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Abstract

Recent advances in microRNA target identification have greatly increased the number of putative targets of viral microRNAs.
However, it is still unclear whether all targets identified are biologically relevant. Here, we use a combined approach of RISC
immunoprecipitation and focused siRNA screening to identify targets of HCMV encoded human cytomegalovirus that play
an important role in the biology of the virus. Using both a laboratory and clinical strain of human cytomegalovirus, we
identify over 200 putative targets of human cytomegalovirus microRNAs following infection of fibroblast cells. By comparing
RISC-IP profiles of miRNA knockout viruses, we have resolved specific interactions between human cytomegalovirus miRNAs
and the top candidate target transcripts and validated regulation by western blot analysis and luciferase assay. Crucially we
demonstrate that miRNA target genes play important roles in the biology of human cytomegalovirus as siRNA knockdown
results in marked effects on virus replication. The most striking phenotype followed knockdown of the top target ATP6V0C,
which is required for endosomal acidification. siRNA knockdown of ATP6V0C resulted in almost complete loss of infectious
virus production, suggesting that an HCMV microRNA targets a crucial cellular factor required for virus replication. This
study greatly increases the number of identified targets of human cytomegalovirus microRNAs and demonstrates the
effective use of combined miRNA target identification and focused siRNA screening for identifying novel host virus
interactions.
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Introduction

Human cytomegalovirus (HCMV) is a highly prevalent

infectious disease, infecting greater than 30% of the population.

Although normally asymptomatic in healthy individuals, HCMV

infection is a significant cause of morbidity and mortality in

immunocompromised populations, individuals with heart disease

and recipients of solid organ and bone marrow transplants [1–8].

HCMV is also the leading cause of infectious congenital birth

defects resulting from spread of the virus to the unborn fetus.

Reactivation of virus from a latent infection, rather than primary

infection, is often responsible for HCMV associated pathologies

[9–13].

The capacity of HCMV to strictly regulate the expression of its

own genes and to manipulate host gene expression is crucial to the

virus’s ability to replicate and its success in maintaining a persistent

infection [14]. Studies in our lab and others have demonstrated

that herpesviruses have evolved to encode microRNA (miRNA)

genes, enabling regulation of the virus’s gene expression profile as

well as altering the host environment by targeting cellular

transcripts. Recent reports have demonstrated roles for viral

miRNAs in suppressing apoptosis, immune evasion and regulation

of viral replication through targeting of both cellular and viral

gene expression [15].

HCMV encodes at least 14 pre-miRNAs corresponding to a

total of 27 mature miRNA species [16–20]. Clear functions have

not been shown for the majority of HCMV miRNAs. However,

these regulatory RNAs have been shown to target genes involved

in viral latency, immune evasion, and cell cycle control [21]. We

previously demonstrated that the HCMV miRNA, UL112-1,

restricted viral acute replication through targeting of the major

immediate early gene IE72, suggesting this miRNA may play a

role in establishing and maintaining viral latency [22]. Others

have since shown that targeting of immediate early genes by viral

miRNAs may be a fundamental mechanism involved in herpes-

virus latency regulation [23–26]. UL112-1 has also been shown to

target the major histocompatibility complex class I-related chain B

(MICB) resulting in reduced killing by NK cells [27].

Despite these advances, identification of miRNA targets

remains challenging. Until we have a greater understanding of

the rules governing miRNA target interaction, bioinformatic

strategies alone continue to produce unreliable results, especially

for viral miRNAs, which in most cases do not display significant

evolutionary conservation.
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Biochemical approaches have provided an alternative means for

the identification of miRNA targets. One such approach, RISC

immunoprecipitation (RISC-IP) has proved effective in identifying

both cellular and viral targets [28]. Recently, we used a RISC-IP

approach to identify multiple cellular targets of US25-1, an

HCMV miRNA expressed at high levels during acute infection

[29]. Here we use a combined approach of RISC-IP profiling in

infected cells combined with focused siRNA screening to identify

host targets of HCMV miRNAs that have significant effects on

virus replication. Our results, using a laboratory strain as well as a

clinical strain of virus greatly increases the number of identified

and validated HCMV miRNA targets. Furthermore, the results

show that the V-ATPase complex, involved in acidification of

endosomal compartments, is essential for HCMV virus replication

and is targeted by the HCMV miRNA US25-1.

Results

RISC-IP techniques have recently been used to identify targets

of viral miRNAs [29,30]. The approach relies on the stable

interaction of the miRNA associated RISC protein complex with

the targeted transcript. Following lysis of cells the RISC complexes

are immunoprecipitated using direct antibodies that recognize

Argonaute 2. RNA is then isolated, labeled and analysed by

microarray to identify transcripts which are significantly enriched

due to miRNA targeting. In a previous study we used this

technique to identify targets of a single miRNA, US25-1, in the

context of HEK293 cells [29]. Here we used the same basic

approach to identify targets in primary human fibroblast cells

infected with either the laboratory adapted AD169 strain of

HCMV or the clinical strain TR. In both cases cells were infected

at a high multiplicity of infection (MOI) of three and cells

harvested three days post infection. Following lysis and immuno-

precipitation, RNA was isolated by trizol extraction and analysed

by microarray using the Illumina HumanRef-8 platform which

contains probes for approximately 24,000 well annotated genes

(Figure 1A). In addition to uninfected cells, RNA was analysed

from infected cells immunoprecipitated with pre-immune serum

instead of anti-Argonaute 2 antibody. To determine the level of

enrichment, lysate was sampled before immunoprecipitation to

establish total levels of transcript expression. Enrichment was then

calculated as the transcript level of the IP sample divided by the

total RNA sample. To determine transcripts specifically targeted

by HCMV miRNAs, the level of enrichment from infected

samples was divided by the level of enrichment in uninfected

samples. However, infection with HCMV results in significant

perturbation of total levels of many cellular transcripts through

mechanisms unrelated to miRNA expression. False positive

enrichment attributed to viral miRNA targeting can therefore

occur due to down regulation of total RNA levels in the infected

sample, where IP background levels remain relatively unchanged.

