.74 47,238.55 11,450.38

TcIL3000_0_25440–1 6,311.76 8,776.74 40,656.36 11,450.38

TcIL3000_10_tRNA003-1 5,957.17 13,768.51 409.45 1,908.40

TcIL3000_10_tRNA002-1 3,616.85 12,177.73 7,683.36 0.00

TcIL3000_0_14280–1 2,836.75 3,455.84 9,665.46 1,908.40

https://doi.org/10.1371/journal.pntd.0007189.t001

A trypanosome small RNA is a marker of active infection

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007189 February 19, 2019 8 / 23

https://doi.org/10.1371/journal.pntd.0007189.t001
https://doi.org/10.1371/journal.pntd.0007189


assay resulted in positive detection of the 7SL-sRNA, highlighting the potential of the sRNA

for diagnostics in human disease (Fig 2C).

Monitoring in vitro 7SL-sRNA excretion/secretion

For the 7SL-sRNA to be a suitable target for development of molecular diagnostics, there is a

requirement that the sRNA is constitutively released into the bloodstream, rather than only

under certain conditions such as cellular stress, as has recently been shown with, for example,

the spliced leader RNA [36]. To investigate this, time courses lasting 3 days (72 hours) were

Fig 2. 7SL-sRNA sequence enables differentiation between animal-infective trypanosome species. A) The 26-bp 7SL-sRNA sequence identified in T.

congolense serum was aligned to that from other trypanosomatids, revealing species-specific differences that were flanked by conserved guanosine

repeats. The polymorphisms were utilised to design species-specific Taqman RT-qPCR assays. B) Schematic representation of the Taqman RT-qPCR

assay, a 2 step based assay that makes use of step-loop primers as previously described in [56]. C) Assays generated for the detection of T. b. brucei, T.

vivax and T. congolense were applied to RNA samples extracted from plasma from infected animals, adjudged to exhibit similar parasitaemia scores. In

each case, only the species for which the assay was designed was detected by RT-qPCR and were statistically significant (alpha = 0.05) as determined by

Wilcoxon Signed Rank test, P value (two tailed)<0.0001 and n = 4. Red dotted line indicates limit of detection. The T. brucei assay was also tested on

RNA extracted from T. b. gambiense culture supernatants (n = 3, average cell density of 1.56 x 106 cells/mL).

https://doi.org/10.1371/journal.pntd.0007189.g002
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carried out using in vitro cultures of both T. brucei (Lister 427) and T. congolense (IL3000).

Cells were seeded at 5 × 104 cells/mL (n = 2), and density was periodically counted by haemo-

cytometer and supernatant samples were taken simultaneously for RT-qPCR analysis (Fig 3).

By the first time-point, the small RNA was readily detected in both T. brucei (Fig 3A) and T.

congolense (Fig 3B) supernatants (mean cell densities: T. brucei, 2.37 × 105 cells/mL; T. congo-
lense, 3.5 × 104 cells/mL), as calculated relative to the zero hour time point. Furthermore, rela-

tive 7SL-sRNA levels appeared to increase correlating with cell density (T. brucei: Pearson =

0.7724, Spearman ρ = 0.9643; T. congolense: Pearson = 0.9353, Spearman ρ = 0.9643; Fig 3A).

Fig 3. 7SL-sRNA abundance is correlated to cell density in cultured trypanosome supernatants. Cell density of in vitro cultures of T. brucei (A) and T.

congolense (B) was monitored over time and supernatant samples were simultaneously isolated for 7SL-sRNA detection (n = 2 per time point). (C) Relative

levels of the 7SL-sRNA, normalized to the 0 hour time-point control, were observed to increase as cell density increased; statistical significance of correlation

between cell density and relative Ct value was calculated by Spearman Rank correlation and Pearson’s product moment correlation.

https://doi.org/10.1371/journal.pntd.0007189.g003
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Taken together, these data indicate that the 7SL-sRNA is constitutively released by both species

of parasite, and indeed, relative abundance of the sRNA can give an indication of cell density

in parasite cultures. Interestingly, when 7SL-sRNA levels were corrected for cell number and

directly compared, levels of 7SL-sRNA accumulated more rapidly in T. congolense than T. bru-
cei cultures, suggesting there may be species-specific kinetics of extracellular production

(Fig 3C).

