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Abstract 

Viruses are obligate intracellular pathogens. Therefore, their successful replication, 

at every stage from attachment to assembly and egress, is dependent on host cell 

functions. The host cell in turn engages mechanisms to counteract virus replication. 

As a result, viruses have evolved mechanisms to evade these counteracting measures 

as well as ways to reshape the cellular environment into one that’s favourable for 

successful replication. Systematic studies offer a platform for unravelling virus-cell 

interactions and in particular can address three important aspects 1) increase our 

understanding of basic biology of the virus, 2) identify and characterise novel 

cellular functions 3) provide important leads for novel targets for antiviral therapy. 

In this study, I investigated two aspects of virus host interaction; the role of 

microRNAs (miRNAs) in virus infection and the role of interferon inducible genes 

in virus infection. 

Human cytomegalovirus (HCMV) is a β herpes virus that infects humans. HCMV 

maintains a persistent lifelong infection in the host involving a cycle of latency and 

reactivation1,2. Infection of healthy individuals with HCMV results in relatively 

minor symptoms. In contrast, infection of individuals with a compromised immune 

system, as in the case of organ transplant recipients and AIDS patients, can cause 

significant morbidity and mortality2-4. In common with other herpes viruses, HCMV 

expresses multiple small regulatory RNAs called miRNAs. 
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HCMV encodes at least 14 miRNAs. Identifying the targets of these miRNAs will 

help us understand their functional importance during infection. Recently, a 

biochemical technique called Cross-Linking, Ligation and Sequencing of Hybrids 

(CLASH), was developed by Tollervey and colleagues, representing the most 

advanced systematic technique for the identification of miRNA targets5,6.  We 

adapted this approach to identify high confidence miRNA targets during HCMV 

infection. However, the protocol was sub-optimal and presented us with technical 

challenges. Although high quality data sets were not generated, the work was crucial 

for the establishment of the system which is now generating promising data. 

Virus-cell interactions can also be elucidated by probing for host factors that are 

important for virus replication. Type I interferon is a highly effective inhibitor of 

HCMV replication. Treatment of cells with interferon results in up regulation of 

multiple effectors known as interferon stimulated genes (ISGs). How these genes 

block HCMV replication is poorly understood. A library of more than 380 ISG 

expressing lentiviruses was screened to determine the effects of individual ISGs on 

HCMV replication. The screen was performed in primary human fibroblast cells and 

a glioblastoma cell line called U373s. Multiple inhibitory ISGs were identified 

including well characterised ISGs such as cGAS, STAT2, NOD2, DDX60 and HPSE 

as well as novel candidates TXNIP, ELF1, FAM46C, MT1H and CHMP5. Five 

ISGs were identified as HCMV replication enhancers including previously published 

ISGs BST2 and IFITM1 and novel enhancers ODC1, BCL3 and IL28RA. siRNA 

screens against top hits demonstrated that STAT2, CPT1A and cGAS are dominant 
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inhibitory factors during HCMV infection and knockdown of these genes can 

partially rescue HCMV replication following interferon treatment. 

Finally, using a corresponding rhesus ISG library we show that rhesus SAMHD1 

effectively inhibits HCMV replication while human SAMHD1 has no effect, 

suggesting that HCMV expresses a species-specific inhibitor of SAMHD1. This 

study defines interferon stimulated pathways important for HCMV replication and 

identifies multiple novel host factors that both restrict and enhance HCMV 

replication. These studies demonstrate the effectiveness of using systematic 

approaches for the identification of novel host virus interactions. 
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Human cytomegalovirus (HCMV)  

Cross-Linking, Ligation and Sequencing of Hybrids (CLASH) 

MicroRNAs (miRNAs) 

Interferon Stimulated genes (ISGs) 
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Lay Summary 

Diseases caused by viruses are a huge challenge to mankind. Frequent outbreaks of 

different viruses have occurred for example, most recently, 2014/15, we have had an 

Ebola virus epidemic in West Africa and we currently face a Zika virus epidemic in 

the Latin Americas. These outbreaks and epidemics, challenging as they are, bring 

about awareness to the specific pathogen and a global response. This usually results 

in the provision of resources for the containment of the outbreak as well as research 

on the pathogen. However, there are other viruses that have evolved to live with us. 

Although normally not a cause of severe acute disease these viruses have important 

clinical consequences in some cases. One such virus is human cytomegalovirus. This 

thesis presents research work that has been conducted in an effort to improve our 

understanding of the interactions that occur between the virus and human cells 

during infection. 

Human cytomegalovirus, abbreviated to HCMV, is a part of a large family of viruses 

known as herpes viruses. It is easy to forget its challenges as a huge population are 

infected with the virus. When an individual is of sound health, the virus lies dormant 

in their system, a characteristic known as latency. However, infection of those with a 

weak immune system results in severe clinical symptoms, leading to death in some 

cases. The most vulnerable groups are patients undergoing organ transplant, AIDS 

patients as well as babies that are mostly infected during pregnancy. It is therefore 

imperative that we understand more about the biology of this virus so we can design 

better drugs for treatment. In this study, we investigated what components of the 
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virus are important during infection of human cells. We specifically looked for small 

products of the virus known as microRNAs. MicroRNAs are known to target 

intermediate gene products, stopping them from producing the final functional 

product. This is one of the ways in which the virus stops the human cell from 

protecting itself against a viral attack. We also investigated immune system 

components to identify how they affect the virus. We specifically looked for genes 

that stop the virus from multiplying and the ones that helps the virus to multiply. We 

also looked for immune system components that are efficient at stopping the virus 

from multiplying but, whose effect is negated by the virus itself. 

Our HCMV miRNA studies did not generate high quality data sets. However, the 

work was crucial for the establishment of the system which is now generating 

promising data. From our studies with immune system genes, we identified 10 

human genes that reduced the multiplication of HCMV as well as 5 human genes 

that actively helped virus multiplication. We found 1 human gene that had its 

antiviral effect successfully negated by HCMV.  

Although all these findings will need verification with further studies, we can use 

these discoveries to begin to understand the complex relationships between the 

HCMV virus, its host cell, and the human immune system. And if we understand the 

mechanisms involved in all aspects of infection, cell protection and virus evasion, we 

can design drugs that can be used to combat this virus. 
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1.1 Herpes Viruses 

The herpes viruses, also referred to as Herpesviridae, are a family of viruses that are 

ubiquitous in nature and infect a diverse range of animal species7. Herpes viruses 

share a common structure comprising the core, capsid, tegument and envelope. The 

presence of these components, together with a linear double-stranded (ds) DNA 

(Figure 1.1:), are key requirements for a virus to be classified as a herpes virus7,8. 

 

Figure 1.1: Structure of Herpes virus.  

The virus has a protein capsid containing the dsDNA. A proteinaceous tegument 

surrounds the capsid. A lipid bilayer containing glycoproteins on its outer surface 

completely encloses the virus9. 

Herpes virus genomes are contained within linear dsDNA varying from 124 to 239 

kilobases (kb) in length. The dsDNA forms a ring-shaped structure called a torus. 

However, following infection of a cell and release from the capsid within the 

nucleus, the genome becomes circular. Herpes virus genomes are packaged into 

capsids, which have a diameter of approximately 100nm and are made up of 162 
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subunits known as capsomeres. The capsomeres form a symmetrical icosahedra 

composed of 12 pentameric and 150 hexameric capsomeres with a triangulation 

number of 16 (T=16)10. 

A complex protein layer known as the tegument surrounds the capsid and has a 

variable thickness depending on the specific virus and is also determined by the 

location of the virus within an infected cell. Contained within the tegument are pre-

synthesised proteins whose roles include the establishment of a virus-favourable 

environment in the infected cell through activities such as shutting down the host 

protein synthesis, inhibiting infection-triggered cell defences, and stimulating viral 

gene expression7,11. The envelope forms the outer structure of the virus and is 

composed of lipids, glycoproteins and altered forms of the host membrane.  
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Eight herpes viruses are known to infect humans as their natural host and are 

classified into three subfamilies, Alphaherpesviranae (α), Betaherpesviranae (β) and 

Gammaherpesviranae (γ), on the basis of common biological properties that include 

hots range, duration of reproductive cycle, characteristics of cytopathology and latent 

infections7,11-13. Table 1.1 details the classification of human infecting herpes 

viruses. 

Table 1.1: Herpesviruses infecting Humans11. 

Virus Name Abbreviation Vernacular Name Subfamily Genome size 

Human HV1 HHV-1 Herpes simplex virus 1 α 152 

Human HV2 HHV-2 Herpes simplex virus 2 α 155 

Human HV3 HHV-3 Varicella-zoster virus α 125 

Human HV4 HHV-4 Epstein-Barr virus γ 172 

Human HV5 HHV-5 Cytomegalovirus β 230 

 
Human HV6 

HHV-6A HHV-6 variant A 
(Roseolovirus) 

β 159 

HHV-6B HHV-6 variant B 
(Roseolovirus) 

β 162 

Human HV7 HHV-7 Roseolovirus β 145 

Human HV8 HHV-8 Kaposi’s sarcoma-
associated Herpesvirus 

γ 170 

Herpes viruses classified in the α subfamily have a variable host range, a short 

reproductive cycle which known to spread rapidly in vitro. In vivo, α herpes viruses 

establish latency primarily, but not exclusively, in the sensory ganglia.  β herpes 

viruses have a restricted host range and a long reproductive cycle also known to 

progress slowly in vitro with the infected cells frequently becoming enlarged. The γ 

subfamily usually have a limited in vivo host range and show specificity to either B 
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or T lymphocytes. They have a variable reproductive cycle as well as cytopathology 

and establish latency frequently in the lymphoid tissue11,12. 

 Herpes viruses’ genome sequences are arranged in a form that features reiterations 

of terminal sequences. The sequence arrangements have been grouped into 6 genome 

types designated type A to F and these are represented in Figure 1.2:.  

 

Figure 1.2: Schematic representation of herpes viruses’ genome arrangements14. 

Herpes virus genome arrangements are classified into groups A to F. The boxed parts 

represent repeated sequences and the horizontal lines represents unique and 

quasiunique regions. For group A, the left and right terminal repeats (LTR and RTR 

respectively) flank the genome, and for group be it’s the direct repeats (DR). Group C 

genomes contains several internal repeat sequences (R1 to R4) whereas group D 

contain an internal repeat sequence (IRS) and terminal repeat sequence (TRS). Group E 

genomes consist of a unique long (UL) and unique short (US) segments that are flanked 

by the terminal repeat long (TRL) and terminal repeat short (TRS) with the internal repeat 

long (IRL) and internal repeat short (IRS) sequences found at the intersection of the 

unique domains. The terminals of group F genome have not been described to date11,14.  
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Forty core genes are conserved between the herpes virus subfamilies. These genes 

encode for proteins that mainly function as structural, nucleotide metabolism or 

DNA replication proteins11. Herpes viruses have co-evolved with their hosts, 

allowing them to be highly adept in replicating in the non-favourable environment 

the host presents. The life cycle of herpes viruses consists of lytic and latent phases, 

with the latent phase resulting in a persistent and lifelong infection of the host, 

characterised by episodes of reactivation11. Latency is therefore characterised with a 

silenced virus genome and different herpes viruses employ different methods in 

maintaining their non-replicative genomes. The latent herpes viral genomes become 

circularised to form episomal DNA elements that are packed within the infected 

cell’s histones. Latent herpes viruses’ genomes are capable of replicating on 

reactivation and causing disease15,16. 

Latency studies on α and β herpesviruses has been particularly challenging with lytic 

replication being the preferential pathway and therefore little is known regarding 

these subfamilies’ latent infections. As the cell tropism of herpes viruses vary, their 

sites of latency are also different. The α herpes viruses are known to establish latency 

in the sensory and cranial nerve ganglia and β herpes viruses’ site of latency has not 

been fully defined but progenitor cells as well as monocytes and leukocytes have 

been reported to be latently infected16. In contrast, γ herpes viruses tends to lead into 

latent infections in cell culture, and it has been established that the main site of 

latency for this subfamily is the B cells. For examples, Epstein-Barr virus (EBV) 

latently infected, transformed B lymphoblasts can be readily propagated in cell 

culture and analysis of such cells revealed limited transcription of the viral genome. 
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Discovered from these studies were a family of six nuclear proteins knowns as 

Epstein-Barr nuclear antigens (EBNA-1, -2, 3a, -3b, -3c and LP), three membrane 

antigens (latency-associated membrane proteins, LMP1, -2a and -2b) as well as non-

coding RNAs15,17. EBNA-1 has been shown to be critical in maintaining latency as it 

binds to sequences in the plasmid origin of replication (oriP), promoting the 

initiation of the viral episomal DNA replication18. Additionally, EBNA-1 facilitates 

the tethering of viral DNA to the host chromosome allowing for passive distribution 

to daughter cells19. On the other hand, LMP-1 functions to upregulate NF-κB activity 

with an effect of prolonging B cell survival, thereby promoting EBV latency19. 

Kaposi’s sarcoma-associated herpesvirus (KSHV), a member of the γ herpes virus 

subfamily, likewise, latently infect B cells in culture. A region, termed the major 

latency locus, whose transcripts includes four open reading frames (ORFs) was 

discovered from studies on KSHV latently infected cells derived from primary 

effusion lymphoma. These four ORFs are the latency-associated nuclear antigen 

(LANA), v-cyclin, Flice-inhibitory protein (v-FLIP) and the kaposin family 

protein15. LANA works in the same way as EBNA-1 in EBV, binding to oriP and 

facilitating the episome replication during latency. LANA also tethers the KSHV 

genome to the chromosomes allowing for passing of the viral genome to daughter 

cells during mitosis20. Additionally, LANA plays a role in latency control as it 

inhibits the expression and transactivation of the key KSHV lytic replication initiator 

RTA (ORF50) thereby negatively regulating the lytic cycle of the virus21. The v-Flip 

also contributes to the control of latency by activating the NF-κB pathway leading to 

the repression of lytic replication thereby stabilising latency. In addition to the 
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kaposin family proteins that are encoded within the kaposin locus, KSHV also 

encodes for microRNAs (miRNAs). Kaposin A and B are transcribed from this locus 

and their functions are fully understood. However, miRNAs have been implicated to 

play a role in latency by controlled both viral and host cell genes through 

downregulation of target transcripts. Certainly in the case of HCMV, the focus of 

this thesis, several target transcripts have been identified are discussed in section 

1.4.3.2 and Table 1.4. 
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1.2 Biology of Human Cytomegalovirus 

 Human cytomegalovirus (HCMV) is a β herpes virus whose infection is restricted to 

humans. Following an initial infection, HCMV maintains a lifelong infection in the 

host, involving a cycle of latency and reactivation1,2. Infection of a host whose 

immune system is competent results in relatively minor symptoms. In contrast, 

infection of individuals with a compromised immune system as in the case of organ 

transplant recipients and AIDS patients can cause significant morbidity and    

mortality2-4. HCMV is also the most common cause of congenital viral infections in 

the United States resulting from intrauterine infection and leading to birth defects 

that include mental retardation, hearing loss, visual impairment, and pregnancy 

complications, including intrauterine growth restriction, preterm delivery, and 

stillbirth3. Therefore, HCMV is a clinically significant herpes virus and work 

conducted to gain more insight on the virus is important and valuable. 

1.2.1 Virion Structure 

HCMV is one of the largest and structurally more complex viruses in the 

Herpesviridae family with a diameter of approximately 150 to 200nm. The HCMV 

capsid encloses the viral genome making a nuclueocapsid of approximately 115 to 

130nm in diameter22. The nucleocapsid is surrounded by a protein-containing 

tegument which also contains a selection of viral and cellular RNAs. The tegument is 

divided into two sub-compartments, namely the inner and outer tegument. The inner 

tegument is densely packed and binds directly to the nucleocapsid whereas the 

pleomorphic outer tegument is loosely packed and found between the inner tegument 
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and the virus envelope23. The envelope, which is a lipid bilayer partly made from 

altered host cell membranes, encloses the virion. Several forms of virus encoded 

glycoproteins are found on the envelope surface where they are important in viral 

host cell entry11,23. 

1.2.2 Genome Structure 

The HCMV genome is the largest among the herpes viruses and is in the form of a 

linear dsDNA of approximately 230 kb. The genome is arranged into a class E 

organisation with two unique domains, referred to as short (US) and long (UL), that 

are flanked by terminal repeated segments at the start and end of the genome, TRL 

and TRS respectively.  Two internal repeated segments, IRS and IRL, are also found 

at the intersection of the unique domains. The resulting genome configuration is 

therefore TRL -UL -IRL -IRS -US -TRS as illustrated in Figure 1.2:11,22,24. The class E 

organisation of the HCMV genome allows it to undergo recombination during 

replication, leading to the inversion of the genome components. This results in the 

generation of four different genome isomers, which tend to be in equal amounts and 

are all infectious. Other herpes viruses that share this characteristic are VZV, HSV, 

MCMV and CCMV22,25. 

The HCMV’s genome was found to be linear when isolated from the virion. It is 

however known to circularise upon being released into the infected cell’s nucleus 

and replication occurs by a rolling circle mechanism that leads to the generation of 

multiple, tandemly linked, copies of the viral genome. The presence of unpaired 
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bases at the 3’ termini of the genome, as demonstrated with AD169 strain, is 

believed to facilitate for the circularisation during replication22. 

The genome composition of HCMV is however not completely understood. 

Experimental studies are challenging as laboratory strains undergo deletions and 

adaption during growth in culture24. Initial studies by Chee et al. employed M13 

shotgun cloning and chain termination to determine the sequence of HCMV AD169 

strain. To identify protein-coding regions, they prioritised open reading frames 

(ORFs) that were ≥100 amino-acid encoding codons as well as not overlapping 

larger ORFs by ≥60% of their length.  This led to the prediction of the presence of a 

total of 208 potential protein coding ORFs which however decreased to 189 when 

duplications in RL and known splicing were taken into account24,26. These studies 

were published in 1990 and a decade later it was estimated that HCMV encodes for 

approximately 164 to 167 ORFs24. This was following the comparison of the then 

determined closely related CCMV genome and using the assumption that HCMV 

and CCMV genomes are moderately diverged and collinear therefore sequence 

features and protein coding regions will be conserved24. With the invention of deep 

sequencing techniques, the complexity of the HCMV transcriptome is emerging and 

RNA splicing has been shown to occur more frequently than previously recognised, 

leading to the annotation of new protein coding regions27. 

Further studies by Stern-Ginossar et al. using ribosome profiling and transcript 

analysis led to the identification of approximately four times more ORFs than 

previously known. Human foreskin fibroblasts were infected with Merlin, a clinical 
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HCMV strain, and harvested at 5, 24 and 72 hours post infection (hpi) allowing for 

the monitoring of HCMV ORFs’ temporal expression. A set of infected cells were 

either not treated with a drug or pre-treated with a translation elongation inhibitor, 

cycloheximide, to measure the overall in vivo distribution of ribosomes on mRNA. 