To overcome this, a correction calculation was introduced using

the results from the control IP using the pre-immune serum pull

down. As enrichment values in this sample would only occur

through changes in total levels due to AD169 infection, rather

than any effective enrichment through specific immunoprecipita-

tion, false enrichment could be effectively subtracted from the data

sets generated with anti-Argonaute 2 pull downs. Example

calculations are shown in supplemental figure S1.

The results indicate that greater than 96% of transcripts showed

little or no enrichment in infected cells compared to uninfected

cells, as would be expected if virus miRNAs are targeting a specific

subset of transcripts (Figure 1B). In cells infected with AD169, 686

transcripts were enriched two fold or more with enrichment levels

as high as 28.9 fold for the top target ATP6V0C. Enrichment

levels were slightly lower for TR infected cells with 442 genes

enriched 2 fold or higher with the highest level of enrichment for

COMMD10 at 19.8 fold (Figure 1C). The lower enrichment in

TR infected cells was expected as the clinical strain replicates less

efficiently than AD169 in primary fibroblast cells, resulting in

lower levels of miRNA expression (data not shown). Given that

HCMV miRNAs are completely conserved between TR and

AD169, with the exception of miR-148D-1, which is deleted from

AD169 due to genome rearrangements, a similar suite of enriched

genes would be expected from each pull down experiment.

Indeed, 222 of the 442 genes enriched by two fold or more in cells

infected with TR, were also enriched in the AD169 sample. This is

a highly significant level of correlation (P = 3.26102233 as

determined by hypergeometric distribution analysis) (Figure 1D)

that validates the biological reproducibility of the system. Of the

top 30 most highly enriched transcripts from AD169 infected cells,

26 were also enriched at least two fold in pull downs from TR

infected cells, giving a high level of confidence that these genes are

specifically enriched due to HCMV miRNA targeting. Table 1

lists the top 30 most highly enriched genes from cells infected with

AD169 with corresponding enrichment values for TR. The

complete data sets are shown in supplemental tables S1 and S2.

As pull down experiments were performed in the context of viral

infection, any one, or a combination of, HCMV encoded miRNAs

could target the identified transcripts. It is also possible that

transcripts could be enriched through targeting by an induced

cellular miRNA. Target interaction between miRNAs and

transcripts rely heavily on binding between the 59 end of miRNAs,

specifically nucleotides 1 through 8, known as the seed sequence.

To define which HCMV miRNA has the potential to target the

identified transcripts we predicted seed match sites using the

online algorithm RNAHybrid for the 14 most abundant HCMV

miRNAs. Stringent parameters of full Watson Crick base pairing

with bases 1–7 or 2–8 were employed with the top 30 putative

targets analysed. All but three of the transcripts contained at least

one seed match to the major HCMV encoded miRNAs, with most

transcripts containing targets sites for multiple HCMV miRNAs

(Figure 2). The majority of target sites reside within the open

reading frame of the transcripts with only 14 of the 30 transcripts

containing predicted seed matches for HCMV miRNAs within the

39UTR. Although there is evidence that cellular miRNA targeting

Author Summary

Human cytomegalovirus is a prevalent pathogen. Like
other herpesviruses, human cytomegalovirus expresses
small regulatory RNAs called microRNAs. The focus of this
study was to understand the role of these RNAs in the
context of viral infection and to use this information to
identify novel host factors involved in human cytomega-
lovirus biology. We used a biochemical approach that
allowed us to systematically identify cellular genes
targeted by virus microRNAs. Because the virus targets
these genes, it is reasonable to propose that these genes
play an important role during infection. We confirmed this
hypothesis using a second screen in which we knocked
down expression of a number of the identified targets of
the virus microRNAs. Knock down of one of the targets, a
cellular factor called ATP6V0C, resulted in an almost
complete block in production of infectious virus. These
data suggest that endosomal acidification is crucial to
HCMV replication, and the virus targets this process by
microRNA regulation.

Systematic Analysis of HCMV MicroRNA Targets
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is heavily constrained to the 39UTR region of transcripts [31–33],

a number of studies, including our own, suggest that these

constraints may not always be applied to viral miRNA targeting.

In fact targeting by US25-1 was shown to predominantly target

sites within the 59UTR [29]. Full analysis of transcripts is shown in

Supplemental Table S3.

To delineate the miRNA target interactions, we compared the

RISC-IP data from infected cells with the previous published study

generated from cells transfected with US25-1 [29]. Figure 3A

represents heat map analysis comparing enrichment profiles from

the top 30 enriched transcripts of cells infected with AD169 or TR,

with cells transfected with either a plasmid expressing US25-1 or

immunoprecipitations using a synthetic US25-1 mimic containing

a biotin moiety. The majority of transcripts show clear enrichment

with AD169 and TR as would be expected. In addition, highly

enriched genes from infected cells were also significantly enriched

in cells only expressing US25-1, demonstrating that these

transcripts are targeted by US25-1 in the context of viral infection.

Six genes, including the top target from the previous study,

CCNE2, and the top target from this study, ATP6V0C, were in

the top 30 enriched genes from cells infected with AD169 or cells

transfected with US25-1 (Figure 3B and C).