7SL-sRNA is detected before parasitaemia is detectable by microscopy and

during remission phase

To further investigate the suitability of the 7SL-sRNA as a diagnostic for monitoring disease

progression, serum samples were obtained from an in vivo study of six calves experimentally

infected with 1 × 106 T. brucei AnTat 1.1, which remained untreated for the duration of infec-

tion. The infection time courses ranged from six to 28 days depending on the severity of infec-

tion and day of euthanasia, and parasitaemia score was determined by microscopy

approximately every two days (Fig 4). Total RNA was extracted from serum samples and ana-

lysed by RT-qPCR. The relative expression of 7SL-sRNA was calculated relative to the zero

hour time point.

Parasites were typically detected in blood by microscopy after 4 days (Fig 4). In contrast,

the 7SL-sRNA was detected by day 2, suggesting higher sensitivity compared to microscopy.

Furthermore, following the first peak of parasitaemia, parasites became subpatent by micros-

copy, yet the 7SL-sRNA was still detectable at high levels during this time (animals 6630 and

6632; Fig 4).

Interestingly, data indicated that parasitaemia in animal 6630 remained undetectable by

microscopy after day 16 (Fig 4), when no further parasites were detected until infections were

terminated at day 28. However, 7SL-sRNA remained detectable, suggesting that this animal

was suffering from a chronic stage of disease. Therefore, microscopy resulted in a false negative

diagnosis but the RT-qPCR clearly remained sensitive, with a lower detection threshold than

microscopy. However, the result could also indicate that the RNA is stable in the bloodstream

and remains detectable after live parasites have been cleared. To investigate this further, we

next focused our attention on animals undergoing treatment.

Detection of 7SL small RNA accurately predicts active infection and

parasite clearance

Monitoring of disease progression is a vital aspect of treatment as well as for the development

of optimised chemotherapeutics, which require their efficacy to be accurately measured during

clinical trials. To this end, we used the 7SL-sRNA RT-qPCR assay on samples obtained from

clinical trials performed on cattle experimentally infected with T. congolense (Fig 5) or T. vivax
(Fig 6). The objectives of this study were primarily to test how the assay would compare with

other traditional measurements of disease progression such as microscopy, and to evaluate

whether the 7SL-sRNA remains present in the bloodstream when an infection is cleared by

chemotherapy. Importantly, trial animals were monitored for 85 days, allowing long-term fol-

low-up sampling and analysis, and assessment of the utility of the 7SL-sRNA as a marker of

active infection (e.g. in the event of treatment failure).

In all 21 cattle infected with T. congolense (KONT 2/133) (Fig 5; full data in S1 Fig), an ini-

tial wave of parasitaemia was observed by microscopy after ~5 days. Whilst no plasma samples

were available to test between day 0 and day 8, 7SL-sRNA was detected at the earliest post

infection time-point available in all cattle. In these analyses data was normalised to a sample

taken six to eight days preinfection. Upon experimental treatment of the cattle, there was a
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marked decrease in parasitaemia as determined by microscopy, which was mirrored by 7SL-

sRNA detection assays carried out at the nearest time-points post-treatment (Fig 5). This

observation was exemplified by animals 519 and 549, where plasma sampled just one day after

treatment was available for testing and there was no detectable 7SL-sRNA signal, as well as

there being no detectable trypanosomes by microscopy (Fig 5). Indeed, 7SL-sRNA was rarely

detected after treatment for the duration of the trial.

Fig 4. In vivo detection of T. brucei-specific 7SL-sRNA. Six calves (Holstein-Friesian male, approximately 4–6 months old) were

infected with T. brucei (AnTat 1.1) and monitored for up to 28 days. Parasitaemia (right axis) was determined every 2 days on average,

by microscopic detection of parasites; indicated by grey bars; approximate equivalent parasitaemia (parasites/mL): 1 = 1 x 102; 2 = 1 x

103; 3 = 1 x 104; 4 = 1–5 x 105; 5 = 5 x 105–5 x 106; 6 =>5 x 106; grey bars measuring zero (red line) indicate where parasitaemia was

measured but not detected, and no bar indicates that parasitaemia was not measured. Relative expression of 7SL-sRNA as measured by