Another set was pre-treated with two drugs, harringtonine or lactimidomycin, which 

results in a strong accumulation of ribosomes at translation initiation sites and 

depletion of ribosomes over the body of the message and therefore an ORF start site 

can be identified. Cells were then harvested to generate libraries of ribosome 

protected mRNA fragments and sequenced to quantify RNA levels and identify 5’ 

transcript ends. Results from this study identified a total of 751 translated ORFs with 

147 having previously been reported to be coding. Out of the total ORFs, 245 were 

very short ≤20 codons, 239 had 21 to 80 codons and 120 had ≥80 codons. Also, 24 

previously annotated ORFs were not strongly represented in this data, potentially as 

a result of being expressed at different conditions to the ones used in this study28. 

1.2.3 Lytic Replication  

Lytic replication of the HCMV genome starts with the expression of the viral 

immediate early (IE) genes as soon as the viral DNA reaches the host cell’s nucleus. 

This is followed by the expression of the early (E) genes, viral DNA replication and 

late (L) gene expression. Encapsidation of the viral genome followed by release of 

an infectious virus concludes the lytic life cycle29. 

The lytic life cycle of HCMV follows a sequence of controlled events that 

commence immediately after binding of the virus to host cell receptors. By a 
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mechanism that involves glycoproteins, particularly glycoprotein B (gB), one of the 

core proteins conserved in all herpes viruses, HCMV attaches to receptors on the cell 

surface and initiates its entry. Heparin sulphate, which is expressed on the host cell 

surface, is thought to act as a receptor for gB molecules. HCMV is understood to 

also use other envelope proteins such as glycoproteins H, L, M and O (gH, gL, gM 

and gO) for host cell binding. The two most reported mechanisms of entry are fusion 

between the viral envelope and the plasma membrane for entry into fibroblast cells, 

and receptor mediated, pH dependent endocytosis for entry into epithelial and 

endothelial cells. For entry into fibroblast cells, the glycoproteins gH, gL and gO 

have been demonstrated to interact and form a complex, gH/gL/gO, that interacts 

with host cells surface’s integrins leading to the direct fusion at the plasma 

membrane of the virion and a target host cell. The three proteins, UL128, UL130 and 

UL131, encoded by the UL128-131 region form pentameric complexes with gH/gL 

and mediate HCMV entry into epithelial and endothelial cells also via integrin 

binding30,31. Upon entry of the virus into the host cell the nucleocapsid is released 

into the cytoplasm, translocated to the nucleus by a cytoskeletal dependent 

mechanism, and interacts with a nuclear pore allowing the release of the genome into 

the nucleus. 

Efficient and successful delivery of the viral genome to the host’s nucleus is 

facilitated by important tegument proteins which also initiate viral gene expression32. 

Upon entry of the HCMV nucleocapsid into the cell, the first barrier to reaching the 

cell’s nucleus is the high cytoplasm density as well as the size of the nucleocapsid. 

To circumvent this, the virus uses the intracellular transport machinery, travelling 
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along microtubules (MTs) with the aid of some tightly associated tegument proteins 

such as the UL32 encoded pp150, as well as the UL47/UL48 protein complex32-34. 

The UL47/UL48 protein complex also plays a role in the transportation of the viral 

DNA into the cell’s nucleus via the nuclear pore complex. Herpes simplex virus type 

1 (HSV1) is also known to employ similar complexes formed by the pUL37 and 

pUL36, also called VP1/2 respectively, that migrate along the host cells’ MTs35. 

These complexes were further associated with nucleocapsids, which were found 

accumulating together at the nuclear surface32. 

Once in the nucleus, the viral tegument protein pp71 initiates viral IE gene 

expression through interaction with proteins that bind the nuclear components, 

known as the promyelocytic leukemia (PML) nuclear bodies. The mode of action of 

PML nuclear bodies is not fully understood and it is not clear whether they are pro- 

or anti-viral. It is however known that the viral genome binds to a subset of these 

PML nuclear proteins on successful entry into the nucleus and in turn interacts with 

two other proteins, Daxx and Sp100 whose function is to provide an intrinsic 

immune response against HCMV36-38. The Daxx protein subsequently recruits the 

histone deacetylases (HDACs) targeting promoters and causing the repression of 

viral gene expression. Saffert et al. showed that pp71 induces the degradation of 

Daxx, leading to the activation of the major immediate early promoter (MIEP) and 

the stimulation of IE expression38. 

The major IE genes (MIE) IE72 and IE86, also referred to as IE1 and IE2 

respectively, play pivotal roles in driving acute replication of HCMV. Although not 
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fully understood, the MIE proteins function as transactivators of early and late viral 

gene expression which occurs within 6 to 24 hpi and is followed by viral DNA 

replication11. Figure 1.3 represents the HCMV-encoded replication proteins’ 

positions on the genome, the origin of replication within the UL region and mapped 

on the HCMV laboratory strain AD169 to be between nucleotides 91751 and 93600, 

as well as the formation of the replication initiation complex. 

 

Figure 1.3: Representation of the HCMV-encoded replication proteins, oriLyt 

structure and replication initiation complex formation39,40. 

A. HCMV-encoded replication proteins’ positions on the genome and the positing of the 

origin of lytic replication, oriLyt. B. Representation of the oriLyt structure with the 

essential regions I and II where the MIE protein IE2 also known as IE86 and UL84 binds 

respectively. Also highlighted is the highly pyrimidine rich sequence marked Υ-block. 

Nucleotide (nt) numbers shown are with reference to the AD169 strain DNA sequence. 

C. Formation of the replication initiation complex by the HCMV-encoded proteins. 
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HCMV DNA synthesis initiates at the cis-acting origin of lytic replication (oriLyt), a 

sequence that is more than 2.4 kbp in length located within the UL genomic region. 

oriLyt is a bidirectional promoter with a complex structure consisting of repeat 

elements as well as transcription factor binding sites. The essential regions are the 

IE86-UL84 responsive promoter region and an RNA/DNA hybrid structure which is 

a substrate of the UL84 protein41-43.  IE86 binds to the oriLyt promoter element, a 14 

bp DNA motif within oriLyt, and, in cooperation with UL84, activates this element. 

This binding facilitates or triggers initiation of DNA synthesis via transcriptional 

activation44. Other elements important for DNA replication include the DNA 

polymerase (UL54), primase and primase-associated factor (UL70 and UL102), 

helicase (UL105), p52/DNA processivity factor (UL44) and the single-stranded 

DNA-binding protein (UL157). These elements form the core replication machinery 

and are conserved in other herpes viruses. Four proteins encoded by the UL112-113 

region via alternative splicing act as transcriptional enhancers and recruit the DNA 

processivity factor (UL44) to the pre-replication foci. The helicase-primase complex 

formed by UL105-UL102-UL70 unwinds the dsDNA which is then prevented from 

re-forming into a double strand by the binding of the single stranded DNA binding 

protein (UL57). DNA polymerase then binds and replicates the DNA with UL44 

maintaining its binding to the DNA template11,31,42,45. 

Initially, genome inversion and maturation occurs in the nucleus with the inversion 

leading to the formation of the different genome isomers. The circularised HCMV 

genome is thought to replicate by a process that involves the formation of 

concatemeric molecules which are, in turn, cleaved into unit length genomes. The 
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DNA cleavage is mediated by a terminase enzyme which is made from the tegument 

proteins UL56 and UL89 with the former responsible for the ATPase activity and the 

later enhances the UL56-associated ATP hydrolysis46. The mature DNA is then 

packaged into pre-formed B capsids mediated through a portal made from UL104 

following interaction with the terminase47. 

DNA cleavage and packaging is directed by the highly conserved short sequences 

found near the genomic termini in all mammalian HVs known as pac1 and pac2. 

Once packaged, the mature virions are then transported in vesicles via the Golgi 

apparatus to the cell surface until the successful egress from the cell through the 

exocytic pathway, a process that takes approximately two days from DNA 

synthesis11,42,44,45. 
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1.3 Pathogenesis of HCMV 

HCMV infection has a widespread distribution with a variable seroprevalence of 

between 50% and 90% depending on the socio-economic state of a population48. 

HCMV establishes a systemic infection with major cells infected including 

fibroblasts, epithelial and endothelial cells. However, leukocytes, dendritic cells, 

monocytes/macrophages, brain and retinal neurones, gastrointestinal smooth muscle 

cells and hepatocytes, are also susceptible to infection49,50. Individuals infected have 

a lifelong infection with episodes of reactivation. 

HCMV is transmitted through infected bodily fluids such as saliva and urine as well 

as cervical and seminal excretions during sexual intercourse11,51. The virus can also 

be transmitted through the placenta from infected pregnant women to their unborn 

babies. Breast milk has also been reported as a source of transmission52. Recipients 

of blood transfusion, solid organ or hematopoietic stem cell transplantation (HCT) 

from infected donors also risk HCMV infection53. Primary infection in 

immunocompetent individuals does not often manifest into clinically obvious 

disease, mainly as a result of the broad, strong and durable immune response detailed 

in the following section. 

1.3.1  Immune Response to HCMV 

HCMV infection triggers a coordinated innate and adaptive immune response. A 

discussion on the interferon system and how it relates to HCMV as well as other 

herpesviruses is detailed in section 1.5. However, the action of interferons on HCMV 
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is just one way in which the innate immune system responds. A primary infection by 

HCMV results in a humoral immune response in the form of a transient IgM 

response that is followed by persistent levels of IgG54. This antibody response acts to 

neutralise the virus infectivity as well and to inhibit cell to cell spread as well as 

initiate the complement system. The attachment of the virus onto the cell surface 

triggers physiological changes with downstream effects on the innate immunity of 

the cell also referred to as cellular immune response55. The cellular immune response 

takes the form of antigen recognition, lymphokine production cytotoxic killing of 

infected cells as mediated by T-helper (CD4 +), T-cytotoxic/suppressor (CD8 +) and 

natural killer lymphocytes54. It has been shown that the pattern recognition receptors 

Toll-like receptor 2 and CD 14 recognise HCMV virions leading to the production of 

inflammatory cytokine production, a hallmark of the innate immune response. Viral 

infection also triggers an increase in the production of chemokines, and natural killer 

(NK) cells56. 

T-lymphocytes and antigen-presenting cells cooperate and provide an adaptive 

immune response in an effort to counter the viral infection. The T helper (CD4+) 

cells recognise and interact with antigens presented by the major histocompatibility 

complex (MHC) class II molecules on the surface of infected cells. This interaction 

causes the T helper cells to mature, and this, in turn, causes the release of various 

cytokines including chemokines, interleukins and interferons. This leads to the 

activation of cytotoxic T-lymphocyte (CTL) (CD8+) cells and macrophage cells. 

CTLs target infected cells and release cytotoxins that lead to cell death, preventing 

the spread of the virus. Similarly, macrophages prevent the spread of infection by 
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targeting and phagocytosing infected cells. The CTLs also recognise HCMV infected 

cells by directly interacting with the antigen presenting MHC class I molecules on 

infected cells leading to cytotoxin release11,57. 

Unlike T-lymphocytes, Natural Killer (NK) cells lack the antigen-specific receptors 

but are able to employ NK-cell receptors that have the ability to distinguish 

abnormalities such as lack of MHC class I expression or a different profile of surface 

antigens displayed by the virus infected cells. Stimulation of NK cells can also be 

achieved by direct activation of natural killer cell protein group 2 (NKG2D) and 

Ly49H receptors by cytokines such as interleukins (IL) 12 and 18 as well as 

INFs57,58. NK cells present the body with an innate immune response to HCMV 

infection and their activation results in cytotoxicity or cytokine production, depletion 

of infected cells and prevention of virus spread. 

HCMV, like all herpes viruses, has evolved mechanisms to counteract these events 

to promote a persistent and latent infection despite a robust and fully functional 

immune system and these are detailed in section 1.5. 

1.3.2  Latency and Reactivation 

Latency, as a characteristic of all herpes viruses, is defined as a reversibly quiescent 

state in which viral genomes are maintained, but viral gene expression is highly 

restricted and no virus is produced59. Herpes viruses are however able to reactivate 

and replicate, mostly when the host’s T-cell mediated immunity is weak, for example 

in patients with a suppressed immunity and in the case of HCMV, reactivation 
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coincides with higher levels of immunosuppressive therapy60. It is not fully 

understood how herpes viruses maintain latent and lifelong infection in 

immunocompetant hosts. Studies on HCMV latency are further complicated by the 

virus’ host species specificity, hence until recently (in the last 5 years) when 

humanised mice have been generated and used successfully, animal model studies 

had not been possible61,62. However, cell culture studies have given some insight on 

the subject. 

Efforts to understand mechanisms underlying the latency of HCMV has led to 

different lines of enquiry such as site(s) of latency, the viral genes involved in the 

maintenance of latency and successful evasion of the host’s immune system. Taylor-

Wiedeman and colleagues studied peripheral blood mononuclear cells (PBMC) from 

healthy seronegative and seropositive individuals. They used PCR to study PBM 

cells that were highly purified by fluorescence-activated cell sorting (FACS) and 

detected the presence of HCMV DNA predominantly in monocytes63. 

Viral replication and reactivation has been linked to the differentiation and activation 

state of myeloid cells64. The presence of HCMV genome in the bone marrow CD34+ 

progenitor cells in the absence of lytic gene expression led to the understanding that 

these cells are a possible site of HCMV latency. Work by Reeves and colleagues also 

demonstrated, in vitro, that myeloid dendritic progenitors are a site for HCMV 

latency and that their differentiation results in reactivation of virus lytic replication. 

They isolated and purified monocytes and CD34+ cells from HCMV seropositive 

and seronegative donors and analysed them for the presence of the viral genome. 
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DNA from CD34+ cells was amplified using nested PCR specific for HCMV IE72 

exon 4 and analysed by polyacrylamide gel electrophoresis. Results showed the 

presence of the viral genome in both the seropositive acquired monocytes and 

CD34+ cells and that differentiation to mature dendritic cells (DCs) led to the 

induction of lytic replication as detected by an increase in the viral genome copy 

number64,65. Healthy seropositive blood donors can transmit HCMV infection to 

seronegative recipients and this transmission can be reduced by using leukocyte-

depleted blood products48, supporting the understanding that hematopoietic stem 

cells harbour the latent HCMV genome and constantly shed the viruses as they 

differentiate into leukocytes. 

Furthermore, in vitro studies have identified a number of HCMV components 

potentially associated with viral latency. These include the UL111A, UL81-82 

antisense transcript (UL81-82ast), US28 and miRNAs. The UL111A encodes for the 

cmvIL-10 protein, a homologue of human interleukin 10 (IL10). IL-10 is a cytokine 

that inhibits immune responses and the ability of HCMV to express a homologue of 

this cytokine suggest one of the ways the virus manages to avoid host 

immunosurveillance as it maintains latency in the host. cmvIL-10 has been reported 

to suppress the production of pro-inflammatory cytokines as well as the expression 

of the MHC II expression in CD34+ HPCs thus promoting viral latency48,59. 

The UL81-82 locus encodes for a 133 amino acid protein (16kD) that has been 

termed latent undefined nuclear antigen (LUNA). LUNA is understood to restrict the 

expression of the tegument protein pp71, a product of the viral gene UL82. pp71 is a 
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transcriptional activator of the MIE promoter and suppression of pp71 by LUNA 

effectively inhibits the lytic replication of the virus, therefore promoting HCMV 

latency66. Various studies have also indicated the promotion of latency by some viral 

miRNAs as detailed in section 1.4.3.2. 
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1.4 miRNAs 

1.4.1 Introduction  

MicroRNAs (miRNAs) are small, single stranded RNA molecules of approximately 

20 to 24 nucleotides in length. These non-coding RNAs are involved in the 

regulation of gene expression in eukaryotes thorough a post-transcriptional 

mechanism using the RNA induced silencing complex (RISC). In 1993 Ambros and 

colleagues discovered the first miRNA in Caenorhabditis elegans. Their studies 

revealed two lin-4 transcripts of 22 and 61 nucleotides; the 22 nucleotide transcript 

being the result of the processing of the 61 nucleotide transcript. These transcripts 

contained sequences complementary to a repeated sequence element in the 3’ UTR 

of lin-14 mRNA and it was demonstrated that lin-4 regulates lin-14 via an antisense 

RNA-RNA interaction leading to a decrease in the translation of lin-14 mRNA67. 

This marked the classification of a new unique family of RNAs known as the 

miRNAs which have now been found to be ubiquitously expressed in metazoans68. 

miRNAs have since been established as a subject of enormous interest and have been 

shown to be involved in various and diverse cellular processes such as immune 

function, apoptosis, tumorigenesis, growth, proliferation, phenotype, cell cycle as 

well as death, and in turn having a major influence on pathophysiological 

outcomes69. 
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1.4.2 miRNA Biogenesis & Function 

miRNAs are produced by gene transcription followed by sequential processing or 

editing. miRNA coding genes form independent transcription units and are found 

mainly between protein coding regions, intergenic, or in an antisense orientation of 

annotated genes. The few that are found within genes are located within introns. 

Most miRNA genes are transcribed by the RNA polymerase II (pol II) with a 

minority transcribed via RNA pol III68-70. 

Transcription of miRNA genes generates large transcripts of several kilobases in 

length known as primary miRNA (pri-miRNA) molecules which contain well-

defined hairpin structures. These hairpin structures are recognised by a nuclear 

multi-protein complex, the microprocessor. The microprocessor initiates the first of 

several steps, in processing of the transcripts, leading to the formation of a mature 

and functional miRNA molecule of approximately 20 to 24 nucleotides in length69,71 

(Figure 1.4). 
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Figure 1.4: miRNA biogenesis72.  
Transcription of a miRNA gene or intron generates a hairpin structure known as a 
primary miRNA (pri-miRNA) that is cleaved by DROSHA intro a pre-miRNA. Exportin 5, 
a nuclear transport receptor family member, exports the pre-miRNA to the cytoplasm 
where it is further cleaved by a Dicer enzyme to generate a mature, double stranded 
miRNA. A protein complex, RISC, in turn incorporates one strand of the miRNA that 
directs the complex binding to a target mRNA via the seed sequence resulting in the 
mRNA cleavage or transcriptional repression. 

 

The Microprocessor complex consists of two main proteins, an RNase III-like 

protein known as DROSHA and its co-factor DiGeorge syndrome critical region 8 

(DGCR8). The recognition and interaction of the hairpin structure by DGCR8 leads 

to the recruitment of DROSHA which in turn cleaves the pri-miRNA precisely at the 



27 

 

stem loop structure generating a secondary miRNA precursor molecule of 

approximately 70 nucleotides, known as the precursor miRNA (pre-miRNA)73. 