Although the combined data sets provide strong evidence that

these six genes are targeted by US25-1 in the context of virus

infection, it is possible that other viral miRNAs may also target

these genes, potentially complicating further validation. To

determine whether this was the case, additional RISC-IP analysis

was carried out comparing wild type AD169 virus to two

recombinant AD169 viruses in which either US25-1 had been

deleted, or the entire US25 region, encoding both US25-1 and 2,

was deleted. Enrichment levels for each of the six genes identified

from the previous analysis was determined by direct RT-PCR

using specific primer probe sets (Figure 4). To allow direct

comparison, enrichment values for wild type pull downs were set

at 100% (actual enrichment values are displayed above each bar

for reference). All six targets showed significant enrichment in

infected cells compared to uninfected cells, validating the results

from the original microarray experiments. Four of the six genes,

ATP6V0C, CCNE2, BCKDHA and LGALS3, also showed a

near complete loss of enrichment from cells infected with either

US25 knock out viruses, indicating that US25-1 is required for

enrichment of these transcripts. The results were less clear-cut for

NUCB2 and SGSH. Although the levels of enrichment were

reduced, the reduction was not statistically significant, suggesting

Figure 1. Systematic analysis of RISC-IP from HCMV infected fibroblast cells. (A) Schematic representation of RISC-IP procedure in HCMV
infected and uninfected fibroblast cells. (B) Enrichment profile of all genes from AD169 infected cells. Genes were binned according to the
enrichment ratio of infected vs uninfected. For example genes with an enrichment ratio from supplemental table 1 of between 0.5 and ,2.0 were
binned to 1 whereas genes with an enrichment profile of ,0.5 but .0.33 were binned to 22. Total number of genes are shown above each bar.
Values are skewed towards positive enrichment indicating effective enrichment of HCMV miRNA targets (C). Enrichment profile of the top 100 genes
from cells infected with AD169 or TR. (D) Overlap of genes enriched greater than two fold between AD169 infected cells and TR infected cells.
Correlation between the enriched profiles was highly significant as determined by Chi Squared test.
doi:10.1371/journal.ppat.1003820.g001

Systematic Analysis of HCMV MicroRNA Targets
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that other viral miRNAs may be involved in targeting these genes.

Additional validation of genes from the top 30 most enriched

transcripts also showed significant enrichment in infected samples

compared to uninfected samples, again validating the original

microarray data (Supplemental Figure S2). However, no other

genes showed a complete loss of enrichment in the knock out

viruses. Transcripts that were not predicted to be targeted by

US25-1, such as LIN28B, showed enrichment in both wild type

and knock out virus, confirming that successful enrichment from

the knock out virus infected cells had occurred. In addition no

enrichment was detected in control transcripts such as beta actin

(data not shown). No significant enrichment was observed

following transfection with mimics corresponding to US25-2-3p,

US25-2-5p or a US25-1 mimic containing a mutated seed region,

demonstrating that neighboring miRNAs do not play a role in the

enrichment of the six identified targets and that the seed region of

US25-1 is necessary for effective enrichment (Supplemental Figure

S3A).

Although these results confirmed that US25-1 RISC complexes

bind to the identified transcripts it remained necessary to

determine whether these interactions were functional and resulted

in effects on gene expression. In our previous study we

demonstrated that targeting of CCNE2 by US25-1 resulted in

reduced cyclin E2 expression and conversely deletion of US25-1

from the virus resulted in increased expression of cyclin E2 in the

context of virus infection. Using the same approach the effect of

US25-1 on the expression levels of all six identified genes was

investigated. Primary human fibroblast cells were infected at high

MOI with either wild type AD169 or US25-1 KO virus and

protein levels for the six genes compared by western blot analysis

(Figure 5A). Uninfected cell lysates were also included as well as

cells transfected with a siRNA specific for the target gene, to

confirm the specificity of the antibody. As has been shown before,

CCNE2 levels were higher in the knock out virus infected cells

compared to the wild type infected cells. In addition, ATP6V0C,

BCKDHA, LGALS3 all showed increased levels of expression in

cells infected with the US25-1 knock out virus, whereas NUCB2

and SGSH did not show significant difference between wild type

infected cells and knockout infected cells. Representative western

blots are shown in Figure 5A with direct quantitation from three

biological repeats shown in Figure 5B. These results correspond

well with the RISC-IP data, indicating that ATP6V0C, CCNE2,

BCKDHA and LGALS3 are targeted by US25-1 and deletion of

this miRNA results in near complete abrogation of the inhibitory

effects, whereas NUCB2 and SGSH may be targeted by additional

viral miRNAs, or other virally induced mechanisms. Further

supporting the role of US25-1 in targeting of these cellular genes,

transfection of fibroblast cells with US25-1 mimic RNA results in

significant knockdown at RNA levels of the putative US25-1

targets. The exception to this is SGSH, where transfection of

US25-1 reproducibly resulted in a two-fold increase in total RNA

levels. Whether this is due to a direct effect of US25-1 binding to

the SGSH transcript or secondary effects from regulation of other

US25-1 targets is unclear and will require further study. In

addition, transfection of US25-2-3p and US25-2-5p did not result

in significant knockdown of ATP6V0C, again supporting the role

of US25-1 alone in targeting these genes (Supplemental Figure

S3B).