RT-qPCR (left axis) is shown by the black line graph, and was calculated by normalising to an uninfected serum control. Asterisk

indicates euthanasia of an animal.

https://doi.org/10.1371/journal.pntd.0007189.g004
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Fig 5. In vivo detection of T. congolense-specific 7SL-sRNA. Twenty-one cattle were challenged with T. congolense (KONT2/133), and subsequently

divided into four groups depending on a treatment regimen with a candidate trypanocide. Of the 21, data from eight cattle are shown. Parasitaemia scores

(right axis) were measured by microscopy every two to three days, indicated by grey bars; approximate equivalent parasitaemia (parasites/mL): 1 = 1 x 102;

2 = 1 x 103; 3 = 1 x 104; 4 = 1–5 x 105; 5 = 5 x 105–5 x 106; 6 =>5 x 106; grey bars measuring zero (red line) indicate where parasitaemia was measured but

not detected, and no bar indicates that parasitaemia was not measured. Plasma samples were obtained at longer intervals (approximately weekly) from
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Interestingly, in one case (animal 549), 7SL-sRNA was detected after 42 days, suggesting a

relapse. Almost 15 days later, live trypanosomes were observed by microscopy, after which the

infection was once again cleared (Fig 5). A similar phenomenon was observed in animals 526

and 528, where no parasitaemia was detected by microscopy, again suggesting relapse of infec-

tion, detectable by RT-qPCR but not by microscopy.

Importantly, these results indicate that 7SL-sRNA is short-lived in vivo, as successful drug

treatment rapidly leads to the loss of signal, suggesting active infections are required to sustain

the high abundance of the 7SL-sRNA. This further highlights the potential of 7SL-sRNA as a

diagnostic for active trypanosome infections, rather than simply exposure such as is observed

using antibody-based serological tests.

Samples from a second clinical trial involving 21 cattle experimentally infected with T.

vivax (STIB 719) were also tested using the T. vivax-specific RT-qPCR assay (Fig 6; full data in

S2 Fig). As with the T. congolense study, parasitaemia was measured every 2–3 days, and

plasma samples were obtained more sporadically (approximately weekly) over a period of 85

days post-infection. Treatment was administered after peak parasitaemia was observed by

microscopy, typically after ~14 days. For the T. vivax trials, rescue treatment was administered

if the trial compound failed.

As demonstrated for T. congolense, 7SL-sRNA was detected by the first available time point,

and once again mirrored parasitaemia observed by microscopy. In most cattle, T. vivax was

cleared post-treatment (exemplified by animals 496, 511, 515, 520, 522, 532, 544, and 538), and

the 7SL-sRNA signal was absent at the next sampling timepoint (typically 7–10 days later).

However, in several cases, the presence of 7SL-sRNA was detected in time points where no

parasites were observed by microscopy, again highlighting the increased sensitivity exhibited

by the RT-qPCR compared to microscopy. Indeed, in these cases, such as animals 498, 524 and

527, 7SL-sRNA appeared to indicate cyclical changes in parasitaemia commonly associated

with trypanosome infections (Fig 6).

The above theory was further strengthened when investigating several animals that suffered

from relapse of infection due to treatment failure, as confirmed by microscopy (in particular,

animals 502, 543 and 550) (Fig 6). In animal 543, 7SL-sRNA plasma levels increased after day

30, without a corresponding increase in parasitaemia. Parasites were finally observed by

microscopy on day 55, more than 3 weeks after detection of relapse by 7SL-sRNA.

Therefore, by RT-qPCR analysis of a highly abundant secretory/excretory small RNA,

infection status was confirmed more accurately than by microscopy. Further analysis is

required, ideally with time courses that include frequent sampling of host serum pre- and

post-treatment, including at subtherapeutic doses, in order to accurately determine both the

kinetics of decay of 7SL-RNA signal after successful treatment and the association between

treatment failure, parasite dynamics and 7SL-RNA signal.