The protein exportin-5, a nuclear transport receptor family member, recognises the 

stem-loop structure of the pre-miRNAs and transports them from the nucleus to the 

cytoplasm where they are further cleaved by a Dicer protein. Dicer is an RNase III 

enzyme that removes the terminal loop structure of pre-miRNAs, generating a 

mature, double-stranded miRNA74. One strand of the duplex is incorporated into the 

RISC, forming a stable interaction with the argonaute 2 (Ago-2) protein of the 

complex. Upon incorporation of the miRNA into RISC, it directs the complex to the 

target via the seed sequence, which is found between nucleotides 1 to 8 on the 5’ end 

of the miRNA and binds to the 3’ UTR of the target gene. Perfect complementarity 

of the miRNA to its target results in the cleavage of the mRNA whereas a partial 

match leads to translational repression68,75. It must, however, be noted that partial 

complementarity can lead to degradation of mRNA as well. A single miRNA can 

bind to and regulate different mRNA target sequences and in the same way, multiple 

miRNAs can bind and regulate the same target70. 
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1.4.3 Viral microRNAs 

With viruses having some of the smallest genomes and miRNA genes taking up 

relatively little genomic space, miRNAs offer viruses an efficient and convenient 

way of regulating both their own genomes as well as that of the hosts’ to support 

their life cycle76,77. miRNAs also have the added advantages that a single miRNA 

can potentially have more than one target and that they do not elicit an immune 

response from the host68. 

The first viral miRNAs were discovered by Pfeffer and colleagues in 2004, 

expressed by EBV, a member of the γ herpesvirus sub-family68,77. After cloning 

small RNAs from a Burkitt’s lymphoma cell line latently infected with EBV, 

genomic sequence analysis identified 5 miRNAs encoded by EBV77. Further studies 

have led to the discovery of miRNAs encoded and expressed by different viruses. 

Interestingly, herpes virus encoded miRNAs make up more than 95% of viral 

miRNAs known to date with 6 of the 8 HHVs having been shown to expresss 

miRNAs68,78,79. Enormous interest was raised as it emerged that this class of RNAs 

play a key role in enhancing and regulating the herpes virus life cycle, both during 

lytic replication and latency. Viral miRNa are capable of targetting both cellular and 

viral transcripts as represened for known miRNA targerts and proposed function in 

Table 1.2Table 1.3 respectively. 
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Table 1.2: Viral miRNAs, known cellular targets and proposed targets68,80. 

Virus miRNA(s) Target Proposed function 

EBV miR-BART5 PUMA Anti-apoptotic 
therefore 
maintenance of 
latency 

MDV1 miR-M3 SMAD2 

KSHV miR-K1 THBS1 

miR-K3-3p 

miR-K6-3p 

miR-K11 

KSHV miR-K12-10a TWEAKR 

miR-K5 BCLAF1 Inhibit caspase, may 
facilitate lytic cycle miR-K9 

miR-K10a/b 

HCMV miR-UL112-1 MICB 
 

Immune evasion 

KSHV miR-K12-7 

EBV miR-BART2-5p 

HCMV miR-UL148D-1 RANTES 

MCMV miR-M23-2 CXCL16  

EBV mir-BHRF1-3 CXCL-11 Immune modulation 

KSHV miR-K1 p21 Prevent cell cycle 
arrest 

HCMV miR-US25-1 CCNE2 Block cell cycle to 
prevent apoptosis. H3F3B, 

TRIM28 

KSHV 
 
 

miR-K12-3 and 
K12-7 

C/EBPbeta p20 (LIP) Paracrine growth 
promotion 

miR-K12-4-3p Gemin8  

miR-K12-11 BACH1 Mimics cellular miR-
155 

Fos  

MDV1 miR-M4 PU.1  

miR-M4 GPM6B, RREB1, c-
Myb MAP3K7IP2, 
PU.1, C/EBP, Rbl2 

Establishment of 
latency and 
reactivation 

EBV miR-BART6 Dicer  

KSHV 
 
 

miR-K12-4-5p Rbl2 Increased DNA 
methylation 

miR-K12-1, 6-5p 
and 11 

MAF Trans-/de-
differentiation 

miR-K12- 3 and 4-
3p 

CASP3 Maintenance of 
latency 

miR-K12-1 IκBα, CASP3 

miR-K12-3, 7 and 
11 

NFIB Establishment of 
latency and 
reactivation 

Table adapted and modified from Grundhoff et al. (2011) and Grey (2015). 
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Table 1.3: Viral miRNAs, known viral targets and proposed targets68,80. 

Virus miRNA(s) Target Proposed function 

EBV miR-BART22 LMP-2a Immune evasion 

EBV miR-BART1-5p LMP1 Prevent apoptosis 

 miR-BART16 

 miR-BART17-5p 

EBV miR-BART2 BALF5 Prevent lytic 
replication/promote 
latency 

miR-BART-20-5p BZLF1 and BRLF1 

KSHV miR-K9* RTA 

HCMV miR-UL112-1 IE72 (UL123, IE1) 

HCMV miR-UL112-1 UL114 

HSV-1 miR-H2-3p ICP0 and ICP4 

HSV-2 miR-2 ICP34.5 

miR-3 ICP0 

MDV1 miR-M4 UL28, UL32 

HSV-2 miR-1 ICP0 and ICP34.5 Control neurovirulence 

OvHV-2 ovhv2-miR-5 ORF50 Establishment of latency 
and reactivation. 

Table adapted and modified from Grundhoff et al. (2011) and Grey (2015). 

1.4.3.1 miRNAs in the context of HCMV 

There are twenty-two known and annotated HCMV encoded microRNAs (miRNA) 

and there is still potential for more to be identified. Pfeffer and colleagues first 

identified HCMV miRNAs in cells undergoing lytic infection. Using small RNA 

cloning and sequencing, they identified 9 precursor HCMV miRNAs which gave rise 

to a total of 11 mature miRNAs81. Three of these miRNAs were also detected by 

Dunn and colleagues by cloning and sequencing techniques76. 

In 2005 Grey et al. used a bioinformatics approach directly comparing HCMV to the 

closely related Chimpanzee CMV (CCMV) to predict 13 pre-miRNAs. A 

bioinformatics program called Stem-loop Finder (SLF; Combimatrix) was initially 

used to predict potential stem-loop secondary structures forming RNA transcripts 
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from the HCMV genome. The results were further refined using a second algorithm 

called MiRscan. MiRscan compares potential candidates from two sequences on the 

basis of evolutionary conservation of the miRNAs  and was used to analyse the 

HCMV stem-loop transcripts with the CCMV genome for potential homology82. The 

researchers identified five miRNAs, 3 of which were previously identified by Pfeffer 

et al. and 2 novel miRNAs, miR-US4-1 and miR-UL70-1. Using Northern blot 

analysis, they validated all 5 miRNAs as well as 4 previously identified by Pfeffer 

and colleagues81,82. 

The development of high throughput sequencing techniques such as deep sequencing 

has allowed for the in-depth studies of transcript populations. This effectively allows 

for the yielding of a greater representation of a sample or assay as deep sequencing 

generates reads with a magnitude of millions as opposed to the hundreds that are 

achieved by small scale sequencing. Stark et al. successfully implemented the deep 

sequencing technique on small RNAs from HCMV infected human fibroblasts cells. 

They validated 10 previously identified pre-miRNAs as well as 2 novel pre-

miRNAs. All but 2 of these twelve pre-miRNAs resulted in two individual miRNA 

species leading to the generation of twenty two mature miRNAs83. Their results did 

not detect the previously annotated pre-mir-UL70 but did reveal the presence of 

small RNAs outside the annotated HCMV miRNA regions. Further studies on these 

regions by bioinformatics using the miResque miRNA prediction algorithm led to 

the discovery of 2 novel pre-miRNAs, pre-miR-US22 and pre-miR-US33as, which 

were validated by Northern blot analysis83. Meshesha et al. identified 2 further pre-

miRNAs, pre-miR-UL59 and pre-miR-US29, using deep sequencing. They 
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confirmed both pre-miRNAs by qPCR and proposed that both pre-miRNAs form 2 

mature miRNA. They also detected the formation of 1 more miRNA, miR-US4-3p, 

from an already identified pre-miRNA and this potentially brings the total of known 

HCMV encoded miRNA to twenty seven. Interestingly their results did not reveal 

any reads for pre-miR-UL70, agreeing with previous studies by Stark and 

colleagues. The genome location HCMV encoded miRNAs is represented in Figure 

1.5 and summarised in Table 1.4. 

 

Figure 1.5: HCMV miRNA gene map84. 
Also confirmed is the US33as which is not included. Although included, UL70 has been 

shown to not code miRNAs. 
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Table 1.4: Known HCMV miRNAs. 

Annotation and 

Name 
Representative Sequence1 

Genome Position  
(5’to 3’) 2 

Annotated in miRBase From  To 

miR-UL112-3p AAGTGACGGTGAGATCCAGGCT 164557 164578 

miR-UL148D TCGTCCTCCCCTTCTTCACCGT 193587 193607 

miR-UL22A-5p CTAACTAGCCTTCCCGTGAGA 27992 28011 

miR-UL22A-3p TCACCAGAATGCTAGTTTGTAG 28029 28050 

miR-UL36-5p TCGTTGAAGACACCTGGAAAGA 49914 49893 

miR-UL36-3p TTTCCAGGTGTTTTCAACGTG 49870 49851 

miR-US25-1-5p AACCGCTCAGTGGCTCGGACCG 221539 221519 

miR-US25-1-3p GTCCGAACGCTAGGTCGGTTCT 221496 221476 

miR-US25-2-3p ATCCACTTGGAGAGCTCCCGCGGT 221702 221680 

miR-US25-2-5p AGCGGTCTGTTCAGGTGGATGA 221760 221739 

miR-US33-3p TCACGGTCCGAGCACATCCAA 226731 226712 

miR-US33-5p ATTGTGCCCGGACCGTGGGCGC 226768 226750 

miR-US4-5p TGGACGTGCAGGGGGATGTCTG 201376 201395 

miR-US5-1 TGACAAGCCTGACGAGAGCGT 202317 202337 

miR-US5-2-3p TTATGATAGGTGTGACGATGTC 202444 202465 

Not annotated in miRBase 

miR-UL112-5p CCTCCGGATCACATGGTTACTCAG 164520 164540 

miR-US4-3p TGACAGCCCGCTACACCTCTCT 201416 201434 

miR-US5-2-5p CTTTCGCCACACCTATCCTGAAAG 202408 202429 

miR-US22-5p TGTTTCAGCGTGTGTCCGCGGGC 216157 216177 

miR-US22-3p TCGCCGGCCGCGCTGTAACCAGG 216195 216216 

miR-US33as-5p TGGATGTGCTCGGACCGTGACG - - 

miR-US33as-3p CCCACGGTCCGGGCACAATCAA - - 

Table details obtained from83,84. 1Representative sequence was picked as one with 

the highest reads in the deep-sequencing. 2The positions are according to the NCEB 

database, NC_006273.2 sequence. 
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 1.4.3.2 HCMV miRNA Potential Targets/Functions - Latency 

Three miRNAs, miR-US25-1, miR-US25-2 and miR-UL112-1, have been shown to 

regulate viral and/or cellular genes in such a way that may promote HCMV latency. 

Work by Grey et al. demonstrated that miR-UL112-1 targets the viral gene IE72 that 

encodes a major trans-activating protein. Due to the ability of IE72 to drive 

HCMV’s lytic replication, IE72 along with IE86, has been suggested to play pivotal 

roles in latency establishment and reactivation of the virus. Inhibition of IE72 may 

promote latency85. miR-US25-1 and -2 have been demonstrated by studies from 

Stern-Ginossar and colleagues to target host cell transcripts in a mechanism that 

reduces viral DNA synthesis. By ectopically expressing these miRNAs in HEK293 

cells and infecting them with other viruses e.g. HSV 1, they confirmed that these 

miRNAs were regulating cellular transcript(s) rather than the viral genome as they 

exhibited the same effect on the growth of these viruses86. 

RT-qPCR and western blot analysis have been applied to validate the targeting of 

ATP6V0C by HCMV’s miR-US25-1 following its identification as a potential target 

by RISC IP87. ATP6VOC is a component of the Vacuolar ATPase, which is 

responsible for acidification of endosomal compartments. Targeting of the 

ATP6VOC by miR-US25-1 results in the blockage of HCMV virion formation, a 

mechanism potentially important during latent infection88. Additionally, other 

HCMV miRNAs, summarised in Table 1.5, have been shown to target cellular genes 

in a way that promote the virus’ immune evasion which would in turn promote virus 

replication or the establishment and maintenance of latency. 
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Table 1.5: Known targets of HCMV miRNAs 

miRNA Target transcript Role 

miR-UL112-1 HCMV IE72 Shown to inhibit the expression of the major immediate-

early protein a phenomenon that potentially aid the 

establishment and maintenance of latency85,89. 

miR-UL112-1 Major 

histocompatibility 

complex class I–

related chain B 

(MICB) 

Immune evasion through downregulation of MICB, a 

stress-induced ligand of the NK cell activating receptor 

NKG2D therefore leading to reduced killing by NK 

cells85,90. 

 

Interleukin-32 (IL-

32) 

Immune evasion through the downregulation of IL-32, a 

proinflammatory cytokine involved innate and adaptive 

immune responses by activating the p38MAPK, NFκB 

and AP-1 signalling pathways91. 

miR-UL112-

3p 

Toll-like receptors 

2 (TLR2) 

Immune evasion by the viral miRNA regulation of the 

innate immune response by down-regulating TLR-2 

expression activates a variety of signal transduction 

routes including the NFκB pathway92,93. 

miR-UL148D Regulated on 

activation, normal 

T-cell expressed 

and secreted 

(RANTES) 

Immune evasion through downregulation of RANTES, 

a chemokine that would otherwise upregulate the 

immune response94. 

 

miR-US25-1 Cyclin E2 

(CCNE2) 

 

 

CCNE2 is associated with cell cycle control and along 

with other genes in this same pathway, BRCC3, EID1, 

MAPRE2, and CD147, was shown to be targeted by 

miR-US25-1 suggesting that this miRNA targets genes 

within a related pathway87. 

ATPase H+ 

Transporting V0 

Subunit C 

(ATP6V0CP) 

ATP6V0C is a component of the Vacuolar ATPase and 

its knockdown was shown to result in the attenuation of 

HCMV replication. Therefore miR-US25-1 targeting 

could possibly be a mechanism for latency 

establishment and maintenance or even immune 

evasion88. 

miR-US25-2-

3p 

Tissue inhibitors of 

metalloproteases 

3 (TIMP3) 

 Targeting of TIMP3 enhances the activity of 

metalloproteases involved in the shedding of the major 

histocompatibility complex class-I related chain A 

(MICA), an NKG2D ligand, thereby decreasing the NK 

cells recognition ability therefore playing a role in 

immune evasion93,95 

miRUS-4-1 Endoplasmic 

reticulum 

aminopeptidase 1 

(ERAP) 

 

ERAP is a key enzyme involved in catalysing the 

production of antigenic peptides in the endoplasmic 

reticulum and its downregulation inhibits the MHC1 

mediated antigen presentation resulting in the inhibition 

of CTL immune responses96. 
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1.4.4 Techniques for Identifying miRNA Targets 

By identifying viral miRNA targets, we can increase our understanding of miRNA 

roles and how they influence the viral life cycle. Different tools and techniques have 

been used to study miRNAs and seeking to improve them will further elucidate 

miRNA characteristics, targets and function. The techniques previously used, as 

described below, include bioinformatic studies, microarray analysis, RISC 

immunoprecipitation, high-throughput sequencing of RNAs isolated by cross-linking 

immunoprecipitation (HITS-CLIP) and photoactivatable-ribonuclease enhanced 

cross-linking and immunoprecipitation (PAR-CLIP). 

1.4.4.1 Bioinformatic Studies 

Bioinformatics is defined as the application of computational techniques to 

understand and organise the information associated with biological macromolecules. 

Bioinformatics is, in many ways, an ideal approach because of the ease with which 

computers can handle large quantities of data and probe complex dynamics observed 

in nature97. Bioinformatics equips researchers with a starting point as it identifies 

potential candidate genes, narrowing down the area and focus point for biochemical 

studies. A bioinformatics study is mainly a predictive tool with variable limitations 

depending on the parameters set for the algorithm. There has to be a fine balance in 

setting up the algorithm parameters in such a way that the stringency levels do not 

miss out potential targets while at same time minimising the generation of false 

positives. Further verification steps are taken by the use of wet-bench experimental 

techniques such as luciferase assays, cloning and sequencing and microarray studies. 
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Bioinformatics remains a strong tool for miRNA studies and can also be used as a 

validating tool for targets identified by other biochemical techniques. 

An example of an algorithm that has been used to identify miRNA targets is RepTar, 

developed by Stern-Ginossar and colleagues. RepTar was used to identify potential 

human target genes of miR-UL112-1, a HCMV miRNA. The algorithm searched for 

repetitive elements in each 3’UTR on the basis that miRNA binding sites can repeat 

several times in the target’s 3’ UTR. These studies identified the major 

histocompatibility complex class 1-related chain B (MICB) gene as a top candidate 

target for HCMV-miR-UL112-190. 

Grey et al. (2007) reported the use of a comparative bioinformatics approach to 

identify viral targets of miR-UL112-1. Using an online target identification 

algorithm RNAhybrid, they identified 32 potential targets for miR-UL112-1 from 37 

HCMV ORFs. However, by comparing these results to the potential targets of the 

closely related chimpanzee cytomegalovirus (CCMV), 14 genes were predicted to be 

targeted by miR-UL112-1 in both CCMV and HCMV genomes. Target sites for 

miR-UL112-1 were confirmed in three viral genes, IE72, UL120/121 and 

UL112/113 and later validated using luciferase assays and western blot analysis85. 

These studies demonstrate that bioinformatic methods can play an important role in 

target identification and further studies may elucidate future discoveries on viral 

miRNA function. 
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1.4.4.2 Microarray Studies 

Microarray studies provide a valuable tool for studying and identifying miRNA 

targets based on gene expression profiling and its ability to simultaneously establish 

the activity of a large number of genes. Microarrays are used for their ability to 

identify transcripts subjected to degradation as a result of being targeted by miRNAs 

of interest98. 

In microarray assays, DNA probes on a microchip are used to detect the presence of 

a transcript by hybridisation, and the amount of mRNA bound to each site on the 

array indicates the expression level of the coding gene. Typically, the levels of 

transcripts are compared between a cell line transfected with a miRNA of interest 

and a control cell line usually transfected with an empty vector. miRNA targeted 

transcripts will therefore be expected to show a reduction in expression levels due to 

cleavage when compared to the negative control sample. This provides an effective 

way of identifying miRNA targets particularly for plants as they exhibit perfect 

complementarity with their target, primarily resulting in the cleavage of the 

transcript whereas with viral and animal miRNAs, the level of degradation is very 

low as described in section 1.4.2. This makes the detection of transcript level 

variation difficult with small changes as low as 2-fold having been previously 

reported99. 