Our previous study showed that US25-1 predominantly targets

the 59UTR of transcripts and five of the six genes (including the

previously identified CCNE2) have potential target sites within the

59UTR for US25-1 (Supplemental Figure S5). However,

ATP6V0C contains a 7mer target site for US25-1 downstream

of the 59UTR within the open reading frame. To determine

whether the US25-1 target within the open reading frame is

responsible for the observed knockdown in ATP6V0C protein

expression we carried out luciferase assays using a construct

containing the target site from ATPV0C cloned into the 39UTR of

the reporter construct psiCheck2 (Figure 6A). The construct was

co-transfected into HEK293 cells with either US25-1 mimic, or a

non-targeting control siRNA. A CCNE2 luciferase construct was

included as a positive control. US25-1 mimic induced a significant

reduction in luciferase expression, compared to the negative

control siRNA for both constructs (Figure 6C). Furthermore,

mutation of the ATP6V0C target seed region to a BamHI

restriction site resulted in restoration of the luciferase activity,

indicating that the target site identified in ATP6V0C is both

sufficient and necessary for US25-1 specific inhibition of gene

expression. Transfection of a US25-1 mimic with a mutated seed

sequence that corresponds to the mutated ATP6V0C luciferase

construct did not reduce expression of the wild type ATP6V0C

Table 1. Summary table of the top 30 most enriched genes
following infection with AD169.

Gene AD169 TR DEFINITION

ATP6V0C 28.9 9.8 ATPase, H+ transporting, lysosomal

GRN 22.8 2.4 granulin

COMMD10 14.3 19.9 COMM domain containing 10

CTRB2 13.3 6.4 chymotrypsinogen B2

SGSH 12.8 3.4 N-sulfoglucosamine sulfohydrolase

LGALS3 10.9 3.6 galactoside-binding, soluble, 3 (galectin 3)

PIGH 9.9 3.7 phosphatidylinositol glycan anchor
biosynthesis

BSG 9.0 1.7 basigin

LEPRE1 7.2 2.4 leucine proline-enriched proteoglycan

LIN28B 7.1 2.9 lin-28 homolog B

SRPRB 7.0 3.8 signal recognition particle receptor

PDIA5 6.6 4.2 protein disulfide isomerase family A

CCNE1 6.1 5.7 cyclin E1

FLJ39061 6.1 3.2 FLJ39061

NUCB1 6.0 0.9 nucleobindin 1

PRSS8 6.0 4.6 protease, serine, 8

BCKDHA 5.9 1.8 branched chain keto acid dehydrogenase E1

C1ORF35 5.9 4.7 chromosome 1 open reading frame 35

TMEM74 5.7 2.4 transmembrane protein 74

NUCB2 5.6 3.1 nucleobindin 2

DSC2 5.5 2.0 desmocollin 2

FALZ 5.2 2.1 fetal Alzheimer antigen

CCNE2 5.2 2.6 cyclin E2

STX10 5.1 3.5 syntaxin 10

COL1A1 5.0 3.4 collagen, type I

KRTAP10-7 4.9 4.1 keratin associated protein 10-7

FAM38A 4.9 2.3 family with sequence similarity 38

ACP2 4.7 1.8 acid phosphatase 2, lysosomal

ATP1A3 4.7 4.2 ATPase, Na+/K+ transporting

PROK2 4.7 4.4 prokineticin 2

Corresponding enrichment levels are shown for TR infected cells.
doi:10.1371/journal.ppat.1003820.t001

Systematic Analysis of HCMV MicroRNA Targets
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luciferase construct, but did inhibit expression of the mutated

ATP6V0C construct (Figure 6B and C).

Although it is clear that US25-1 targets and regulates the

identified genes in the context of viral infection it is less clear

whether these targets are functionally relevant. It is possible that

viral miRNAs target many genes, but only a few are important to

the virus while other targets represent fortuitous or irrelevant

targets in the context of infection. Previous studies have established

that cell cycle control and expression of cyclin E proteins are

intimately involved in HCMV biology. However, the potential

role of the remaining 5 targets is unclear, as they have not been

reported as host factors involved in HCMV replication. To

investigate their potential role, replication of HCMV was analysed

following siRNA knockdown of each of the individual US25-1

targets in primary human fibroblast cells. Knock down of each

gene was confirmed by RT-PCR (Supplemental figure S4A). Cells

were infected, post siRNA transfection, at an MOI of 1 with the

clinical strain TB40E, which expresses GFP fluorescence protein

under control of the SV40 promoter. This allows continuous

monitoring of virus levels through GFP fluorescence. As can be

seen from Figure 7A, knockdown of SGSH resulted in a modest

increase in virus replication. In contrast knockdown of ATP6V0C

resulted in significant reduction in virus replication at all time

points. To rule out the possibility that the effects on virus

replication were caused by artifactual or non-targeting effects, the

assay was repeated using three additional independent siRNAs

targeting different regions of the ATP6V0C transcript (Figure 7B).

All three siRNAs resulted in the same reduction of GFP

fluorescence. To determine the effect on production of infectious

virus, plaque assays were conducted following transfection of

fibroblast cells with siRNA pools targeting ATP6V0C, SGSH or a

negative control siRNA. The results support and confirm the GFP

screen with a modest but statistically significant increase in

replication in cells transfected with SGSH siRNA (Mann-Whitney

U Test: p = 0.0039) and a more dramatic reduction in virus

production in cells transfected with ATP6V0C siRNA (Figure 7C).

In fact, knock down of ATP6V0C resulted in almost complete

block in virus production, indicating that expression of ATP6V0C

is essential for HCMV virus production and suggests that

acidification of endosomal compartments is required for HCMV

acute replication. Cell viability assays demonstrate that the

reduction in virus replication was not due to cellular toxicity

caused by ATP6V0C knockdown and transfection of the small

RNAs did not induce an interferon response (Supplemental Figure

S4B and C). However, previous reports have indicated that

ATP6V0C may have functions independent of endosomal

acidification [34]. To determine whether the observed inhibition

of virus replication is due to a defect in endosomal acidification,

fibroblast cells were transfected with siRNAs targeting ATP6V1A

and ATP6V1H, components of the same vacuolar ATPase

complex. Disruption of any of the essential components has been

shown to be sufficient to destabilize the complex. Knockdown of

either ATP6V1A or ATP6V1H resulted in a similar reduction in

HCMV replication compared to cells in which ATP6V0C had

been knocked down (Figure 7D). These results support the

conclusion that acidification of the endosomal compartments by

V- ATPase is essential for efficient HCMV replication and this

gene is targeted by the HCMV miRNA US25-1.