7SL-sRNA is detected directly from serum with one-step RT-qPCR assay

Whilst our data suggests that the 7SL-sRNA presents a realistic target for development of a

molecular diagnostic for both HAT and AAT, in reality for diagnostic assays to be field-appli-

cable in the settings in which both diseases occur, an assay requires several attributes: high on

this list are two related aspects—low cost and minimal number of processing steps. A two-step

RT-qPCR involving a lengthy RNA extraction protocol is therefore not desirable. We therefore

which RNA was extracted; 7SL-RNA RT-qPCR results (left axis) are shown by the black line graph, and and were calculated by normalising to an

uninfected serum control; green diamond indicates day when animal was treated with a rescue drug (isometamidium chloride or diminazene aceturate)

and red diamond indicates when test drug was administered.

https://doi.org/10.1371/journal.pntd.0007189.g005
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Fig 6. In vivo detection of T. vivax-specific 7SL-sRNA. Twenty-one cattle were challenged with T. vivax (STIB 719), and subsequently divided into four

groups depending on a treatment regimen with a candidate trypanocide. Of the 21, data from eight cattle are shown. Parasitaemia scores (right axis) were

measured by microscopy every two to three days, indicated by grey bars; approximate equivalent parasitaemia (parasites/mL): 1 = 1 x 102; 2 = 1 x 103; 3 = 1

x 104; 4 = 1–5 x 105; 5 = 5 x 105–5 x 106; 6 =>5 x 106; grey bars measuring zero (red line) indicate where parasitaemia was measured but not detected, and

no bar indicates that parasitaemia was not measured. Plasma samples were obtained at longer intervals (approximately weekly) from which RNA was
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investigated whether a one-step RT-qPCR would simplify the assay and if the RNA could be

detected directly from serum samples without the requirement for RNA extraction (Fig 7).

Using RNA samples from T. brucei infected animal 6632 (Fig 4), we demonstrated that the

one-step RT-qPCR detected 7SL-sRNA at every timepoint where the small RNA was detected

by the two-step assay (Fig 7A). Additionally, serum or plasma samples from both T. congolense
and T. brucei-infected cattle were assayed using one-step RT-qPCR reactions, which were per-

formed on 6 μL serum/plasma in a 15 μL reaction. For both T. brucei and T. congolense (Fig

7B), 7SL-sRNA was readily detected. Finally, serum samples from a T. brucei in vivo infection

time-course that included periods of patent and subpatent parasitaemia by microscopy (ani-

mal 6630) were re-tested using the single step assay (Fig 7C). Again the assay was able to clearly

detect 7SL-sRNA, albeit with reduced sensitivity, during active infection even when infection

was in remission and no parasitaemia could be detected by microscopy.

These results demonstrate that assays for 7SL-sRNA are species-specific, highly sensitive,

and can be detected the RNA before the onset of parasitaemia as well as during periods where

there is subpatent parasitaemia by microscopy. Moreover, the 7SL-sRNA can also be detected

directly from serum using a one-step RT-qPCR assay.

Discussion

To meet the challenges of both elimination of HAT and management of AAT, improved diag-

nostic techniques are crucial. Current methods of diagnosis are suboptimal, particularly for

AAT, and this is hindering progress on reducing the disease burden [3, 4]. Traditionally diag-

nosis for both HAT and AAT relies upon microscopy—this depends on a minimum threshold

of parasitaemia in order to accurately detect infection (even with parasite concentration meth-

ods), and as our data illustrates there are often long periods of subpatent parasitaemia in try-

panosome infections that is then problematic for microscopy diagnosis. In addition, the

traditional reliance upon the presence of parasites in venous blood does not take into account

recent reports of extravascular reservoirs of the parasite, such as the skin [37, 38] and adipose

tissue [39] (which also seems to correlate with periods of subpatency in peripheral blood). Sev-

eral potentially useful diagnostic approaches are sensitive and specific (e.g. traditional PCR),

but are expensive and not easily field-applicable, and DNA-based tests can face the issues of

DNA still circulating post-treatment and the potential for easy cross-contamination. Finally,

some antibody-based diagnostic tests are available, and are effective and field applicable, such

as the CATT test for HAT and VerY Diag for AAT, but antibody tests have a challenge in dif-

ferentiating between active infection and exposure (additionally the CATT test only detects T.

b. gambiense—there is currently no field-applicable test available for T. b. rhodesiense). There-

fore, sensitive and specific markers of active infection are still required for both HAT and

AAT.