Microarray has previously been used to identify cellular genes targeted by KSHV-

encoded miRNAs. Samols and colleagues transfected HEK293 cells with a plasmid 

encoding 10 KSHV miRNAs or an empty vector for control samples. They isolated 
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the RNA from the cell lines and generated cDNA for microarray profiling. Their 

results showed an alteration in the expression of eighty-one genes with 8 of these 

having a decrease greater than 4-fold. These were investigated further by qRT-PCR, 

bioinformatics and luciferase assays. The final results confirmed the KSHV miRNA 

dependent inhibition of the 3’ UTRs of the SPP1 (osteopontin), PRG1 (plasticity 

related gene 1) and THBS1 (thrombospondin 1) genes as well as the targeting of the 

THBS1 by multiple KSHV miRNAs with the major miRNA species being miR-k12-

1, miR-k12-3-3p, miR-k12-6-3p and miR-k12-1198,100. 

Microarray studies, in combination with deep sequencing and luciferase assay 

analysis by Suffert et al. identified that 3 KSHV miRNAs, miR-K12-1, miR-K12-3 

and miR-K12-4-3p targeted caspase 3, an effector caspase involved in apoptosis 

control.  These studies, conducted on B lymphocyte DG-75 and endothelial 

EA.hy296 cell lines, demonstrated the down-regulation of transcripts with 3’ UTRs 

that possessed KSHV miRNA seed-matches. Deep sequencing of cell lines 

transfected with KSHV miRNA clusters were used to determine the relative 

abundance of miRNA within the cluster and determine transcripts with a seed-

sequence match within their 3’ UTRs. Transcripts showing decreased expression 

were validated as miRNA targets by luciferase assays101. 

It is fair to say, therefore, that microarray studies provide a solid starting point to 

identify potential targets which can be investigated further by detailed analyses. 

However, there is a potential loss of valid targets which would appear as false 

negatives, for example as result of expression at the RNA level not being altered due 
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to miRNA binding and also targets that are affected or down-regulated through 

secondary effects would score as false positives102. As a result, microarray usage has 

been combined with other tests such as qRT-PCR and luciferase assays to validate 

the results as well as a validating tool when used in combination with other miRNA 

studies techniques such as bioinformatics and RISC-IP. 

1.4.4.3 RISC Immunoprecipitation 

RISC Immunoprecipitation (RISC-IP) is a biochemical technique for isolating 

miRNA targeted transcripts relying on immunoprecipitation (IP) of the RISC 

complex. Cell lines stably expressing a tagged component of the RISC complex, for 

example Ago-2, allow for the IP of these complexes and the transcripts can then be 

identified by microarray analysis. In previous studies, the Ago-2 protein was tagged 

with a c-myc epitope and antibodies conjugated to agarose beads were used to isolate 

these complexes by IP87,102,103. After transfecting a cell line stably expressing this 

tagged version of the Ago-2 protein with the miRNA of interest in the form of a 

plasmid, a sample of the lysate is taken for quantification of RNA levels, which 

represents the total fraction. IP is then conducted and the RNA from the IP 

complexes are quantified by microarray or quantitative PCR analysis. On the basis 

that the association of a specific mRNA with the RISC complex is represented by 

quantitative enrichment of the mRNA in the IP fraction relative to the total (pre-IP) 

fraction, the miRNA target is determined from the microarray analysis data87. The 

cell line can also be infected by a virus, and by comparing the IP fraction of 

uninfected cells to those of infected cells, the viral miRNA targets can be identified. 

The uninfected IP fraction analysis will identify the host’s miRNA target and the 
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infected fraction will identify the viral miRNA targets in addition to the host’s target. 

The specific viral miRNAs can then be identified by their different enrichment 

profile. The RISC-IP procedure is schematically represented in Figure 1.6. 

 

Figure 1.6: A schematic representation of the RISC-IP procedure88. 
(A) miRNAs of interest are transfected into a cell line expressing a tagged Ago-2 protein 
and an empty vector is used to generate an uninfected IP sample. The miRNAs are 
incorporated into the RISC, directing mRNA targeting via seed sequence 
complementarity. (B) Cells are lysed and an anti-Ago-2 antibody is used to pull down 
RISC/miRNA/target mRNA complex. (C) RNA is extracted from RISC and analysed, in 
this illustration by microarray, but this can also be conducted by qRT-PCR. 

 

The identification of multiple cell cycle genes, particularly cyclin E2, as targets of 

the HCMV encoded miR-US25-1 miRNA is an example among many of the 

successful implementation of RISC-IP87. Additionally, the miRNA targets discussed 

in section 1.4.3.2 and are potentially linked to HCMV latency were identified by 
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RISC-IP and validated further by other methods including RT-qPCR, western blot 

analysis and siRNA studies. 

1.4.4.4 HITS-CLIP 

In 2005, Ule et al. developed the HITS-CLIP technique to identify protein-RNA 

interaction sites in living cells. HITS-CLIP reduces false positives that may occur 

with microarray or IP as the radiation (UV) cross-linking of the RNA to proteins 

before IP allows for additional high stringency purification whilst the bonding of 

RNAs to RISC is conserved. The cross-linking results in the formation of 

irreversible covalent bonds between the protein and the RNA molecules. An 

overview of the HITS-CLIP technique is shown in Figure 1.7. 
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Figure 1.7: Schematic representation of HITS-CLIP procedure104. 
Cells are UV-irradiated on ice (b) followed by immunoprecipitation of the RISC complex 

using an antibody raised against the human Ago-2 protein (c/d). With the miRNA 

targeted transcript covalently bonded to the protein as well as the miRNA, the remaining 

parts of the mRNA is digested using an RNase enzyme (e). The RNA is then 

dephosphorylated, ligated to a 3’ RNA linker (f) and radioactively labelled by 5’ γ32P (g). 

The RISC complex is isolated by SDS-PAGE and the complexes are transferred to a 

nitrocellulose membrane (h). The membrane is then exposed to an X-ray film allowing 

for the mapping of the region of the membrane containing the RISC complex (h). After 

excision, the membrane is treated with proteinase K (i) which leads to the dissociation of 

the RNAs from the protein. A 5’ linker is then ligated to the RNA (j) followed by reverse 

transcription generating a cDNA library which is further amplified by PCR (k). The cDNA 

is then sequenced (l) and the reads correspond to the miRNA and mRNA originally 

bound to the RISC complex104,105 

HITS-CLIP has been successfully used to study EBV miRNA targets. Using a Jijoye 

Burkitt’s lymphona cell line, which expresses forty-three of the forty-four known 

EBV miRNAs, they identified 3 viral 3’UTRs and 1503 human 3’UTRs to be co-

targetted by both EBV and cellular miRNAs106. One hundred and sixty-one human 

3’ UTRs were also found to be targeted by EBV miRNAs only. High throughput 

sequencing results from the HITS-CLIP assay showed that of the EBV miRNAs, 12 
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of them were highly expressed and represented 90% of the total EBV miRNA reads 

and these were selected for further detailed analysis. Analysis by bioinformatics 

revealed that the 3’ UTR of the EBV early lytic cycle protein, BHRF1, had miRNA 

binding sites for the human miR-142-3p and miR-17 family as well as the EBV 

BART-10-3p miRNA. Similarly, the latent membrane protein 1 (LMP1) had two 

distinctive 3’UTR binding sites for human miR-17 family, EBV miRNAs BART-19-

5p and BART-5-5p. These results were validated by luciferase assays. By using 

bioinformatics and focusing on the highly expressed EBV and human miRNAs, the 

same studies revealed that the EBV and human miRNA co-targeted mRNAs are 

most particularly involved in transcription, apoptosis and cell cycle pathways. EBV 

miRNAs targeted genes involved in transcription, apoptosis, Wnt signalling and cell 

cycle control106. 

1.4.4.5 PAR-CLIP 

Tushl and colleagues modified the HITS-CLIP technique and developed PAR-CLIP. 

In this procedure, cells are incubated with a photoactivatable ribonucleoside4-

thiouridine before the protein-RNA UV-crosslinking. This added step facilitates the 

identification of the exact cross-linked sites in the cDNA as the thymidine becomes 

cytidine in the sequenced cDNA104,107. The additional step theoretically results in an 

improved cross-linking and the refinement of target sites as well as less background 

noise. An illustration of this procedure is shown in Figure 1.8. 
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Figure 1.8: Overview of the PAR-CLIP procedure108. 

PAR-CLIP technique has been successfully used to study cellular targets for EBV 

and KSHV miRNA. Using primary effusion B cell lines, Gottwein and colleagues 

revealed that KSHV miRNAs directly target more than 2000 cellular mRNAs and 

identified miR-K15 to be a mimic of the hematopoietic miRNA miR-142-3p. Their 
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studies also confirmed the encoding of a miR-K11 and its mimicking properties of 

the hematopoietic miRNA miR-155. KSHV miRNA targets were involved in 

transcriptional regulation, signal transduction, vesicular trafficking, and the 

regulation of cell cycle and apoptosis109. However, in their report, they clarify that “it 

is important to point out that PAR-CLIP merely captures interactions, including 

those that may be transient or may not result in functionally relevant levels of 

regulation”109. Skalsky et al. (2012) investigated EBV miRNA targets using B-95-8 

(EBV strain) infected lymphoblastoid cell lines (LCLs), an EBV model for latency 

studies. In their studies, they combined PAR-CLIP and bioinformatics to identify 

five hundred and thirty-one EBV target sites in cellular 3’ UTRs and confirmed 

twenty-four of these by luciferase reporter assays. Their findings showed that EBV 

miRNAs mainly target cellular transcripts which are involved in innate immunity, 

cell survival and cell proliferation and do so during latent infection110. 

The discussed bioinformatic and biochemical techniques have been effective in 

miRNA studies but they have limitations. Bioinformatics as mainly a prediction tool 

can generate false positives and targets can be missed as false negatives. RISC-IP is 

dependent on the enrichment of transcripts as well as the microarray analysis of 

transcripts which is limited by the pre-designed probes. HITS-CLIP and PAR-CLIP 

techniques offer an improved method to RISC-IP but they lack the definitive target 

identification. As a result, most of the miRNA targets and functions are unknown 

highlighting the need for more improved and effective techniques. In this thesis, 

CLASH, an improvement from the CLIP techniques is adopted and will be described 

with preliminary work to establish and optimise the technique reported in Chapter 2. 
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1.5 The Interferon System 

1.5.1 Interferon 

The term interferon was conceived by Isaacs and Lindenmann in 1957 to refer to a 

component that was produced by cells that interfered with influenza virus 

infection111. To date, the term interferon has been globally and collectively accepted 

to refer to proteins produced and released by host cells following their sensing or 

recognition of pathogens such as viruses, bacteria and parasites. After being released 

by cells, interferons play crucial roles in signaling pathways important in 

establishing an effective immune response to an invading pathogen. This signaling 

results in the stimulation of a range of genes that work together to establish an anti-

pathogen state within the cell as well as exhibiting a paracrine effect on surrounding 

cells and tissues. Interferons are therefore part of the innate immune response, which 

provides a first line of defense against pathogens. 

1.5.1.1 Classes of interferons and pathways 

Interferons are classified into three families, type I, II and III, based on the receptor 

complexes through which they signal (Figure 1.9). Known type I interferons include 

α, β, ε, κ, and ω and are all found clustered on chromosome 9 of the human genome. 

These interferons signal through the heterodimer receptor complex formed by the 

interferon-alpha receptors 1 (IFNAR2) and 2 (IFNAR2). Type II interferon, also 

known as interferon gamma (IFN-γ), signals through the interferon-gamma receptor 

(IFNGR) complex that is made up of four subunits when complete. Interaction of 

IFN-γ with two IFNGR1 subunits results in the formation of a homodimer that in 
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turn binds to two IFNGR2 subunits and results in the activation of the receptor112. 

Lastly, type III interferons include the interferon lambda 1, 2 and 3 (IFN-λ1, IFN-λ2 

and IFN-λ3), also referred to as IL29, 28A and 28B respectively. These are the most 

recently discovered members of the interferon family and a fourth member of this 

family, IFNL4, has been reported113,114. Type III interferons have the same structural 

features as the interleukin-10 (IL-10) cytokine family and signal through the same 

broadly distributed low-affinity receptor subunit IL-10R2, also used by the cytokines 

IL-10, 22 and 26. However, the complete receptor complex through which type III 

interferons signal is made in combination with the interferon-lambda receptor 1 

(IFNLR1). IFNLR1 is exclusive to type III interferons and is only expressed on 

epithelial cells115. 
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Figure 1.9: Pathways of Interferon (IFN)-signalling.111  
The three families of interferons signal through different receptor complexes. A receptor 

complex formed by the heterodimers of IFN-α receptor 1 (IFNAR1) and 2 (IFNAR2) is 

used by type I interferons. The IFN-γ (IFNGR1) and 2 heterodimers interact to form the 

receptor complex used by the type II interferons. Type III interferons bind to interleukin-

10 (IL-10) receptor 2 and IFN-λ (IFNLR1) heterodimers. Type I and III interferon 

signaling, although through their distinct receptors, feeds into the same downstream 

cascade initiated by the phosphorylation of the Janus kinase 1 (JAK1) and tyrosine 

kinase 2 (TYK2) leading to the subsequent phosphorylation of the receptors’ specific 

intracellular tyrosine residues. This results in the recruitment and phosphorylation of the 

signal transducers and activators of transcription 1 and 2 (STAT1 and 2), forming a 

heterodimer that binds to interferon regulatory factor 9 (IRF9) to make the complex IFN-

stimulated factor gene 3 (ISGF3). The type II interferon however signals through a 

distinct cascade that initiates by the phosphorylation of JAK1 and 2 with the 

downstream effect of STAT1 phosphorylation. STAT1 molecules will then form a 

homodimer referred to as IFN-γ activation factor (GAF). Both ISGF3 and GAF will then 

translocate to the nucleus where they activate the IFN-stimulated response elements 

(ISRE) and gamma-activated sequence (GAS) promoters, respectively, leading to the 

expression of interferon stimulated genes. 
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1.5.1.2 Triggers of the interferon system: Activators and 

Sensors 

The initial step in the activation of the interferon system is the recognition of danger 

by the cell. Pathogen-associated molecular patterns (PAMPS) offer an efficient way 

for cells to recognise invading microbes. These are microbe-specific molecular 

structures that are generally essential for the survival of the microbes. Examples 

include peptidoglycan and liposaccharide (LPS) that are produced by bacteria. Cells 

therefore express pattern recognition receptors (PRRs) that are capable of 

distinguishing PAMPS and initiating an innate immune response. PRRs can 

recognise altered patterns of glycosylation of cell surface glycoproteins or changes in 

cell membrane phospholipid composition. Additionally, PRRs can detect elevated 

levels of unmethylated CpG dinucleotides in DNA. An example of PRRs include the 

toll-like receptors (TLRs) whose activation leads to the association of the myeloid 

differentiation primary-response protein 88 (MyD88). Activation of MyD88 leads to 

the induction of the expression of the nuclear factor-κB (NF-κB) target genes and 

these establish an anti-pathogen environment in the cell. Activation of TLRs also 

induces the development of antigen-specific acquired immunity such as the 

maturation of antigen-presenting cells (APCs)116-119. 

These types of responses may be less effective against viruses as most viral 

components are synthesised within the infected cell. However, dsRNA is a common 

intermediate in the replication of many viruses, and cells are able to employ certain 

receptors that recognise these entities. These include the double-stranded-RNA-

dependent protein kinase R (PKR) and the 2′,5′-oligoadenylate synthetase (OAS), 
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also referred to as the RNase L system. These receptors are part of signaling 

pathways that lead to the arrest of viral replication, as is discussed further in section 

1.3118-120. 

1.5.2 Interferons and Viruses 
1.5.2.1 Effects of interferon on viruses 

The downstream effect of interferon signalling is the expression of interferon-

stimulated genes (ISGs), the primary effectors of the interferon response121. 

Recognition of an invading pathogen results in the release of interferon, which then 

stimulates the expression of ISGs.  ISGs were first discovered in the 1950s and later 

publications reported the transcriptional induction of genes in cells treated with 

interferons. Knight and Korant, 1979, reported the induction of 4 proteins in human 

fibroblasts following their treatment with interferon122. Using two-dimensional gel 

electrophoresis, Knight and Korant compared the protein contents of untreated cells 

with that of cells treated with interferon for 8 hours, both incubated in the presence 

of 14C labeled amino acids. The resulting autoradiographs showed the presence of 4 

polypeptides, with molecular weights ranging from 44 to 68 kDa, in the interferon 

treated cells that were absent in non-treated cells. They also showed that actinomycin 

D, a potent inhibitor of transcription, inhibited the synthesis of these proteins 

suggesting that new RNA synthesis is required for the production of these proteins122. 

Larner et al. also reported the induction of 2 genes in fibroblast and HeLa cells 

treated with interferon β123. Interestingly, in both instances the proteins resulted in a 

viral refractory state within these cells. 
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Inhibition of protein synthesis through the activation of the PKR pathway, a dsRNA-

mediated pathway, is a major antiviral mechanism. Binding of dsRNA to PKR, also 

known as p68, leads to its dimerisation and autophosphorylation. PKR then 

phosphorylates the eukaryotic initiation factor 2α (eIF2α) with the downstream effect 

of blocking protein synthesis at the initiation of translation stage. Also induced by 

dsRNA is the OAS2 pathway which leads to the activation of the latent ribonuclease 

RNaseL which in turn cleaves viral and cellular mRNA and ribosomal RNA, again 

stopping cellular protein production124,125. Furthermore, interferon signalling 

activates the MxA and MxB proteins which belong to a large family of guanosine 

triphosphates (GTPases). These proteins target viral ribonucleoprotein structures, 

preventing the transcription of viral RNA as well as the movement of viral sub-

particles within the cell. These processes inhibit the formation of new virions and 

prevent the spread of infection121,126. 

The above examples of ISGs are just a few of the vast numbers encoded by the 

genome and form complex pathways to enable the protection of cells from 

pathogens. In addition to the ISGs induced on binding of interferons to their 

receptors, present within cells are also constitutively expressed sensors that can 

directly recognise pathogens or elements of pathogens such as naked DNA resulting 

in the induction of downstream pathways leading to diverse range of biological 

effects127. One such example as illustrated in Figure 1.10 is cGAS, a DNA sensor 

that leads to the activation of the STING pathway leading to inhibition of 

transcription.  
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Figure 1.10: Pathways of type I interferon induction and receptor signalling127. 