Figure 2. Top 30 enriched genes contain multiple target sites for HCMV miRNAs. Sequences for the top 30 enriched transcripts were
analysed for HCMV miRNA targets using RNA Hybrid algorithm. Figure shows hit matrix where a yellow square indicates at least one target site for the
indicated HCMV miRNA. Independent hit matrices shown for targets either within the whole transcript, or within the CDS, 59UTR and 39UTR. Total
number of potential miRNAs targeting a transcript shown in the far left column.
doi:10.1371/journal.ppat.1003820.g002

Systematic Analysis of HCMV MicroRNA Targets
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Discussion

Despite recent advances in our understanding of miRNA

transcript interaction, identification of valid targets remains

challenging. The nature of miRNA targeting, where functional

effects may rely on multiple miRNAs targeting a single

transcript or multiple genes within single pathways being

targeted, requires a system wide approach to elucidate the

functions of miRNAs. Recent studies have used such approaches

to identify targets of gamma-herpesvirus miRNAs [30,35–38].

However, no systematic screening approach has been presented

for HCMV in the context of viral infection. Here we use a

RISC-IP approach to identify putative targets of HCMV

miRNAs in the context of viral infection, an important step

towards generating a global understanding of the role these

small regulatory RNAs play in the biology of HCMV and

herpes viruses in general.

Using a laboratory strain of HCMV and clinical strain we

identified a total of 906 transcripts that were enriched by at least

two fold over immunoprecipitations from uninfected cells, 222 of

which were enriched by both viruses. Relatively few cellular

targets of HCMV miRNAs have been previously published

[27,39,40]. Of those, BclAF1 and RANTES did not show

significant enrichment in infected cells. In the case of RANTES

and BclAF1 it is possible that the effects are cell type specific or the

complex formed between the transcript and RISC is not stable and

therefore does not result in enrichment. MICB was significantly

enriched in both uninfected and infected cells correlating well with

previous studies indicating that both cellular and viral miRNAs

target this gene.

Many of the targets identified in this study have not previously

been linked to HCMV, and in many cases, have not been linked to

virus infections in general. Only a fraction of host genes have been

investigated for potential roles in viral infections. Systematic

analysis of viral miRNA targets can effectively exploit target

identification for the discovery of novel host factors that play

important roles in the biology of HCMV. Here we verify the

effectiveness of this approach with the identification of at least two

genes that have significant effects on HCMV replication.

Knockdown of ATP6V0C resulted in attenuation of viral

replication, while knockdown of SGSH resulted in an increase in

viral replication.

The most highly enriched target identified in this study,

ATP6V0C, is a component of the Vacuolar ATPase, which is

responsible for acidification of endosomal compartments [41].

Knockdown of this gene resulted in striking inhibition of virus

replication with almost no infectious virus detected during growth

curve analysis. Acidification of endosomes has previously been

shown to be required for HCMV entry into endothelial and

epithelial cells through receptor mediated endocytosis. However,

infection of fibroblast cells occurs through direct fusion with the

plasma membrane and has been demonstrated to be pH

independent [42]. The attenuation of HCMV replication through

siRNA targeting of ATP6V0C is therefore unlikely to be due to a

defect in viral entry. In support of this, although GFP levels were

reduced in siRNA knockdown experiments, all cells were clearly

GFP positive 24 hours post infection (Supplemental Figure S6). An

alternative explanation could involve the marked reorganization of

intracellular membranous organelles during the formation of

HCMV assembly compartment [43]. A block in endosomal

Figure 3. Comparison of RISC-IP profiles from infected fibroblast cells and HEK293 cells transfected with US25-1. (A) Heat map
comparing the enrichment levels from fibroblast cells infected with HCMV or HEK293 cells transfected with either a plasmid expressing US25-1
(pUS25-1) or a US25-1 mimic (bUS25-1). (B) Venn diagram showing the overlap between the top 30 enriched genes from AD169 infected cells and
combined enrichment data from cells transfected with US25-1. List of overlapping genes shown in (C).
doi:10.1371/journal.ppat.1003820.g003
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acidification may interfere with this process resulting in

attenuation of virus replication and virion assembly. Interest-

ingly, a previous report indicated that US25-1 expression has a

negative effect on acute replication of HCMV [44]. This effect

was not specific, as adenovirus replication was also inhibited,

suggesting targeting of a cellular factor was responsible for the

phenotypic effects. Our findings suggest this cellular factor may

be ATP6V0C and acidification of endosomal compartments

may be a necessary process for efficient replication of DNA

viruses in general.

SGSH is involved in heparin sulphate degradation in the

lysosomal compartment. Initial attachment of HCMV virions to

target cells has been shown to occur through binding of viral

glycoprotein B with heparin sulphate moieties on the cell surface

[41]. However, it is unlikely that disruption of this pathway would

result in higher levels of heparin sulphate on the cell surface.

Western blot analysis in this study shows that infection with

HCMV results in significant reduction in SGSH levels, and

although this reduction appears to occur independently of US25-1,

the result suggests targeting of this gene plays an important role in

the replication of the virus.