In this study we identified a species-specific small RNA excreted/secreted by all three AAT

relevant species, as well as the main causative agent of HAT, T. b. gambiense, at physiologically

relevant abundances both in vivo and in vitro. Crucially, the RNA, termed 7SL-sRNA, is indic-

ative of active infection and is detected even when parasitaemia is below levels detectable by

microscopy. Furthermore, successful drug treatment results in rapid loss of detectable 7SL-

sRNA signal, thereby exhibiting a key characteristic of a marker that correlates with active

infection.

extracted; 7SL-RNA RT-qPCR results (left axis) are shown by the black line graph, and and were calculated by normalising to an uninfected serum control;

green diamond indicates day when animal was treated with a rescue drug (isometamidium chloride or diminazene aceturate) and red diamond indicates

when test drug was administered.

https://doi.org/10.1371/journal.pntd.0007189.g006
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Fig 7. 7SL-sRNA can be detected by directly from serum using a one-step RT-qPCR. A) Serum samples from a T. brucei infected cow (animal 6632, Fig 4)

were directly applied to a one-step RT-qPCR reaction, and the results compared to the two-step RT-qPCR reaction and parasitaemia scoring by microscopy.

In all cases the sRNA was detectable although expression levels were slightly decreased. Parasitaemia scores (right axis) are indicated by grey bars; grey bars

measuring zero (red dashed line) indicate where parasitaemia was measured but not detected, and no bar indicates that parasitaemia was not measured. RT-

qPCR results (left axis) are shown by the black line (two step RT-qPCR) and red line (one step RT-qPCR) graph, and and was calculated by normalising to an

uninfected serum control. B) The use of serum as a direct substrate for the RT-qPCR was tested using 6 μL of serum, heat-treated at 65˚C for 15mins, from

both T. brucei and T. congolense infected animals, showing that the sRNA was detectable using this substrate (n = 2 per sample). C) The optimised one-step

RT-qPCR assay was applied to serum samples from a T. brucei-infected cow (animal 6630, Fig 4) in order to assess performance when parasitaemia is

undetectable for a substantial period. Similar to the two-step RT-qPCR carried out on RNA extracts, the 7SL-sRNA was still detectable when parasites were

not detectable by microscopy for 10 days, as judged by microscopy. Parasitaemia scores (right axis) are indicated by grey bars; grey bars measuring zero (red

dashed line) indicate where parasitaemia was measured but not detected, and no bar indicates that parasitaemia was not measured. RT-qPCR results (left axis)

are shown by the black line (two step RT-qPCR) and red line (one step RT-qPCR) graph, and and was calculated by normalising to an uninfected serum

control.

https://doi.org/10.1371/journal.pntd.0007189.g007
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Whilst this study was able to utilise samples from multiple experimental animal trials,

human blood or CSF samples that would be suitable for testing could not be identified,

although we hypothesise the 7SL-sRNA would also be present at similar levels in these types of

clinical samples in human patients–we tested culture supernatant from T. b. gambiense
(ELIANE) grown in vitro, and the level of signal was the same as observed with T. b. brucei.
Developing a diagnostic for HAT that is able to detect both T. b. gambiense and T. b. rhode-
siense would be greatly beneficial, as currently there is no molecular test that is widely used in

the field for T. b. rhodesiense diagnosis [3].

Whilst the 7SL-sRNA is detectable using laboratory PCR machines, these assays are clearly

not field applicable in their current state, and further work must be carried out to adapt the

assays (e.g. to the loop mediated isothermal amplification (LAMP) platform; see below) to be

field applicable. However, there have also been considerable efforts to exploit differential host

small RNA levels as biomarkers of disease states in human medicine, in particular miRNAs in

cancer, which has led to several other potentially field-applicable diagnostic techniques that

could be adapted to detect 7SL-sRNA.