Cell surface and intracellular pattern recognition receptors recognises pathogens 

resulting in the production of type I interferons which upon binding to their receptors 

lead to the induction interferon stimulated genes found in several distinct signalling 

pathways as depicted on the right hand side panel of the figure. Additionally, some 

genes are constitutively expressed and upon recognising a pathogen can activate 

specific pathways for example the induction of the STING pathway by cGAS127.  

1.5.2.3 Viral subversion of the interferon system  

Viruses have developed strategies to counteract the antiviral state that results from 

initiating an interferon response, enabling them to successfully infect their hosts. 

One of the well-known and studied strategies is the use of the influenza A virus’ 

non-structural protein 1 (NS1). The role of the influenza A NS1 protein in 

counteracting the interferon response is so essential that its deletion results in a virus 

that is exceedingly attenuated in interferon competent systems. The same virus can 

however replicate in cell culture or mice with defects in the interferon system to the 

same levels as the wild type virus128,129. NS1 targets multiple aspects of the 
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interferon system primarily through its ability to bind dsRNA, thereby blocking 

activation of RNA helicase RIG-I as well as PKR. Collectively, this prevents the 

activation of the OAS/RNase L pathway and sequestration of RNA molecules, 

preventing RNA sensors triggering the interferon response. Consequently, this 

prevents the activation of several transcription factors such as IRF3, IRF7, and INF-

ᴋB and maintains host protein synthesis that is otherwise blocked by PKR128-130.  

Adenoviruses also target PKR as a method of evading the interferon system. 

Adenoviruses encode an early protein E1A that has been shown to interrupt the DNA 

binding ability of ISGF3 leading to transcriptional suppression of cellular ISGs at 

early stages of infection and in a protein synthesis independent manner. Furthermore, 

adenoviruses encode viral-associated RNAs (vRNAs) that target and inhibit the IFN-

stimulated PKR131-134. Vaccinia virus (VV), a member of the Poxviridae family, is 

known to employ a complex and effective antiviral strategy that targets IFNγ-signal 

transduction at different stages. PKR is inhibited by E3L and K3L protein products 

of VV, while STAT1 is targeted for ubiquitin mediated proteasome degradation and 

dephosphorylation by VV expressed phosphatases, a product of the VH1 gene. 

Vaccinia virus also encodes soluble receptor analogues of both the INF-α/β and IFN-

γ receptors, known as B18R and B8R respectively, which compete with the binding 

of the natural IFN-stimulating ligands135. EBV is known to counteract the IFN-

system by blocking the cellular translational control of the dsRNA-activated 

inhibitor (DAI), a known ISG. DAI inhibits protein synthesis by phosphorylating the 

initiation factor eIF2. EBV encodes small untranslated and non-polyadenylated 

RNAs, EBER-1 and -2, that are highly expressed at early time points during 
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infection. EBER-1 has been shown to bind DAI, blocking phosphorylation of eIF-2, 

thereby maintaining protein translation. The Adenoviruses’ encoded viral-associated 

RNA, VA1 RNA, has also been reported to have the same effect on DAI133,136,137. 

1.5.3 Interferons and HCMV 

The interferon response is crucial in controlling HCMV infection. Pre-treatment of 

cell culture with recombinant interferon or supernatant harvested from poly I:C 

treated cells inhibits HCMV infection138. Hence HCMV has evolved multiple 

mechanisms to subvert and inhibit antiviral effects of interferons, thereby 

successfully establishing a persistent infection with the host. Despite this, evidence 

suggests that interferons still play a vital role in controlling cytomegalovirus 

replication and pathogenesis. Individuals with mutations in key IFN signalling genes 

are lethally susceptible to HCMV infections139. In addition, recombinant IFN has 

been successfully used in treating congenital HCMV and HCMV infection in AIDS 

patients112,140. Furthermore, murine CMV is more lethal in IFN knock-out mice, 

illustrating the essential role of this cellular defence against cytomegalovirus 

infection112. 

1.5.3.1 Detection of CMV by interferon pathways 

Upon infection, HCMV initiates a robust interferon response from the cell. It has 

been reported in several studies that the replication of HCMV is not a pre-requisite 

for the induction of the IFN response. Early studies involving pre-treatment of cells 

with cycloheximide, a protein synthesis inhibitor, also showed that HCMV was 

capable of inducing the expression of ISG54 in the absence of protein synthesis131. 
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Simmen et al.  using a high-density cDNA microarray technique, showed that the 

glycoprotein B (gB) expressed by HCMV is capable of modulating cellular 

transcription with the same signature as the complete virus141. By comparing the 

transcriptional profile of IFN-α, soluble gB treated and HCMV infected cells, the 

researchers demonstrated that the IFN response caused by HCMV infection could be 

attributed to gB, as almost the same profile was witnessed for HCMV infection and 

soluble gB treated cells141. Later studies showed that the attachment of the virus to 

the cell is sufficient to generate the IFN response. Additionally amino acids 461 to 

750 of gB were found to be sufficient to initiate the IFN reaction to HCMV56. In 

contrast, entry of HSV-1 is required to initiate the same response from the host cell. 

Experiments with HSV-1 particles lacking glycoproteins D or H did not induce 

ISG54-specific RNA142. 

1.5.3.2 Inhibitory effects of interferon on HCMV 

The interferon response to viral infection is essential for the containment of viruses, 

including HCMV. Abrogation of the interferon response in vitro resulted in 

enhanced HCMV replication143. By exploiting the ability of the nPro protein of 

bovine viral diarrhea virus (BVDV) to target IRF3144 as well as the V protein of 

parainfluenza type 5 (PIV-5) virus to target STAT1 and thereby blocking interferon 

responsiveness, interferon-deficient fibroblast cell lines were generated. Infection of 

these cell lines with HCMV resulted in increased plaque sizes compared to the 

parental fibroblast cells. Also, the rate of infection established by quantification of 

the growth of a GFP-expressing HCMV was shown to be greater in these cell lines. 

Infected cells were analysed by FACS 6, 9 and 12 dpi and revealed more GFP 
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expressing cells in the IFN null cells compared to the parental cells. This was also 

consistent with the amount of virus produced with titration of the supernatants 

showing significantly higher titers of virus from interferon-depleted cells compared 

to the parental fibroblast cells143. 

The NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway 

represents an important signaling pathway in response to harmful cellular stimuli. 

Upon infection with HCMV, expression of the Nucleotide Oligomerisation Domain 

2 (NOD2) ISG is induced and, in-turn, activates the NF-κB pathway leading to the 

restriction of virus replication145. NOD2 belongs to the nucleotide-binding 

oligomerisation domain and leucine rich repeat containing receptors (NLRs). NLRs 

are cytoplasmic receptors that are highly expressed in monocytes, macrophages and 

dendritic cells. NOD2 is also known to activate the type I IFN response and 

autophagy as alternative pathways, which again have restrictive implications for 

HCMV. HCMV infection of fibroblast cells resulted in an increase in NOD2 mRNA, 

measured by qRT-PCR, from as early as 2 hpi. Overexpression of NOD2 in 

fibroblasts and in a glioblastoma cell line, led to enhanced antiviral and pro-

inflammatory cytokine responses and a subsequently decreased HCMV replication. 

The reverse, decreased antiviral and pro-inflammatory cytokine responses and 

increased HCMV replication, was observed when NOD2 was knocked down by 

short hairpin RNAs. Mutations in NOD2 is associated with Crohn’s disease and 

these patients have been reported to have more severe HCMV associated disease. 

Receptor-Interacting serine/threonine-Protein Kinase 2 (RIPK2) is known to be a 

critical downstream kinase of NOD2 signaling and is also classified as an ISG. 
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Overexpression of RIPK2 gave the same results as was obtained when NOD2 was 

overexpressed and NOD2 signaling is nullified in RIPK2-deficient cells145. This 

study gives an insight in to some of the specific interferon components with an 

antiviral effect on HCMV. 

1.5.3.3 HCMV counter measures to the Interferon system 

It has been shown that the interferon-α antiviral and immune-regulatory responses 

are targeted and neutralised at different stages of the pathway during infection with 

HCMV. The immediate early (IE) genes expressed by HCMV play a major role in 

the evasion of the IFN-system. IE72 is the most abundantly expressed and as one of 

the earliest expressed its product, IE72, plays a critical role in regulating the 

interferon response112. IE72 binds to STAT2 in the nuclei of infected cells and 

prevents the binding of the ISGF3, to the ISRE hence inhibiting the induction of 

ISGs as illustrated in Figure 1.9146,147. Infection of fibroblast cells with an IE72 

deleted virus results in significantly increased level of IFN-responsive transcripts 

compared to wild type HCMV infection, demonstrating the importance of this viral 

countermeasure. Furthermore, induction of these transcripts, as studied by 

monitoring the levels of ISG54 and MxA in cells treated with IFN-α, was blocked in 

stably transfected cells ectopically expressing IE72146. 

The IE86 gene product has been shown to have inhibitory effects on the induction of 

IFN-β. Infection of fibroblasts with UV inactivated virus revealed a significantly 

higher expression of IFN-β compared to levels observed in cells infected with wild 

type virus. Expression of IE86 using replication-defective adenovirus prior to 
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treatment with UV-HCMV rescued the block in IFN-β expression that occurs when 

cells were infected with wt-HCMV, suggesting that IE86 is responsible for IFN-β 

inhibition. IFN-β was induced when cells were infected with wt-HCMV in the 

presence of cycloheximide. These results demonstrate that protein expression is 

required for HCMV inhibition of INF-β induction. The same study also showed that 

the ability of IE86 to block induction of INF-β is not specific to HCMV, as cells 

infected with Sendai virus 6 hours post HCMV infection did not induce INF-β. The 

same result was obtained when IE86 was expressed using replication-defective 

adenovirus followed by Sendai virus infection138. 

The PKR and OAS pathways described in section 1.5.2 are also effective against 

HCMV replication. HCMV encodes for the TRS1 and IRS1 genes whose products 

bind to dsRNA, thereby inhibiting the activation of these pathways and the 

subsequent activation of the interferon response126,148. Additionally, TRS1 and IRS1 

also bind to PKR itself, preventing its autophosphorylation126. 

Human interferon γ-inducible protein 16 (IFI16) is a well-studied intracellular DNA 

sensor which is activated by HCMV infection with restrictive effects149. However, 

HCMV has evolved mechanisms to both counteract and exploit IFI16 during 

infection. As a counteractive measure, the HCMV tegument protein pUL83 inhibits 

IFI16-mediated DNA sensing by binding to the IFI16 pyrin domain. This leads to 

inhibition of the protein’s oligomerasation, a prerequisite for signaling through the 

STING-TBK1-IRF3 pathway that leads to the production of antiviral cytokines149,150. 

The binding of pUL83 to IFI16 has also been shown to stimulate the activity of the 
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HCMV IE promoter with a pUL83 mutant virus showing decreased levels of 

immediate-early proteins. Infection of cells treated with short hairpin RNAs against 

IFI16 also resulted in decreased levels of immediate-early proteins151. 

In addition to circumventing the interferon system, HCMV has evolved ways of 

subverting antiviral molecules for its own benefit. Tetherin, also known as bone 

marrow stromal cell antigen 2 (BST2), is a well characterised broad-acting ISG. 

However, it aides the infection of HCMV. Fibroblast cells expressing BST2 were 

shown to have increased levels of infection compared to non-expressing control 

fibroblast cells. This increase was determined at an early time point of infection, 24 

hpi, suggesting that BST2 enhanced viral entry. This was confirmed by enhanced 

entry of HCMV in normally non-permissive 293 cells stably expressing BST2152. 

Further examples of HCMV subverting ISGs include viperin. Overexpression of 

viperin causes inhibition of HCMV infection153. However, at endogenous levels, 

HCMV encoded viral mitochondrial inhibitor of apoptosis (vMA) interacts with 

viperin leading to translocation to the mitochondria. Once in the mitochondria, 

viperin inhibits mitochondrial trifunctional protein (TFP) mediated ATP generation 

leading to the disruption of actin cytoskeleton. Disruption of the actin cytoskeleton 

facilitates viral replication, hence viperin facilitates HCMV replication154,155. 

It has also been reported that HCMV exploits the interferon-induced transmembrane 

proteins (IFITMs) during infection. IFITMs are known to inhibit a range of RNA 

viruses during the entry step. However, siRNA studies against IFITMs revealed a 
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decrease in infection of HCMV. Further characterisation showed that IFITMs are 

required for the correct formation of the virion assembly compartment and virion 

particle assembly in the late stage of HCMV life cycle. As a result, virions formed in 

the absence of IFITMs were less infectious155. 

It is therefore evident that the interferon system is important in the cell’s resistance 

to HCMV infection. ISGs play a critical role in this innate immune response that is 

characteristic of the interferon system. Several ISGs that are antiviral to HCMV have 

been identified and characterised as previously described. However, many more 

genes have now been classified as ISGs and therefore further studies need to be 

conducted to understand their roles in controlling HCMV infection. This will 

elucidate the host-virus interactions that occur during HCMV infection and identify 

potential targets for therapy. Chapters 3 onwards report on these studies conducted in 

this project. 
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2.1 Introduction 

Viral miRNAs are known to regulate viral and cellular genes that are involved in 

broad biological functions during infection, including autoregulation of viral gene 

expression, avoidance of host defences and maintenance of latent and persistent 

infection68. Hundreds of viral encoded miRNAs have been identified, however there 

is an inadequate understanding of their function. One way in which the function of 

viral miRNAs can be decoded is the identification of their targets. By understanding 

the functional role of the targets, we can gain a greater understanding of the 

underlying function of the miRNA. In this study, an in vitro biochemical technique, 

referred to as CLASH (Crosslinking, ligation and sequencing of hybrids) is used to 

systematically identify HCMV encoded miRNA targets during lytic infection156. 

CLASH follows a similar procedure to the CLIP techniques (described in section 

1.4.4) with two additional modifications that are aimed at improving the 

immunoprecipitation (IP) quality and target transcript identification. Scientists in the 

Tollervey lab who developed the CLASH technique used the Ago1 protein, a 

component of the RISC, for immunoprecipitation156. However, for this project, 

immunoprecipitations were conducted on an Ago2 protein that is N-terminally 

tagged with protein A and poly-histidine tags used in a two-step affinity purification 

(Figure 2.1). The protein-A tag and histidine tag (his-tag) binds to the IgG antibodies 

and nickel beads respectively. 
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Figure 2.1: Double tagged Ago2 protein. 

Six histidine molecules form the his-tag, represented in brown, which is attached to the 

N-terminal of Ago2 protein on one end and a protein A tag shown in black, on the other 

end. 

The second modification is the addition of an intra-molecular ligation step which 

ligates the ends of the RISC associated miRNA and target mRNA, leading to the 

formation of a miRNA-mRNA hybrid. This allows for the identification of both the 

targeted mRNA and the targeting miRNA from the sequencing results. The 

technique is technically challenging, requiring 81 individual steps over a period of 

10 days156. An illustration of CLASH and the step-by-step procedure of the assay is 

shown in the following sections. 
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2.1.1 UV Crosslinking 

CLASH is conducted under stringent purification conditions such as high salt and 

denaturing washes, therefore UV crosslinking is required to maintain the crucial 

binding of the miRNA to the target transcript. Crosslinking leads to the formation of 

stable and irreversible covalent bonding between RNA and proteins (Figure 2.2). 

Typically, the nucleic acid pyrimidine bases covalently bind to specific amino acids 

such as lysine, cysteine, phenylalanine, tryptophan and tyrosine approximately over 

single angstrom distances105,157,158. 

 

Figure 2.2: UV Crosslinking of RNAs to Ago2 protein. 

A target transcript bound to the miRNA is UV irradiated leading to the formation of 

covalent bonds, represented as red crosses, between the RNAs and the Ago2 protein. 

 

2.1.2 Immunoprecipitation and RNase Digestion 

Figure 2.3 illustrates the two modified steps of CLASH, IPs and intra-molecular 

ligation. The first IP step uses the binding of IgG antibody to the protein A tag of 

Ago2. The IgG antibodies are conjugated to Dynabeads, washed with high and low 

salt buffers, then isolated using a strong magnet (materials and methods section 

6.2.2.3). Next, a limiting RNAse digestion is conducted to remove the overhanging 

transcripts, leaving the RISC protected mRNA which corresponds to the miRNA 

target. A protein denaturing guanidine rich buffer is then used to elute the complexes 
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from the IgG conjugated Dynabeads. Further purification of the RISC/RNA 

complexes is conducted in a second IP step using nickel beads. This step is 

particularly stringent due to the denaturing environment and is possible as binding of 

the histidine tags to the nickel beads is still effective in denaturing conditions. 

Following further salt washes to remove the guanidine buffer, the intra-molecular 

ligation is performed while the complexes are immobilised on nickel beads. This 

step aims to ligate the RISC protected mRNA to the associated miRNA and T4 RNA 

Ligase 1, a single stranded RNA ligase, catalyses this reaction. These steps are 

illustrated in Figure 2.3. 

 

Figure 2.3: Modified steps of CLASH. 

(a) First pull down using the IgG antibody targeting the Protein A tag, (b) limiting RNAse 

digestion, (c) Second pull down using the nickel beads that target the His-tag, (d) Intra-

molecular ligation step generating a RNA-miRNA hybrid. 
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2.1.3 Linker Ligations and cDNA Sequencing Library 

Preparations 

A twenty nucleotide DNA 3’ linker is ligated to the 3’ ends of the RNA while they 

are still in complex to the RISC and nickel beads.  This reaction is catalysed by a 

truncated K227Q T4 RNA Ligase 2 enzyme, a point mutant of T4 RNA ligase 2 that 

ligates pre-adenylated 5’ end of DNA or RNA to a 3’ hydroxyl end of RNA without 

the need of ATP. The point mutation in this enzyme reduces the formation of 

concatemers and circular products. Following ligation, the samples are radioactively 

labelled at the 5’ end of the RNA using γ-32P ATP (Figure 2.4). 

 

Figure 2.4: Representation of the Intra-molecular ligation reaction and radioactive 

labelling. 

(A) - represents the possible outcomes of intra-molecular ligation where a mixed 

population of non-ligated (left panel) and ligated shown with blue linker (right panel) is 

generated. 3’ Linker is shown as a green line. (B) - represents the radioactive labelling 

of the 5’ ends ( ). 

Through competitive binding, the radioactive isotope labelled RNAs are eluted from 

the nickel beads using an imidazole containing buffer that competes for His-tag 

binding. Elution products are concentrated by TCA precipitation prior to separation 

by SDS polyacrylamide gel electrophoresis. RNAs are recovered from the gel by 
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transfer to a membrane where they are extracted by proteinase K digestion. 

Proteinase K fragments the proteins leading to the release of RNA from the RISC 

complex. 