The question remains as to why the virus would target a cellular

gene, such as ATP6V0C, required for efficient replication. We

previously demonstrated that UL112-1 attenuates HCMV repli-

cation through direct targeting of the immediate early gene IE72

and suggested that this represents a mechanism of establishing or

maintaining viral latency [22]. Targeting of ATP6V0C may

represent a similar mechanism, possibly blocking assembly and

release of virions during latent infection. Alternatively, targeting by

US25-1 may be unrelated to viral replication, but rather serve a

different function such as immune evasion. Acidification has been

shown to be required for efficient signaling by endosomal resident

toll like receptors and for efficient MHC class II presentation

[45,46]. Blocking acidification of endosomes through targeting of

ATP6V0C may be an effective way for the virus to interfere with

both innate and adaptive immune response.

In conclusion, this study greatly increases the number of

putative and validated targets of HCMV miRNAs. The use of

systematic miRNA target analysis with focused siRNA screening is

an effective strategy for the identification of novel host virus

interactions. Finally the V-ATPase complex is an essential host

factor in HCMV replication and is targeted by the HCMV

miRNA US25-1.

Materials and Methods

Cells and viruses
Normal human dermal fibroblast (NHDF) cells (Clonetics) were

cultured in Dulbecco’s modified Eagle’s medium supplemented

with 10% fetal calf serum and penicillin-streptomycin-L-gluta-

mine. HCMV strain AD169 was obtained from the American

Type Culture Collection (Rockville, Md.). TR HCMV was

obtained from Dr Jay Nelson. TB40E GFP was obtained from

Dr Goodrum [47]. All HCMV strains were grown on primary

fibroblast cells following infection at low MOI. Virus preps were

purified over 10% sorbitol gradients.

RISC-IP analysis
RISC-IP analysis was carried as out previously described

[28,48]. In brief for systematic analysis of HCMV miRNA targets,

Figure 4. Deletion of US25-1 from HCMV results in loss of enrichment of identified targets. Enrichment of the six US25-1 targets was
determined by RT-PCR following RISC-IP from cells infected with wild type virus or cells infected with US25 knock out viruses. Enrichment levels
converted to percentage with enrichment from AD169 infected cells set at 100%. Raw enrichment values shown above each bar. Expression levels
were corrected against GAPDH and each bar represents 3 biological repeats. * = statistically significant difference (p = ,0.01). Statistics were
performed on raw data using the Mann-Whitney non-parametric U-test.
doi:10.1371/journal.ppat.1003820.g004
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primary human fibroblast cells were infected at a MOI of three

with either AD169 or TR. Three days post infection cells were

lysed, samples taken for total RNA and miRNP complexes

immunoprecipitated using anti Ago2 antibody followed by

streptavidin bead pull down. RNA was isolated using Trizol and

analyzed for quality using an Agilent Bioanalyzer and transcript

levels determined on the Illumina HumanRef-8 platform. Micro-

array data was analyzed using Gene sifter software. Enrichment of

specific transcripts, through association with miRNP complexes

was determined by dividing the immunoprecipitated levels of

transcripts by the total levels. Analysis of specific genes by RT-

PCR was conducted using the same protocol and parameters,

except specific primer probe sets were used instead of microarray

analysis. Primer probe sets were purchased from Lifetechnologies.

For mimic RISC-IPs the same procedure was followed except

293T cells were transfected with 40 nM of mimic RNA and cells

were harvested 48 hours post transfection.

Argonaute specific antibody was generated by immunization of

rabbits with a peptide corresponding to the N terminal region of

Argonaute 2 (5-MYSGAGPALAPPAPPPPIQGYAFKPPPRPD39).

Sequence analysis
Transcript sequences were down loaded from NCBI using

RefSeq ID’s. Predicted binding between HCMV miRNAs and

putative target transcripts were determined using the online

algorithm RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/

rnahybrid/) [49]. Parameters were selected to include Watson-

Crick base pairing between either nucleotides 1 to 7 or 2 to 8. Full

transcript data was searched for seed sequence matches using a

Java based script program.

Figure 5. Deletion of US25-1 results in increased expression of identified targets in context of virus infection. (A) Fibroblast cells were
infected at an MOI of 3 with either wild type virus or US25-1 knockout virus and harvested 72 hours post infection. Western blot analysis was
performed using antibodies against identified US25-1 targets. Uninfected cells and cells transfected with siRNA against the gene being analysed are
included for comparison. (B) Band intensities for three independent biological repeats were determined and corrected for GAPDH levels with relative
intensities shown as a percentage with the uninfected value set to 100%. As data represents the ratio between wild type and infected protein levels
the error of the ratio is incorporated into the error bars shown for the KO virus protein levels. (C) Fibroblast cells were transfected with either US25-1
mimic or a negative control mimic (40 nM). Cells were harvested 48 h post infection and RNA levels for each of the indicated transcripts determined
by real time RT-PCR analysis. Relative levels of RNA for US25-1 mimic transfected cells compared to negative control transfected cells are shown with
results normalized to GAPDH. Results represent 3 biological repeats.
doi:10.1371/journal.ppat.1003820.g005
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miR-US25-1 and miR-US25-1/2 KO viruses
miR-US25-1 pre-miRNA coding region was deleted from

AD169 BAC clone using BAC technology as previously described

[50]. Briefly a PCR amplified cassette containing FRT flanked

Kanamycin was recombined into AD169 BAC genome replacing

the miR-US25-1 coding region using primers listed in Supple-

mental table S4.

Sequence in italics indicates regions homologous to FRT

flanked Kanamycin cassette with remaining sequence homologous

to recombination site in HCMV genome. The Kanamycin cassette

was then removed by recombining the FRT sites through

inducible FLIP recombinase. The resulting BAC was isolated

and electroporated into human primary fibroblast cells to produce

infectious virus. Schematic representations of recombination

strategies are shown in Supplemental Figure S7.