Several other technologies have the potential to be alternative platforms suitable for small

RNA detection. In particular, the LAMP assay, which has been previously developed for all three

livestock trypanosome species based on gDNA targets [13, 40, 41] and for which a test intended

for field application was developed for HAT [14], has been shown to be suitable for application to

small RNA as an assay substrate [42, 43] and therefore could potentially be optimised to develop a

field-applicable 7SL-sRNA assay. Another recently developed method, Recombinase Polymerase

Amplification (e.g. [44]), exhibits potential as an extremely sensitive detection method, even sur-

passing the aforementioned LAMP assay. This process requires a reaction consisting of a recombi-

nase, a single-stranded DNA-binding protein and a strand-displacing polymerase to amplify the

target [45]. Importantly, this method can be carried out at low temperatures, and amplification

has been shown to proceed using just body heat [46]. By coupling this assay to a lateral flow device

or a dipstick using biotinylated primers, the target can be visualised by eye, thereby bypassing the

need for thermocycler or real-time fluorescence detection. Whilst RPA typically requires targets

consisting of>30 bp, this technology has recently been adapted to the detection of miRNAs by

ligating highly specific probes to the miRNA using a PBCV-1 ligase [47].

The discovery of a small RNA secreted/excreted by African trypanosomes at high abun-

dance also raises interesting and potentially important biological questions. There is currently

a great deal of interest in the ability of pathogens to communicate with each other and to

manipulate host functions through the delivery of small RNAs [48]. Communication between

trypanosomes during infection is required to regulate differentiation in a population density-

dependant manner [49]. Trypanosome infection also has substantial effects on host cells, for

example the ablation of B cells and consequent loss of immune memory through an as yet

undefined ligand [50]. A small RNA, such as 7SL-sRNA could directly regulate gene expres-

sion, as is the case with miRNAs, or act as a signalling molecule, potentially triggering or inhib-

iting immunoregulatory pathways in host cells. Studies have demonstrated that small RNAs

are often packaged, secreted and delivered to target cells via extracellular vesicles such as exo-

somes. The 7SL RNA has been detected in exosomes from other trypanosomatids including

Leishmania spp. [51] and Trypanosoma cruzi, a closely related pathogen that causes Chagas’

disease in South America [52]. However, in these datasets, the significance of this finding and,

indeed, whether the entire 7SL RNA or just a portion of it were observed, were not discussed.

Studies are currently underway to determine whether 7SL-sRNA is released from the parasite

in a vesicle or exists freely. Furthermore, it is yet to be determined whether 7SL-sRNA exists as

part of a larger complex. Its stability in serum would suggest the RNA is somehow protected

from RNase activity.
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In addition to the potential biological role of 7SL-sRNA, how the small RNA is processed

and released from trypanosomes is yet to be determined. The existence of a potential passenger

strand could suggest a role for DICER in processing the larger 7SL RNA, as this type III endo-

nuclease has previously been shown to process mammalian 7SL RNA [53]. Intriguingly, previ-

ous studies have noted the absence of a conserved eukaryotic SRP complex protein in a related

trypanosomatid species. Instead, isolation of the 7SL RNA revealed a co-migratory tRNA-like

molecule (sRNA-85 in Leptomonas collosoma [54], sRNA-76 in T. brucei [55]). The tRNA-like

molecule has extensive and precise complementarity to the region of 7SL RNA that is pro-

cessed to generate the small RNA. Finally, while our data is consistent with the 7SL-sRNA

being actively processed and secreted/excreted, we cannot currently formally rule out that par-

asite cell death or membrane damage may be contributing to the 7SL-sRNA signal.

In summary, we have detected a trypanosome small RNA (7SL-sRNA), derived from the

non-coding 7SL RNA of the SRP, which is excreted/secreted at high levels by T. brucei, T. con-
golense and T. vivax during infections. Species-specific RT-qPCR assays were developed, and

we have shown that there is good correlation between 7SL-sRNA levels and parasite numbers,

but importantly 7SL-sRNA can be detected both before patent parasitaemia and during phases

of infection when parasitaemia becomes subpatent (both chronic infection and treatment fail-

ure), and critically the 7SL-sRNA signal decays rapidly after successful chemotherapy. There-

fore, 7SL-sRNA represents a marker of active infection, and is a novel and viable target for the

development of much needed diagnostics for both HAT and AAT, and may also provide

insights into important host-pathogen interactions.
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