A 5’ linker oligonucleotide of known sequence is then ligated to the IP products 

using T4 RNA ligase 1. Using a primer designed against the 3’ linker, RNA products 

are reverse transcribed, generating a cDNA library for high-throughput sequencing. 

The 5’ linker contains a barcode, an additional known variable sequence, and the use 

of different linkers on different samples allows for multiplexing during high-

throughput sequence reactions. PCR primers are designed against the known 

sequences of the 3’ and 5’ linkers allowing for the amplification of final cDNA 

CLASH products. These steps are summarised in Figure 2.5. 
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Figure 2.5: CLASH assay steps following 3’ linker ligation (adapted from Helwak 

et al., 2013)6. 

RNA ligated to a 3’ linker is eluted from the nickel beads through imidazole competitive 

binding to the His-tag. Eluted samples are concentrated by TCA precipitation and 

separated by SDS-PAGE, then transferred to a nitrocellulose membrane where they are 

extracted by proteinase K fragmentation of the Ago2 protein. A 5’ barcoded linker is 

ligated to the RNA, then reverse transcribed and amplified by PCR to generate a cDNA 

library for high through sequencing. (blue = miRNA and red = mRNA). 

A typical sequenced cDNA fragment from a CLASH assay, including its features, is 

illustrated in Figure 2.6. 

 

Figure 2.6: An example of a cDNA fragment for deep sequencing. 

PCR primers are underlined, 5’Linker highlighted, 3’ Linker highlighted, Bar code in 

italics and the RNA insert is shown in bold. Non-highlighted and underlined sequences 

represent the adapters from PCR primers. 
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2.1.4 Project Aims 

CLASH is a powerful technique that will be used to identify and study HCMV 

miRNA targets in vitro in human fibroblast cells and macrophages. This study aimed 

at establishing and optimising the CLASH technique in the context of HCMV 

infection to generate high confidence miRNA target data sets. These data sets can 

then be used as a basis for elucidating the functional role of HCMV miRNAs in a 

systematic and global manner. 
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2.2 Results 

The CLASH assay was previously conducted using lysates generated from a stable 

HEK293 cell line that expresses the tagged Ago2 protein. However, this cell line is 

not permissive to HCMV infection. It was therefore necessary to generate HCMV 

permissive stable cell lines that expressed the tagged Ago2 protein. Primary neonate 

human dermal fibroblast cells (NHDFs) and the macrophage cell line (THP-1) were 

selected for the generation of stable cell lines, as they are permissive to HCMV 

infection in vitro. Tagged Ago2 protein expressing THP-1 cells had previously been 

generated by Dr Grey but the generation of tagged NHDF cells was required. 

2.2.1 Generation of NHDF cells stably expressing 

tagged Ago2 protein 

To generate stable NHDF cells expressing the tagged Ago2 protein, a construct was 

made by cloning the tagged Ago2 into a Tet-inducible lentiviral expression vector 

called LVX-Tight-Puro. pLVX-Tight-Puro is a tetracycline-inducible, lentiviral 

expression vector designed to express a gene of interest under the control of PTight, 

a modified Tet-responsive promoter159. PTight consists of a modified minimal CMV 

promoter, which drives the expression of the gene of interest, tagged Ago2 as 

represented in (Figure 2.7). However, we found that the tagged-Ago2 expression was 

achieved without the tetracycline induction. Also included in the plasmid vector is an 

ampicillin selection marker gene as well as a puromycin resistant gene. Cloning of 

the tagged-Ago2 was conducted, by Dr Grey, via the multiple cloning site (MCS) as 

indicated in Figure 2.7 below. 
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Figure 2.7: Map of the pLVX-Puro Vector159. 

pLVX-Puro is an HIV-1 based lentiviral expression vector. A gene of interest is cloned in 

via the multiple cloning site (MCS) and the is driven by the constitutively active human 

cytomegalovirus immediate early promoter (PCMV IE) upstream of the MCS. The plasmids 

also encode for viral processing elements necessary for the production of replication-

incompetent lentivirus as well improving viral titre, transgene expression and vector 

function. WPRE is the woodchuck hepatitis virus posttranscriptional regulatory element 

that promote RNA processing events and enhances nuclear export of viral and 

transgene RNA, RRE is the Rev-response element that enhances the transport of 

unspliced viral RNA out of the nucleus and cPPT is the central polypurine tract that 

enhances nuclear importation of the viral genome during target cell infection160-162. 

Resistance genes puromycin (Puror) is included for selection following transduction of 

cells and Ampr for selection in bacteria. 

Transduction of NHDF cells with the lentivirus would generate cell lines 

overexpressing tagged Ago2 protein. Overexpression of the tagged Ago2 protein 

could potentially influence what would be immunoprecipitated due to 
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overrepresentation of the tagged Ago2 protein therefore influencing what would be 

pulled down. However, the levels of the tagged Ago2 were lower than the 

endogenous levels therefore limiting the possibly of false positive (personal 

communication with Dr Grey). Lentiviruses were produced using HEK293T cells, as 

described in detail in Materials and Methods section 6.2.3.2. For initial experiments 

a 15cm dish of HEK293 cells were transfected with packaging plasmids and the 

tagged Ago2 expressing LVX-Puro (LVX-Ago2) plasmid to generate lentivirus. 

Ultra-centrifuged lentivirus was re-suspended in a total of 1ml medium. 

Transductions to determine lentivirus titres were conducted on a 24 well plate seeded 

with NHDF cells and a total of 300µl lentivirus of the indicated dilution was used to 

transduce a single well. Puromycin, selection media was applied 24 hours post 

transduction (hpt), following an already established protocol and quantitation in the 

lab at a final concentration of 1µg/ml. Cells from each single well were then 

harvested (120 hpt) in 100µl of Western blot loading lysis buffer for analysis to 

check levels of tagged Ago2 expression. As shown in Figure 2.8, the highest 

concentration of lentivirus resulted in the highest expression levels of tagged Ago2. 
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Figure 2.8: Transduction of NHDF cells with varying concentrations of lentivirus 

correlates with tagged Ago2 protein expression. 

Transduction of NHDF cells was conducted in 5 fold and 2 fold serial dilutions for 

concentrated and supernatant lentiviruses respectively, selected by puromycin at 1µl/ml 

and lysed in loading buffer for western blot analysis. The tagged Ago2 protein levels 

were detected using peroxidase-anti peroxidase (PAP) antibody, which targets the 

protein A of the tag. THP1-Ago2 cells were used as a positive control. 

CLASH requires substantial amounts of lysate for each immunoprecipitation to 

generate high quality libraries (4.3 x 107 NHDF cells per sample). The initial 

strategy to generate sufficient transduced cells was therefore to transduce with high 

concentration of lentivirus, then expand the cells to generate sufficient lysate for the 

experiment. The remaining concentrated lentivirus, approximately 900µl, was 

sufficient to transduce a single 15cm dish of 7.2 x 106 NHDF cells and expanded 

under puromycin selection. A sample, equivalent to the number of cells in a single 

well of a 24 well plate (4.2 x 104), was collected at each passaging step for western 

blot analysis to monitor transgene expression. The results show that passaging of 

NHDF cells resulted in loss of the tagged Ago2 protein expression (Figure 2.9). 
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Figure 2.9: Passaging of transduced NHDF cells resulted in the loss of expression 

of the tagged Ago2 protein.  

An aliquot of cells equivalent to a single well of a 24 well plate (4.2 x 106) was retained 

when cells were passaged, lysed in 100µl Western blot loading buffer and 20µl 

analysed by SDS-PAGE to check tagged Ago2 expression levels. P0 sample was from 

the parent cells and P1 = passage 1, P2 = passage 2 and P3 = passage 3. 

To address this problem, a different lentivirus vector, tagged Ago2 expressing iRES-

GFP plasmid (iRES-Ago2) represented in Figure 2.10, which was kindly donated by 

Dr Amy Buck, was used to generate lentivirus. 
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Figure 2.10: Map of the iRes-GFP-Ago2 Vector. 
The iRes-GFP-Ago2 plasmid is an HIV-1 based lentiviral vector that simultaneously 
expresses the gene of interest, Ago2, and eGFP and the stable, constitutive expression 
of these genes is driven by the ELFα promoter (PELFα). IRES is an encephalomyocarditis 
virus internal ribosome entry site that allows the simultaneous expression of the Ago2 
and eGFP from a single bicistronic mRNA. The plasmids also encode for viral 
processing elements necessary for the production of replication-incompetent lentivirus 
as well improving viral titre, transgene expression and vector function. WPRE is the 
woodchuck hepatitis virus posttranscriptional regulatory element that promote RNA 
processing events and enhances nuclear export of viral and transgene RNA, RRE is the 
Rev-response element that enhances the transport of unspliced viral RNA out of the 
nucleus and cPPT/CTS is the central polypurine tract/central termination sequence 
element that enhances nuclear importation of the viral genome during target cell 
infection160-162. Ampicillin resistance gene (Ampr) is included for selection in bacteria. 

The iRES-Ago2 lentivirus construct also expressed an EGFP protein and therefore 

tagged Ago2 expression levels could be monitored by microscopy. Here, lentivirus 
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was harvested from a single 15cm dish of HEK293 cells and concentrated by ultra-

centrifugation and re-suspended in 1ml of medium. This was used to transduce a 

10cm dish of NHDF cells. As the iRES-Ago2 plasmid did not have a puromycin 

resistance gene, transduced cells were FACS sorted and GFP+, hence tagged Ago2 

expressing, cells were extracted for expansion to generate enough cells for lysate 

production. FACS sorting results are represented in Figure 2.11. 

 

Figure 2.11: Sorting of iRES-Ago2 transduced cells by GFP selects the tagged 

Ago2 expressing cells.  

NHDF cells transduced with iRES-Ago2 lentivirus were FACS sorted and GFP 

expressing cells were separated and retained for culturing. A. shows the gating of the 

cells, B. shows the GFP expression levels of the cells with the boxed cells identified as 

GFP+ and C. shows the sorting statics per 10,000 cells.  
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Following FACS sorting, GFP+ cells (both “Dim Brights” and “Bright brights”) 

were cultured for expansion. However, loss of expression of the tagged Ago2 protein 

persisted. Figure 2.12 show that GFP expression substantially decreased by passage 

3. 

 

Figure 2.12 Transduction of NHDF cells with lentivirus made from iRES-Ago2 

showed loss of expression with passaging of the cells.  

iRES-Ago2 plasmid expressed GFP which was used as a measure of transduction 

efficiency and would translate to tagged Ago2 expression levels. GFP+ cells were 

selected by FACS sorting and cultured to generate enough for lysate generation. GFP 

imaging of the passaged cells revealed loss of GFP expression and by passage 3 the 

majority of cells were not GFP+. 



79 

 

Due to the loss of tagged Ago2 protein expression from the passaging of cells, it was 

decided that NHDF cells would be transduced on a larger scale, limiting the 

passaging of cells before generating lysates. Based on the FACS sorting results, the 

population of GFP+ cells from transduction with iRES-Ago2 lentivirus was low 

(25%), therefore LVX-Ago2 plasmid construct, which also has the advantage of 

puromycin selection, hence does not require FACS sorting, was chosen for future 

lentivirus generation. 
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2.3.3 CLASH Assays 

2.3.3.1 CLASH Experiment 1 

Three large-scale stocks of LVX-Ago2 lentivirus were generated from 2 x 15 cm 

dishes of HEK293T cells (seeded at 3 x 107 cells per dish) per stock. A total of 

approximately 25 ml of lentivirus containing supernatant was harvested per stock. A 

comparative titre for each stock was determined by transducing NHDF cells on a 24 

well plate and monitoring tagged Ago2 expression by western blot analysis as 

detailed in Materials and Methods section 6.2.3.5. Figure 2.13 represents the western 

blot analysis results. 

 

Figure 2.13: Transduction of NHDF cells confirmation by Western Blot analysis. 
Transduced NHDF cells were lysed in loading buffer, separated on a 10% SDS-PAGE 

and transferred onto a PVDF membrane. The tagged Ago2 protein levels were detected 

using peroxidase-anti peroxidase (PAP) antibody, which targets the protein A of the tag. 

Samples from previous small-scale aliquots of tagged Ago2 positive NHDF lysates and 

already established tagged Ago2 stably expressing THP1 cells were used as positive 

controls. Two different Western blot analyses were conducted represented by A and B 

and the 3 different tagged Ago expressing NHDF cells generated from the transduction 

are represented by the suffixes (A), (B) and (C). 
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Western blot analysis of transduced NHDF cells showed varying levels of tagged 

Ago2 expression. The lack of GAPDH loading control on panel A makes it difficult 

to directly compare the results. However, a consistent approach was employed with 

the samples being harvested following the same procedure, with cell number 

equivalent to a single well of a 24 well plate (4.2 x 104) lysed in a total of 100µl 

Western blot loading buffer and 20µl used for analysis.  As the NHDF-Ago2 cells 

labelled A and B (Figure 2.13) expressed higher levels of tagged Ago2, they were 

used to generate lysates for the CLASH experiment. 

2.2.2 Generation of lysate for CLASH assays  

Each lentivirus stock was diluted with normal media to give a total volume of 90ml 

and used to transduce six 15cm dishes of NHDF cells – equivalent to 4.3 x 107 cells.  

Lysates were produced by harvesting cells in 1%NP40 and 5mM 2-Mercaptoethanol 

containing lysis buffer and the required cytoplasmic fraction separated by 

centrifugation. For generation of THP-1 lysates a previously established stable 

tagged Ago2 cell line was used. Unlike the primary NHDF cell line, expression of 

tagged Ago2 did not diminish with passaging. A lysate from THP-1 cells required 

2.4 x 108 cells therefore four 15 cm dishes were seeded at 6 x 107 cells per dish and 

cells were differentiated using TPA at 10ng/ml. 

Half the dishes were infected with a GFP expressing HCMV strain, called TB40E, at 

a high MOI of 3 for NHDF cells and 5 for THP-1 cells. THP-1 cells are less 

susceptible than NHDF cells, however, infection levels were deemed high enough 
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for the experiment to progress. Figure 2.14 confirmed the successful infection of the 

cell lines and these were used for lysate production. 

 

Figure 2.14: Confirmation of infection of tagged Ago2 expressing THP1 and NHDF 

cell lines with TB40E. 

NHDF and THP1 cells were infected with GFP tagged HCMV virus, TB40E clinical 

strain, and imaged to confirm infection. 1. Uninfected NHDF cells, 2. Infected NHDF 

cells and 3. Fluorescent microscopy image of infected NHDF cells. 4. Uninfected THP1 

cells, 5. Infected THP1 cells and 6. GFP image of infected THP1 cells. All images were 

captured at 48 hours post infection. 
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Following UV crosslinking, each sample group was harvested in a total of 10ml of 

lysis buffer. 20l of each lysate was analysed by Western blot to confirm levels of 

tagged Ago2 expression (Figure 2.15). A previous aliquot of NHDF-Ago2 (B) cell 

lysate was used as a positive control for comparison. 

 

Figure 2.15: Tagged Ago2 levels in Lysates confirmation by Western Blot 

Analysis. 

Western blot analysis was carried out on small aliquots of the lysates and levels of the 

tagged Ago2 protein were checked using the PAP antibody. Different lentivirus stocks 

were used to transduce NHDF cells to generate the NHDF lysates in blots. NHDF-Ago2 

cells previously harvested were also loaded on the same blot as a positive control. 

Due to the costs and labour involved in generating CLASH libraries, we limited the 

number of samples to be taken forward based on Ago2 expression levels. Our initial 

priority was the NHDF samples, however an uninfected THP-1 sample was included 

for comparison and for proof of concept. Based on the Western blot results, 

uninfected THP-1 cells, uninfected NHDF lysate A and infected NHDF lysate B 

were chosen for CLASH analysis. 

In brief, Ago2 complexes were immunoprecipitated as previously described and 

transcript RNA not protected by the RISC is digested using RNAse mix.  Following 
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radioactive labelling of the RNA, the complexes were eluted from the nickel beads, 

concentrated by TCA precipitation and separated by SDS-PAGE. The products were 

transferred onto a PVDF membrane by electrophoretic transfer and exposed to film 

for 12 hours (Figure 2.16). 

 

Figure 2.16: Radioactive labelled tagged Ago2/RNA complexes are transferred on 

a PVDF membrane which is exposed to a film to enable identification. 

CLASH samples separated by SDS-PAGE following the radioactive labelling of the RNA 

molecules and transferred onto a PVDF membrane. The membrane was exposed to a 

film overnight and the resulting radiograph revealed successful IP of the RNA 

crosslinked to Ago2. 

Bands corresponding to the correct size of Ago2 were clearly visible after overnight 

exposure. The Ago2/RNA complexes were excised from the membrane and RNA 

was isolated following proteinase K treatment and Phenol–chloroform Isoamyl (PCI) 

extraction. The products were reverse transcribed to generate cDNA and amplified 

by PCR. The PCR products were size fractionated on a 3% MetaPhorTM agarose gel 

(LONZA biologics), a high resolution agarose gel (Figure 2.17). 
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Figure 2.17: Purified PCR products were run on a 3% MetaPhor TM agarose gel. 

Size fractionation of CLASH assay PCR product, using a 3% metaphor gel, allowing for 

the correct size of cDNA to be extracted for high-throughput sequencing. The left hand 

panel show results of the PCR products and the right hand panel shows the sections 

excised from the gel for extraction of the cDNA library. 

In published CLASH data, Helwak et al. described a defined band at approximately 

100bp which corresponds to miRNAs, and a smear above the band stretching to 

approximately 200bp that contains chimeric cDNAs156. Based on the DNA ladder, 

there were clearly technical issues with the resolution of the gel. However, PCR 

products were detected in all samples, although the NHDF infected sample resulted 

in a lower signal compared to the other two samples. This was despite an equal 

signal on the radiograph (Figure 2.16) for all samples, suggesting a possible loss of 

material in the steps between sample extraction from the membrane and PCR 

amplification. As deep sequencing is expensive and time consuming, we were keen 

to generate preliminary sequence data to ascertain the composition of the PCR 

products. To this end, cDNA was TA cloned using the One Shot TOP10 Invitrogen 

Topo™ plasmid kit. Six clones derived from the THP1 uninfected and NHDF 
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infected samples were selected for Sanger sequencing based on the relative intensity 

of the PCR signal. The sequencing results are summarised in table 2.1. 

Table 2.1 CLASH 1 Sanger Sequencing Results. 

TOPO cloned THP1 uninfected and NHDF infected samples were sequenced and in 

blue is the 5’Linker sequence, red is the 3’Linker sequence and in black is the insert. 