Small RNA transfections
Cells were transfected with small RNAs using RNAiMAX

lipofectamine reagent (Life technologies) according to manufac-

turer’s guidelines with the following modifications. Fibroblast cells

were double transfected with 20 pmol (40 nM) of small RNA per

24 well 8 hours apart. Cells were either infected or harvested

24 hours post transfection for siRNAs or 48 hours post transfec-

tion for mimics. Control cells were transfected with a non-

targeting negative control siRNA (Qiagen – cat 1027310). The

sequence and siRNA IDs are listed in Supplemental Table S5.

RT-PCR analysis
Total RNA was harvested using Trizol with concentrations and

RNA quality determined by nano-drop spectrophotometer anal-

ysis. 100 ng of total RNA was DNAse treated (Promega) then

reverse transcribed using high capacity cDNA reverse transcrip-

tion kit (ABI). Real time PCR was carried out using gene specific

primer probe sets from ABI on a Rotor gene 3000 (Corbet

Research). Relative expression levels were determined by delta

delta Ct calculation with levels corrected to GAPDH levels.

Figure 6. US25-1 targeting of ATP6V0C occurs through the predicted target site within the ORF. (A) The predicted US25-1 target site
from ATP6V0C was cloned downstream of the luciferase reporter construct psiCheck2. The schematic shows the cloning strategy for ATP6V0C. (B)
Schematic representation of sequence changes within the target site of ATP6V0C and the corresponding mutation in US25-1 mimic (sequence
alterations in the US25-1 mimic are shown in red). (C) Constructs were co-transfected into HEK293 cells with US25-1 mimic, negative control siRNA or
a US25-1 mimic with a mutated seed sequence at 40 nM. Data represents 3 biological replicates with standard deviation.
doi:10.1371/journal.ppat.1003820.g006
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Western blot analysis
Human primary fibroblast cells were grown in either 10%

serum supplemented DMEM before infection at a multiplicity of 3

with either wild type AD169, miR-US25-1, or miR-US25-1/2

knock out virus. 72 hours post infection, cells were harvested using

SDS sample loading buffer. 30 ul of protein sample were loaded

and proteins were probed using primary antibodies to ATP6V0C

(Aviva), BCKDHA (Cambridge Biosciences), CCNE2 (Abcam),

LGALS3 (Cambridge Biosciences), NUCB2 (Sigma), and SGSH

(Genetex) according to manufacturer’s specifications. Protein

loading was normalised to GAPDH (Sigma). IR800 or IR680

dye conjugated anti-rabbit IgG and anti-mouse IgG secondary

antibodies were purchased from LiCor. Blots were imaged using

infrared fluorescence of appropriately tagged secondary antibodies

and quantified using a LiCOR Odyssey scanner and software.

Luciferase assay
ATP6V0C luciferase constructs were created using custom

oligonucleotides corresponding to the genomic region between

nucleotides 146 and 226 downstream of the transcriptional start

site, flanking the bioinformatically predicted miR US25-1 target

site (GAGCGGT starting at nucleotide 186). For the ATP6V0C

mutant construct, the miR US25-1 target site was replaced with a

BAMHI restriction site. These inserts were cloned downstream of

the renilla luciferase reporter gene of the pSicheck 2 dual luciferase

construct (Promega). Cloning oligonucleotides are shown in

Supplemental table S4 Luciferase constructs were co-transfected

with miR US25-1 mimic or control mimic (IDT) into HEK293

cells using Lipofectamine 2000 reagent according to the manu-

facturer’s instructions. Cells were harvested 48 hours post

transfection and luciferase levels measured using Promega’s dual

Figure 7. ATP6V0C is an essential host factor for HCMV replication. (A) Human Fibroblast cells were transfected with siRNAs (40 nM) against
each of the six HCMV miRNA targets previously identified. Cells were then infected with a GFP tagged HCMV virus at an MOI of one, 16 hours post
transfection. GFP levels were monitored during the course of infection and compared to determine the effect of knock down of the miRNA targets on
HCMV replication. Data represents 4 biological repeats. (B) Fibroblast cells were transfected with three independent siRNAs targeting ATP6V0C (stl1, 2
and 3) as above. Each siRNA resulted in reduced virus growth as determined by GFP fluorescence. Data represents 4 biological repeats. (C) Cells were
transfected with pooled siRNAs and infected as above with cells and supernatant harvested at the indicated time points and analysed for infectious
virus by plaque assay. Data represents 3 biological repeats (D) Fibroblast cells were transfected with siRNAs as above targeting ATP6V1A or ATP6V1H,
components of the V-ATPase complex and HCMV replication analysed by GFP fluorescence. Replication was inhibited by similar levels as observed for
knockdown of ATP6V0C. Data represents 4 biological repeats.
doi:10.1371/journal.ppat.1003820.g007
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luciferase reporter kit. CCNE2 luciferase constructs were created

and assays were performed as described previously [29].

Virus growth curves
For virus growth curve analysis by GFP fluorescence 96 well

plates seeded with primary human fibroblast cells were transfected

with siRNAs at a final concentration of 2 nM using RNAiMAX

transfection reagent (Life Technologies). Specific siRNAs for

ATP6V0C (S80), ATP6V1A, ATP6V1H BCKDHA, CCNE2,

LGALS3, NUCB2, and SGSH were obtained from Life Tech-

nologies. 24 hours post transfection, cells were infected at a MOI

of 1. The MOI was empirically determined to provide robust

signal without inducing extensive cell death through CPE.

Twenty-four hours post infection cells were washed three times

and overlayed with fresh complete DMEM media without phenol

red pH indicator (Lonza) and GFP levels monitored using Biotech

Synergy HT plate reader. For plaque assays 24 well plates seeded

with HCMV were transfected with pooled siRNAs for ATP6V0C

(Life Technologies) and SGSH (Thermo Scientific). 24 hours post

transfection, cells were infected at an MOI of 1. 24 hours post

infection cells were washed three times and at indicated time

points the cell monolayer was scraped into the media and the

media and cells collected and frozen. Standard plaque assays were

carried out on human primary fibroblast cells overlayed with

carboxy methyl cellulose.

Supporting Information

Figure S1 Example calculation of corrected enrichment
of miRNA target transcripts. PSG6 gives a false positive

because, although IP levels remain the same for both Uninfected

and infected, total levels are reduced drastically in infected sample

resulting in false enrichment. As total levels are also reduced in the

Pre-Serum sample this counters the false enrichment through the

correction calculation.

(TIF)

Figure S2 Validation of RISC-IP enrichment by RT-
PCR. Enrichment of selected top 30 targets was determined by

RT-PCR following RISC-IP from cells infected with wild type

virus or cells infected with US25 knock out viruses. Enrichment

levels converted to percentage with enrichment from AD169

infected cells set at 100%. Raw enrichment values shown above

each bar. Expression levels were corrected against GAPDH and

each bar represents 3 biological repeats. * = statistically significant

difference (p = ,0.01). Statistics were performed on raw data using

the Mann-Whitney non-parametric U-test.

(TIF)

Figure S3 US25-2-3p and US25-2-5p do not target
ATP6V0C. (A) Enrichment of selected top 30 targets was

determined by RT-PCR following RISC-IP from cells transfected

with indicted miRNA mimics (40 nM), including US25-1 mutant

seed mimic. Enrichment levels converted to percentage with

enrichment from AD169 infected cells set at 100%. Raw enrichment

values shown above each bar. Expression levels were corrected

against GAPDH and each bar represents 3 biological repeats.

* = statistically significant difference (p = ,0.01). Statistics were

performed on raw data using the Mann-Whitney non-parametric

U-test. (B) RNA levels were determined for ATP6V0C by RT-PCR,

following transfection of fibroblast cells with US25-1, US25-2-3p or

US25-2-5p. RNA levels were normalized to GAPDH and compared

to cells transfected with a US25-1 seed mutant mimic.

(TIF)

Figure S4 Confirmation of siRNA activity. (A) Percentage

knock down of each of the target transcripts is shown following

transfection of human fibroblast cells with 40 nM of siRNA. Cells

were harvested 24 hours post transfection and RT-PCR analysis

performed as previously described. Percent knockdown versus cells

transfected with negative control siRNA is shown. All assays were

normalized against GAPDH levels and assays performed in

triplicate. Stl1, 2 and 3 represent the independent siRNAs from

the STL pool, targeting ATP6V0C (B) Human fibroblast cells

were transfected with 40 nM siRNA or mimic and cells harvest

48 hours post transfection. Total RNA was harvested and IFN

beta levels determined by RT-PCR. Positive control was RNA

from cells transfected with non-infectious viral RNA. ND indicates

not detected. (C) Cytotoxic effects on cells transfected with

ATP6V0C siRNAs was measured using CytoTox-Glo according

to manufacturer’s instructions. Fibroblast cells were transfected at

40 nM and harvested 48 hours post transfection. Results are

shown as relative percentage of luciferase.

(TIF)

Figure S5 Schematic representation of US25-1 targets.
Untranslated regions of transcripts are shown in red, with

translated region of transcript shown in green. Seed region of

miRNA target interaction highlighted in red.

(TIF)

Figure S6 Reduction of HCMV replication from
ATP6V0C knock down is not due to block in viral entry.
GFP fluorescence is shown 24 hours post infection of primary

fibroblast cells with GFP tagged HCMV. Cells were transfected

with either negative control siRNA (A) or ATP6V0C siRNA (B)

and infected 16 hours post transfection.

(TIF)

Figure S7 Schematic diagram of knock virus construc-
tion. Deletion of US25-1 or US25-1 and 2 sequence regions are

shown as well as the recombination event removing the KAN

cassette resulting in the final BAC constructs. Red boxes indicate

the homologous regions of sequence where recombination occurs.

Flanking transcripts US24 and US26 are shown in green.

(TIF)

Table S1 Full data set for RISC-IP analysis of AD169
infected cells. Signal levels for total RNA and IP RNA levels are

shown from uninfected and infected pull down experiments. Final

enrichment level represents analysed data after correction for false

enrichment as explained in supplemental figure S1.

(ZIP)

Table S2 Full data set for RISC-IP analysis of TR
infected cells. Data analyzed as for supplemental table S1.

(ZIP)

Table S3 Full analysis of transcripts for HCMV miRNA
seed targets. Transcript sequences were down loaded from

NCBI using RefSeq ID’s. Transcript data sets were searched for

seed sequence matches using a Java based script program. Seed

matches for either 1 to 7 or 2 to 8 nucleotides are given. Results

are shown for either the ORF, 59 or 39 UTR regions of the

transcripts. The position of the target site is given as nucleotide

coordinates.

(XLSX)

Table S4 Summary of cloning oligonucleotides. The

US25-1 target seed region for ATP6V0C is highlighted in yellow

and the sequence changes to create the mutant seed region are

indicated in red.

(DOCX)
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Table S5 Small RNA sequences. Sequences of siRNA and

mimics are shown along with assay ID numbers. For SGSH, a

Dharmacon smart pool was used and target sequence is shown

under sense strand column. The seed mutation in US25-1 is

indicated in red.

(DOCX)
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