Sample Sequence Seq 

length 

% 

match 

BLAST Result 

THP1 (1) TACACGACGCTCTTCCGATCTCCTTA

AGCAAGGAATTCTCGGGTGCCAAG 

0 N/A Insert not 

detected 

THP1 (2) No sequence result N/A N/A N/A 

THP1 (3) TACACGACGCTCTTCCGATCTTGCTA

AGCTGCCTTTGAGACTGCATCGCTTG

AATCCAGGAGAGGTGAGTGGAATTCT

CGGGTGCCAAG 

39 100% 

(39/39) 

Uncultured 

bacterium 

partial 16S 

rRNA 

THP1 (4) TACACGACGCTCTTCCGATCTCAATA

AGCGAGAGGCGAGTGGAATTCTCGG

GTGCCAAG 

9 N/A Insert too short 

THP1 (5) TACACGACGCTCTTCCGATCTAACTA

AGGAATTCTCGGGTGCCAAG 

N/A N/A No Insert 

THP1 (6) TACACGACGCTCTTCCGATCTACCTA

AGCAAGTAGACCGCCTGGGGAATAC

GGTCGCAAGACTAAAACTCAAAGGAA

TTCTCGGGTGCCAAG 

42 100% 

(42/42) 

Uncultured 

bacterium 

partial 16S 

rRNA 

     

NHDF + (1) TACACGACGCTCTTCCGATCTCGTAT

GCCGTCTTCTGCTTGGGAATTCTCGG

GTGcCaAG 

N/A N/A Barcode not 

detected 

NHDF + (2) TACACGACGCTCTTCCGATCTTACGC

GCAGCGAAGCACTGTaGCTAAGTGG

AATTCTCGGGTGCC 

17 82% 

(14/17) 

Homo sapiens 

microRNA 143 

(MIR143) 

NHDF + (3) TACACGACGCTCTTCCGATCTCGTAT

GCCGTCTTCTGCTTGGGAATTCTCGG

GTGCCAAG 

N/A N/A Barcode not 

detected 

NHDF + (4) TACACGACGCTCTTCCGATCTCCCGC

GCAGCTGGAATTCTCGGGTGCCAAG 

0 N/A Insert not 

detected 

NHDF + (5) TACACGACGCTCTTCCGATCTTCAGC

GCAGCTAGCACCATCTGAAATCGGTT

GGAATTCTCGGGTGCCA 

20 100% 

(20/20) 

Homo sapiens 

microRNA 29a 

(MIR29A) 

NHDF + (6) TACACGACGCTCTTCCGATCGGGCAT

ATACATGGAATTCTCGGGTGCCAAG 

N/A N/A Barcode not 

detected 
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The results confirm successful ligation of the 3’ and 5’ linkers for the selected 

clones. Based on previous published results, inserts of 20 to 50 bases would be 

expected. However, due to the nature of the small-scale sequencing, a full picture of 

the contents of the cDNA library is limited compared to the results deep sequencing 

would generate. 

The results however revealed the existence of bacterial sequences in the assay. Also, 

inserts were not detected in 2 out of the 12 sequenced samples. However, 2 out of the 

12 clones contained miRNA sequences, shown in orange in Table 2.1, suggesting 

successful cloning of RNAs associated with the RISC complex. The lack of hybrids 

is however expected at this stage as hybrids are rarely formed with previous results 

showing they make up approximately 2% of the deep sequencing results and 

therefore will be difficult to detect in these sequencing results156. 
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2.3.3.2 CLASH Experiment 2 

The assay was repeated in an attempt to improve the resolution of PCR products on 

the MetaPhor agarose gel. In this repeat we focused the assay on the fibroblast lysate 

samples (infected and uninfected). With the previous HEK293T cells having been 

cultured to a high passage number, a new stock of HEK293T cells was used for the 

generation of lentivirus. A total of eight T175 flasks of HEK293T cells were 

transfected to generate LVX-Ago2 lentivirus. This was harvested as supernatant 

resulting in approximately 120ml of lentivirus which was sufficient to tranduce 24 x 

15cm dishes of NHDF cells, enough to generate 4 lysates. The lentivirus stock was 

titred as before to determine levels of tagged Ago2 expresssion. For direct 

comparison, a sample of previously concentrated lentivirus was also loaded at a 

dilution of 5-2 (Figure 2.18). 

 

Figure 2.18: Lentivirus harvested as supernatant titration shows lentivirus can be 

used at a dilution factor of 2-2. 

Transductions of NHDF cells was conducted in 2 fold serial dilutions, selected by 

puromycin and lysed in loading buffer for western blot analysis. The tagged Ago2 

protein levels were detected using peroxidase-anti peroxidase (PAP) antibody, which 

targets the protein A of the tag. 
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Based on the titration results, a dilution factor of 2-2 was deemed a suitable 

concentration to conduct transductions, as a lower dilution would not achieve 

significantly higher levels of tagged Ago2 expression but would risk potential 

cytopathic effects. Lentivirus from this stock was used to transduce cells and 

generate lysates used in this CLASH experiment as well as CLASH experiment 3. 

Cells were transduced in T175 flasks, selected by puromycin and seeded into twelve 

15cm dishes. Six dishes were infected as described before to generate the infected 

lysate and six were harvested as an uninfected lysate. All lysates were harvested into 

a total of 10ml buffer. As before, 20µl of each sample was analysed by Western blot 

to confirm levels of tagged Ago2. A previously generated positive control was used 

in this experiment and untransduced NHDF cells were used as a negative control. 

The NHDF lysates were generated together with the lysates used in CLASH 

experiment 3 and the Western blot analysis conducted on the same blot. Figure 2.19 

shows the section with samples from the lysates used in this CLASH experiment. 

Controls were run on the same gel, however unrelated lanes have been cropped from 

the image. 
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Figure 2.19: Detection of levels of tagged Ago2 protein in NHDF lysates. 

Lysates generated from lentivirus produced on a large scale using a new culture of 

HEK293T cells were checked for tagged Ago2 levels. Transduced cells (6 x 15cm 

dishes) were infected with TB40E virus to generate an infected lysate.  6 x 15cm dishes 

of cells were harvested uninfected to generate the uninfected lysate. A positive control 

from a known sample was used and untransduced NHDF cells were loaded as a 

negative control. 

Western blot analysis shows equivalent levels of tagged Ago2 between the lysates 

therefore CLASH libraries were generated as described before. The resulting 

radiograph following the radioactive labelling of RNAs after IP and denaturing 

washing steps is shown in Figure 2.20A. The complexes were excised from the 

membrane and the PCR products were run on the 3% MetaPhor gel, Figure 2.20B. 
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Figure 2.20 CLASH 2 radioactive membrane exposure results and PCR product. 

A. The radiograph results following radioactive labelling of RNAs and exposure of the 

membrane to the film for 12 hours. The sections marked in red boxes were excised for 

the extraction of the RNA molecules. B. The metaphor gel results of the PCR products 

and on the right hand side the sections excised from the gel for extraction of the cDNA 

to be cloned and sequenced. 

In this repeat the signal was slightly stronger for the infected sample, with 

radioactive signals observed from both samples after 12 hours of membrane 

exposure to film. By reducing the volume of the gel, better resolution of the PCR 

products was achieved. The PCR products demonstrated the characteristic single 

band at approximately 150bp, as opposed to the expected 100bp, and a smear above 

this band. Although the PCR products for both samples were extracted, due to the 

faintness of the infected sample only the uninfected sample was cloned for small-

scale sequencing to ascertain the characteristics of the insert DNA. 
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Table 2.2: CLASH 2 Sanger Sequencing Results. 

TOPO cloned NHDF uninfected samples were sequenced and in red is the 5’ Linker 

sequence, red is the 3’ Linker and in black is the insert or sequence of interest. 

Sample Sequence Seq 
length 

% 
match 

BLAST Result 

NHDF- (2) TACACGACGCTCTTCCGATCTACGCC
CTTAGCCGCCTGGGGAGTACGGTCG
CAAGACTAAAACTCAAAGGAATTCTCG
GGTGCCAAG 

34 100% 
(34/34) 

Uncultured alpha 
proteobacterium 
partial 16S rRNA 

NHDF- (3) TACACGACGCTCTTCCGATCTGTTCCT
TTAGCAACGATGATAACTAGCTTTCCG
GGCACTTGGTGCTTGGGTGGCGCAG
CTAACGCATTAAGTTATCCGCCTGGG
GAGTACGGCCGCAAGGTTAAAACTCA
AAGGAATTCTCGGGTGCCAAG 

99 100% 
(99/99) 

Uncultured alpha 
proteobacterium 
partial 16S rRNA 

NHDF- (4) TACACGACGCTCTTCCGATCTATCCG
CTTAGCTTCAAGTAATCCAGGATAGG
CTGGAATTCTCGGGTGCCAAG 

20 100% 
(20/20) 

Homo sapiens 
microRNA 26a-2 
(MIR26A2) 

NHDF- (5) TACACGACGCTCTTCCGATCTCTGCG
CTTAGCCCTGGGGAGTACGGTCGCAA
GATTAAAACTCAAAGGAATTCTCGGGT
GCCAAG 

32 100% 
(32/32) 

Uncultured alpha 
proteobacterium 
partial 16S rRNA 

NHDF- (6) TACACGACGCTCTTCCGATCTTAATGC
TTAGCCTAACGCATTAAGTTATCCGCC
TGGGGAGTACGGCCGCAAGGTTAAAA
CTTAAAGGAATTCTCGGGTGCCAAG 

52 100% 
(52/52) 

Uncultured alpha 
proteobacterium 
partial 16S rRNA 

NHDF- (7) TACACGACGCTCTTCCGATCTATGCG
CTTAGCCGCAGCTAACGCATTAAGTT
ATCCGCCTGGGGAGTACGCCGCAAG
GTTAAAACTCAAAGGAATTCTCGGGT
GCCAAG 

56 100% 
(56/56) 

Uncultured alpha 
proteobacterium 
partial 16S rRNA 

NHDF- (8) TACACGACGCTCTTCCGATCTTCACG
CTTAGCGGAATTCTCGGGTGCCAAG 

0 N/A No insert 
detected 

NHDF- (9) TACACGACGCTCTTCCGATCTAAACCT
TTAGCAGCTACATCTGGCTACTGGGT
CATGGAATTCTCGGGTGCCAAG 

22 95% 
(21/22) 

Homo sapiens 
microRNA 222 
(MIR222) 

NHDF- 
(10) 

TACACGACGCTCTTCCGATCTAGGTG
CTTAGCCTTCTCACTACTGCACTTGAC
TTGGAATGCTCGGGTGCCAAG 

19 100% 
(19/19) 

Homo sapiens 
RNA, Ro-
associated Y1 
(RNY1) 

NHDF- 
(11) 

TACACGACGCTCTTCCGATCTTAATGC
TTAGCCTAACGCATTAAGTTATCCGCC
TGGGGAGTACGGCCGCAAGGTTAAAA
CTCAAAGGAATTCTCGGGTGCCAAG 

52 100% 
(52/52) 

Uncultured alpha 
proteobacterium 
partial 16S rRNA 

NHDF- 
(12) 

TACACGACGCTCTTCCGATCTAAGCC
CTTAGCGTAAACGATGATAACTAGCT
GTCCGGGTTCATGGAATTTGGGTGGC
GCAGCTAACGCATTAAGTTATCCGCC
TGGGGAGTACGGTCGCAAGATTAAAA
CTCAAAGGAATTCTCGGGTGCCAAG 

102 100% 
(102/10
2) 

Uncultured alpha 
proteobacterium 
partial 16S rRNA 
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Sequencing results from this repeat showed little success as there were only two 

miRNA sequences. Although the resolution of the PCR gel was improved, the 

presence of bacterial sequences was a cause for concern and a third CLASH assay 

was attempted to investigate this issue. 

2.3.3.7 CLASH Experiment 3 

Although Sanger sequencing provides a minute overview of the sequences generated 

by the CLASH protocol, the lack of mRNA sequences and the existence of bacterial 

contamination was cause for concern and suggests that the current protocol was sub-

optimal. Despite the fact that expression of the tagged Ago2 protein was confirmed 

in NHDF cells, levels of expression were lower in comparison to those in a tagged 

Ago2 stably expressing HEK293 (HEK293-Ago2) cell line. To determine whether 

problems were due to inherent errors in the CLASH procedure or due to the low 

expression of tagged Ago2 in transduced NHDF cells, the assay was repeated, using 

infected and uninfected NHDF lysates. However, this time, a lysate from HEK293-

Ago2 cells transfected with a plasmid expressing the HCMV miRNA miRUL112-1 

was included as a positive control in the assay. New NHDF lysates were generated 

as before in experiment 2 with tagged Ago2 expression confirmed by western blot 

(Figure 2.21). The HEK293-Ago2 lysate, was generated from four 15 cm dishes, 

seeded at 3 x 107 cells per dish, which were lysed 48 hpt in a total of 10ml of lysis 

buffer. A sample was not included on the western blot as the strong signal generated 

interferes with detection of the NHDF signal. 
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Figure 2.21 Detection of levels of tagged Ago2 protein in NHDF lysates. 

Lysates generated from lentivirus produced on a large scale using a new culture of 

HEK293T cells were checked for tagged Ago2 levels. Transduced cells (6 x 15cm 

dishes) were infected with TB40E virus and equal amounts of cells were harvested 

uninfected. A positive control from a known sample was used and untransduced NHDF 

cells were loaded as a negative control. 

CLASH libraries were generated from these samples as before. The resulting 

radiograph following the radioactive labelling of RNAs after IP and denaturing 

washing steps is shown in Figure 2.22A. The HEK293-Ago2 cells transfected with 

the HCMV UL112-1 expressing plasmid stably express the tagged Ago2 protein at 

high levels. Due to the strength of the radioactive signal from the HEK293 sample 

the film was exposed to the membrane for 1.5 hours, rather than overnight, hence the 

fainter bands on the radiograph. 
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Figure 2.22: CLASH 3 Radioactive membrane exposure results and the gel results 

for the PCR product. 

A. Radiograph results following radioactive labelling of RNAs and the sections marked 

in red boxes were excised for the extraction of the RNA molecules. B. Metaphor gel 

results of the PCR products and on the right hand side the sections excised from the gel 

for extraction of the cDNA for TOPO cloning and sequencing. 

The regions of the membrane highlighted by red boxes were excised and RNA 

extracted by protease digestion and phenol chloroform extraction as before. The 

signal achieved following PCR amplification and gel electrophoresis was lower than 

that achieved in the previous experiment. However, the decision was made to 

proceed with sequencing of selected clones to provide comparative data between the 

CLASH experiments. The products were extracted from the gel, reverse transcribed 

and cloned for sequencing with the results shown in Table 2.3. 
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Table 2.3: CLASH 3 Sanger Sequencing Results. 

TOPO cloned samples were sequenced and in red is the 5’Linker sequence, red is the 

3’Linker and in black is the insert or sequence of interest. 

Sample Sequence Seq 
length 

% 
match 

BLAST Result 

112-2 (1) TACACGACGCTCTTCCGATCTCCTAGA
AAGTGACGGTGAGATCCAGGCTTGGAA
TTCTCGGGTGCCAA 

21 21/21 
(100%) 

HCMV miR112-
3p 

112-1 (2) TACACGACGCTCTTCCGATCTGATAGA
GATCCAGGCTTGGAATTCTCGGGTGCC
AA 

7 N/A Sequence too 
short 

112-1 (3) TACACGACGCTCTTCCGATCTATTAGAC
AAGTGACGGTGAGATCCAGGCTTTTGG
AATTCTCGGGTGCCAAGG 

22 95% 
(20/21) 

HCMV miR112-
3p 

112-1 (4) TACACGACGCTCTTCCGATCTTGTAGT
ATGTGAAATACTTCTTTGGGGTTGGAAT
TCTCGGGTGCCAA 

19 100% 
(19/19) 

Homo sapiens 
zinc finger and 
BTB domain 
containing 33 
(ZBTB33) 

112-1 (5) TACACGACGCTCTTCCGATCTACCAGA
GTGAGGTAGTAGGTTGTATAGTTTGGA
ATTCTCGGGTGCCAAGG 

20 100% 
(20/20) 

Homo sapiens 
microRNA let-
7a-1 (Also 7a-2 
& 7a-3) 

112-1 (6) TACACGACGCTCTTCCGATCTCTTAGA
GCAAGTGACGGTGAGATCTAGGCTTGG
AATTCTCGGGTGCCAAGG 

21 95% 
(20/21) 

HCMV miR112-
3p 

112-1 (7) TACACGACGCTCTTCCGATCTCCAAGA
GAGAGGCGTGCCTTGGGGGTACCGGA
TCCCCCGGGCCGCCGCCTCTTGGAATT
CTCGGGTGCCAAGG 

43 43/43 
(100%) 

Homo sapiens 
RNA, 45S pre-
ribosomal 5 
(RNA45S5), 
ribosomal RNA 

112-1 (8) TACACGACGCTCTTCCGATCTAGTAGA
CAGGCTTTATTGGAATTCTCGGGTGCC
AA 

6 N/A Sequence too 
short 

NHDF- (1) TACACGACGCTCTTCCGATCTCATGTG
AGCGGTGAGCAAGGAATTCTCGGGTG
CCAAGG 

7 N/A Sequence too 
short 

NHDF- (2) TACACGACGCTCTTCCGATCTCTAGTG
AGCACGCGGGAGACCGGGGTTTTGGA
ATTCTCGGGTGCCAAGG 

19 18/19 
(94%) 

Homo sapiens 
BAC clone 

NHDF- (3) TACACGACGCTCTTCCGATCTTGCTTG
AGCTGGAAGACTAGTGATTTTGTTGTTG
GAATTCTCGGGTGCCAA 

22 100% 
(22/22) 

Homo sapiens 
microRNA 
3529 
(MIR3529) 

NHDF- (4) TACACGACGCTCTTCCGATCTCGTGTG
AGCTGGAATTCTCGGGTGCCAAGG 

0 N/A N/A 
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Table 2.3 Continued 

Sample Sequence Seq 
length 

% 
match 

BLAST Result 

NHDF- (5) TACACGACGCTCTTCCGATCTCCAGTG
AGGCCTCCATTGGAATTCTCGGGTGCC
AAGG 

6 N/A Sequence too 
short 

NHDF- (7) TACACGACGCTCTTCCGATCTGCCGTG
AGCTAGCTTATCAGACTGATGTTGATG
GAATTCTCGGGTGCCAAGG 

21 100% 
(21/21) 

Homo sapiens 
microRNA 21 
(MIR21) 

NHDF- (8) TACACGACGCTCTTCCGATCTCACGTG
AGCAACATAGAGGAAATTCCACGTTGG
AATTCTCGGGTGCCAA 

20 100% 
(20/20) 

Homo sapiens 
microRNA 
376c (MIR376C 

NHDF+ (1) TACACGACGCTCTTCCGATCTCGCTCT
CGAGCGGTTATGGAATTCTCGGGTGCC
AAGG 

4 N/A Sequence too 
short 

NHDF+ (2) TACACGACGCTCTTCCGATCTAAGTCT
CTAGCACGAACGCAAGTTTGAAACTCA
AAGGAATTCTCGGGTGCCAA 

22 100% 
(22/22) 

Uncultured 
bacterium 
partial 16S 
rRNA gene 

NHDF+ (3) TACACGACGCTCTTCCGATCTCAGTCC
CTAGCTCCCTGAGACCCTAACTTGTGA
TGGAATTCTCGGGTGCCAA 

21 100% 
(21/21) 

Homo sapiens 
microRNA 
125b-1 
(MIR125B1) 

NHDF+ (4) TACACGACGCTCTTCCGATCTACCATTT
TAGCTAGCACCATCTGAAATCGGTTAT
GGAATTCTCGGGTGCCAAGG 

21 100% 
(21/21) 

Homo sapiens 
microRNA 
29b-1/29a. 

NHDF+ (5) TACACGACGCTCTTCCGATCTGGAATT
CTCGGGTGCCAAGG 

0 N/A N/A 

NHDF+ (6) TACACGACGCTCTTCCGATCTTGCCCT
GGGGAGTACGAACGCAAGTTTGAAACT
CAAAGGAATTCTCGGGTGCCAA 

35 33/35 
(94%) 

Uncultured 
bacterium 
partial 16S 
rRNA 

NHDF+ (7) TACACGACGCTCTTCCGATCTACTTCTC
TAGCACGGTCGCAAGATTAAAACTCAA
AGGAATTCTCGGGTGCCAAGG 

22 100% 
(22/22) 

Uncultured 
bacterium 
partial 16S 
rRNA 

NHDF+ (8) TACACGACGCTCTTCCGATCTCCTTCTC
TAGCTGGGAATTCTCGGGTGCCAA 

0 N/A No insert 
detected 

CLASH 3 showed an improved set of results with fewer bacterial sequences in the 

data, 4 out of a total of 24, compared to 11 out of 24 for CLASH assay 1 and 2. 

However, the bacterial sequences were only present in the NHDF sample. This 

suggests that the lower levels of tagged Ago2 protein may be playing a role in the 

resulting bacterial sequences. Multiple miRNA sequences were also identified and, 

at least for the HEK293 sample, host mRNA sequences. Based on the fact that the 
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bacterial sequences were lower compared to CLASH experiment 1 and 2, it was 

decided that the samples from CLASH experiment 3 should be sent for deep 

sequencing to provide a more detailed analysis of the results. 

2.3.4 High-throughput Sequencing Results and 

Analysis 

High-throughput sequencing of CLASH cDNAs would incorporate a total of 8 

samples in the same reaction as there are 8 barcodes available. Two of our CLASH 

cDNA libraries were sequenced together with another group’s libraries as a means of 

cost sharing. Results are therefore categorised into separate samples based on 

barcodes. The composition of each sequenced sample is then determined by 

sequence alignment to the human and HCMV genomes. Table 2.4 shows the 

distribution of the results following the initial analysis. A total of just over 13.3 

million and 1 million sequences were attained from the uninfected and infected 

samples respectively. Following quality control of the sequences, 6.6 million and 0.9 

million reads from uninfected and infected samples, respectively, were deemed 

suitable for further analysis. Out of these reads, 1 million and 77 thousand aligned to 

the human or HCMV genomes. The biotypes of the aligned sequences are detailed in 

Table 2.4. 
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Table 2.4: High-throughput sequencing results 

Biotype NHDF 
Uninfected 

*Biotype 
Composition 
(%) 

NHDF 
Infected 

*Biotype 
Composition 
(%) 

Total Reads 13,203,115 N/A 1,007,407 N/A 

High Quality Reads 6,655,830 N/A 933,729 N/A 

Aligned to human & 
HCMV genome 

1,061,827 100 77,484 100 

Human mRNA 75,472 7 4,562 6 

rRNA 56,677 5 2,556 3 

Human miRNA 689,460 65 44,038 57 

lincRNA 117,368 11 5,845 8 

tRNA 15,620 1 785 1 

snRNA 62,186 6 205 0 

miscRNA 3,113 0 258 0 

HCMV miRNA 2,111 0 6,072 8 

snoRNA 31,649 3 171 0 

HCMV Transcripts 8,170 1 12,992 17 

*Is the percentage calculated from sequences that aligned to the human or viral 

genomes. These are graphically represented in Figure 2.23. 
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Figure 2.23: Representation of the percentage composition of the mapped 
sequences. 

 

As the RISC complex binds to miRNAs which in turn guides the complex to a target 

mRNA, a huge proportion of the sequencing consisted of miRNAs for both samples. 

17% of the aligned sequences from the infected sample were HCMV transcripts as 

compared to 1% from the negative control. The presence of HCMV transcripts in the 

uninfected sample raises concerns with regards to contamination and is further 

discussed in section 2.3. 
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2.3.4.1 Hybrid Identification 

As this protocol primarily allows for the identification of miRNAs successfully 

ligated to their targets, hybrid sequences are therefore isolated from the entire 

population for identification of their contents. Identification of hybrids involves the 

use of local alignment tool, such as blastn and Bowtie2, to map the reads to the 

human and HCMV genomic sequences. Reads with two non-contiguous matches to 

the database are identified as hybrids163. Table 2.5 summarises the hybrid results. 

Table 2.5: Hybrid composition of sequenced results. 

Hybrid components NHDF 
Uninfected 

NHDF 
Infected First part of 

hybrid 
Second part of 

hybrid 

HCMV-miRNA Human mRNA 0 1 

HCMV Transcript HCMV-miRNA 17 160 

Human miRNA HCMV Transcript 0 2 

HCMV-miRNA HCMV-miRNA 1 3 

Human mRNA HCMV Transcript 11 3 

HCMV Transcript HCMV Transcript 4 1 

lincRNA HCMV Transcript 2 1 

miscRNA HCMV Transcript 1 0 

 

The number of hybrids identified was far lower than would be expected to allow 

global analysis of virus miRNA targets. However further analysis was conducted on 

the hybrids identified to determine the likelihood that they were genuine and to give 

further insight into whether the protocol was working to some extent. The analysis 
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identified hybrids of several compositions (Table 2.5). Of particular interest for us 

are hybrids between HCMV-miRNA and human mRNA transcripts as well as those 

between human miRNAs and HCMV transcripts. A total of 3 were identified from 

samples as highlighted above (shaded orange). 

2.3.4.2 Hybrid Composition and Folding 

Once sequences have been identified as hybrids, to determine if they were genuine 

chimeras formed between miRNAs and target mRNAs, folding capabilities can be 

analysed using an online bioinformatics tool. RNAfold was used to predict the 

thermodynamic assembly of the 3 hybrids identified from the sequence analysis164. 

RNAfold will predict a minimum free energy (MFE) as well as giving the 

corresponding structure following RNA folding. 

1. The first sequence of the hybrids between HCMV miRNA and human mRNA 

transcript was: 

GACGCTCTTCCGATCTGGCCACTAG –AACCGCTCAGTGGCTCGGACC. 

The colour coding represents human mRNA and HCMV miRNA. There was a single 

read with this hybrid sequence from the total sequences in the results. BLAST 

analysis revealed that this hybrid was formed by HCMV miR-US25-1-5p targeting 

the NLR family, apoptosis inhibitory protein (NAIP) target. Eighteen nucleotides 

from hybrid position 5 to 22 were identified as belonging to NAIP and nucleotides 

26 to 46 aligned to the miR-US25-1-5p. Nucleotides in red however showed no 

alignment upon analysis. RNA folding results of this hybrid are represented in 

Figure 2.24. 
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Figure 2.24: RNAfold results for HCMV miR-US25-1-5p and NLR family, apoptosis 

inhibitory protein hybrid.  

Eighteen nucleotides, from hybrid position 5 to 22 in blue, are from NLR family, 

apoptosis inhibitory protein and nucleotides 26 to 46 in red aligned to the miR-US25-1-

5p. Nucleotides in grey showed no alignment. The minimum free energy was -15.20 

kcal/mol. 

RNAfold results showed that 13 of the 21 nucleotides of the miRNA bound to the 

target mRNA with a predicted minimum free energy of -15.20 kcal/mol. However, 

there may be limitations to the RNAfold programme as nucleotide 21 of the miRNA 

bound to another miRNA nucleotide. 
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2. The second sequence of the hybrids between HCMV miRNA and human mRNA 

transcript was:  

AGCGGTCTGTTCAGGTGGATGA- GGGCTCTTTACGGTCGGGC 

The colour coding represents HCMV miRNA and human mRNA. Fifteen reads with 

this hybrid sequence were identified. However, 4 different barcodes were detected in 

these hybrids. This is due to the 3 variable nucleotides in the barcode which serve as 

verification that multiple reads of the same hybrid are not a result of PCR 

amplification. Components of the hybrid corresponded to HCMV miR-US25-2-5p 

and the disco-interacting protein 2 homolog A (dip2A) human gene. 
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Figure 2.25: RNAfold results for HCMV miR-US25-2-5p and dip2A hybrid.  

22 nucleotides from hybrid position 1 to 22 (in red) are from miR-US25-2-5p and 

nucleotides 23 to 41 (in blue) aligned to dip2A. The minimum free energy was -7.50 

kcal/mol. 

RNAfold results showed that 11 of the 22 nucleotides of the miRNA bound to the 

target mRNA with a predicted minimum free energy of -13.00 kcal/mol. However, 2 

of these nucleotides formed wobble base pairs i.e. GU pairing. 
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3. A single read for a hybrid consisting of a human miRNA targeting a HCMV 

transcript was also identified and had the sequence: 

CGGTCTGAGGCCCCTCAGTC - GGGGCGTGCCGAGCTGC 

BLAST analysis of this sequence identified components for this hybrid to be Hs 

miR-423 and HCMV UL6 transcript respectively. 

 

Figure 2.26: RNAfold results for Hs miR-423 and HCMV UL6 transcript hybrid. 

Eighteen nucleotides from hybrid position 1 to 20 in blue are from miR-423 and 

nucleotides 21 to 37 in red aligned to the HCMV UL6 transcript. The minimum free 

energy was -15.80 kcal/mol. 
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RNAfold results showed that 10 of the 20 nucleotides of the miRNA bound to the 

target mRNA with a predicted minimum free energy of -15.80 kcal/mol. Hybrid 

binding however did not correspond to miRNA seed binding and the target sequence 

was found to be within the 5’ end of UL6. 
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2.4 Discussion 

CLASH is a novel technique with great potential in identifying miRNA targets as 

well as unknown miRNAs. The initial aim of this project was to identify high 

confidence target data of viral miRNAs. The steps of the protocol that are conducted 

prior to IgG-Dynabeads IP were successfully optimised. These include the 

conjugation of IgG antibodies to dynabeads which was shown to successfully 

immunoprecipitate the tagged Ago2 protein. UV crosslinking was also shown to be 

able to conserve the binding of Ago2 to RNAs as represented in appendices (Figure 

7.1) with radioactive labelling of RNAs being considerably higher in the UV-

crosslinked sample compared to the non-crosslinked sample. The overexpression of 

tagged Ago2 protein in NHDF cells by transduction and their subsequent HCMV 

infection were also demonstrated to work well as shown by the positive Western blot 

results of LVX-Ago2 transduced cells/lysates and GFP microscopy pictures of iRES-

Ago2 transduced cells. 

Although the CLASH technique had been previously optimised using HEK293T 

derived lysates6,156, more work needed to be conducted with lysates from NHDF and 

THP-1 lysates. THP-1 cells are permissive to HCMV infection following TPA 

mediated differentiation. This presented challenges from the outset as the monolayer 

was lost due to the additional 3 days required for HCMV infection before cells are 

harvested for lysates. On the other hand, it was challenging to maintain the tagged 

Ago2 protein expression in NHDF cells as it reduced with passaging of the cells. 

Two different lentivirus vectors were tried with the same result. Loss of expression 
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may also have had an impact on the sequencing results obtained with the over-

representation of the bacterial sequences as limited RNAs would have been immune-

precipitated in the first instance. 

It was inferred from CLASH 1 and 2 that the tagged Ago2 expression in the lysates 

maybe low and presenting issues with the IPs. Therefore, a HEK293-Ago2 cell line 

transfected with the HCMV-UL112-1 miRNA derived lysate, was included in the 

CLASH 3 for comparison with the NHDF lysates. Although the radiograph signals 

were low, a result of the low exposure time, there is an indication of a greater signal 

on the HEK293 lysate sample compared to the NHDF samples, a result that was also 

reproduced on the PCR gel. This would suggest a lack of material in the NHDF 

samples, i.e. the expression levels of the tagged Ago2 protein may be lower than 

required for CLASH assay. However, as the results were encouraging and there was 

an opportunity of sending two samples for high-throughput sequencing, the NHDF 

cDNA libraries, uninfected and infected from CLASH 3 were amplified by PCR and 

sequenced. 

An encouraging result was achieved from high-throughput sequencing with several 

hybrids detected following analysis. Of the identified hybrids, two were formed from 

different HCMV miRNAs targeting two different human cellular transcripts. The 

NLR family, apoptosis inhibitory protein (NAIP) gene was targeted by HCMV miR-

US25-1-5p. NLR, nucleotide binding and oligomerisation domain (NOD)-like 

receptors, are an innate immune receptor family that recognises PAMPS165. It would 

therefore appear that the targeting of NAIP promotes apoptosis, which raises 
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questions as to why HCMV would promote this cellular physiological mechanism of 

minimising the spread of infection. 

A second human transcript, disco-interacting protein 2 homolog A (dip2A), was 

identified as being targeted by of HCMV miR-US25-2-5p. There is little known 

about DIP2A but few studies have shown that it is not highly expressed and it 

functions as a follistatin-like 1 (FSL1) receptor166. Interestingly, FSL1 has also been 

shown to inhibit apoptosis through the activation of DIP2A, which in turn led to the 

phosphorylation of Akt167. 

It therefore appears to be a deliberate targeting of apoptosis inhibitory proteins by 

the HCMV mirUS25 miRNAs. More work would be required to verify that this is 

the case although it would appear as a counterintuitive process considering HCMV 

expresses proteins that inhibit apoptosis. It would therefore raise the question as to 

why HCMV would inhibit anti-apoptosis proteins thereby promoting apoptosis. 

Adding to the complexity of the viral-cell interaction during HCMV infection, a 

hybrid with a cellular miRNA targeting a viral transcript was identified. In this 

hybrid, Hs miR-423 targeted the HCMV UL6 transcript. UL6 is an important 

HCMV protein involved in the packing of the newly formed HCMV DNA into 

capsids. UL6 forms a channel through which DNA is transported into pre-formed 

capsids by the terminase enzyme complex. It may therefore be the case that a cell is 

using miRNAs to disrupt the replicative cycle of HCMV, in this case by targeting 

one of the late stages of new virion formation. 
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Of the three hybrids analysed, RNAfold results did not show the binding of the 

miRNA to mRNA to be guided by a seed sequence. This however does not 

invalidate the results as potential miRNA/mRNA interactions as this kind of binding 

has been reported and validated as non-canonical interactions6. 

Comparing non-hybrid sequences between infected and uninfected samples from 

CLASH would reveal the transcripts targeted by viral miRNAs by determining 

transcript enrichment levels in infected samples compared to uninfected samples. 

This would involve looking for transcripts specifically enriched in the infected 

samples. Unfortunately, this analysis could not be performed with this data as, at this 

stage, the bioinformatics had not been developed. 

It is fair to deduce that the assay needs improving based on both the small-scale 

sequencing and high throughput results. On comparing the assay results of a 

HEK293 generated lysate to that of the NHDF lysates, it would appear that the levels 

of the tagged Ago2 protein would potentially improve the assay. As this could not be 

achieved after several attempts, future studies have focused on combining the HITS 

CLIP with CLASH in an attempt to increase the efficiency of IP. Also, as the 

sequencing results showed an over-representation of miRNAs only, future assays 

will alter the excision of the PCR products from the metaphor gel to yield longer 

fragments from the smear whilst excluding the distinctive band which contain 

miRNAs.  
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Lastly, HCMV transcripts and miRNAs were detected in the uninfected sample of 

the deep sequenced cDNA. This is indicative of potential cross-contamination 

between samples. One of the highlighted issues (from discussion with collaborators) 

lies with the production of barcoded adapters. As all barcodes are thought to be 

manufactured from the same production, there is bound to be contamination between 

samples and will therefore consequently show in the sequenced results. Nonetheless, 

there were more HCMV sequences in the infected sample compared to the 

uninfected sample. 

The results presented in this study do however show that CLASH will be a valuable 

tool for miRNA studies but does require improvements. Further studies have been 

conducted by Dr Dominique McCormick using an antibody targeting the 

endogenous Ago2 protein, in an effort to improve IP levels. A total of 3 infected 

samples and 1 uninfected sample were analysed in this experiment. Libraries 

generated from these assays were sequenced and an optimised hybrid pipeline for 

high-throughput sequencing data was used for analysis. A total of just over 20, 31, 

and 44 million reads were achieved in the infected samples and just over 43 million 

reads for the uninfected sample. From the infected samples, an average of 121,104 

hybrids were identified, representing 0.375% of the average total reads. 223,256 

hybrids were identified from the uninfected sample representing 0.510% of the total 

reads. The hybrid composition analysis showed that an average of 95, 897 (79.18%) 

hybrids were formed between cellular miRNAs and cellular transcripts, 8,808 

(7.27%) hybrids between HCMV miRNAs and HCMV transcripts and 16,399 

(13.54%) between HCMV miRNAs and cellular transcripts. From the uninfected 
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sample, 222,893 (99.83%) hybrids were formed between cellular miRNAs and 

cellular transcripts, 86 (0.038%) hybrids between HCMV miRNAs and HCMV 

transcripts and 277 (0.124%) between HCMV miRNAs and cellular transcripts. 

Further work is however required to demonstrate if these hybrids are real and this 

will include bioinformatics studies to verify miRNA/transcript binding efficiencies, 

luciferase assays and Western blot analysis. 
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3.1 Introduction 

The interferon system plays an important role in restricting HCMV infection112. The 

precise mechanisms by which IFNs inhibit HCMV replication are not fully 

understood. Previous studies have identified some key genes that affect HCMV 

infection (section 1.5.3.2). However, with the number of genes classified as ISGs 

rising substantially, there is a clear need for more studies to determine and 

understand the mechanisms by which interferons inhibit HCMV infection. The 

interferon system is highly redundant and works in complex pathways where several 

molecules act against invading pathogens, which makes the systematic identification 

of factors that restrict viral replication challenging. 

Researchers in the Rice laboratory have designed a novel approach for studying the 

factors of the interferon system that is compatible with high-throughput design. By 

analysing published data from microarray experiments on IFN-treated cells or tissues, 

they established a list of 389 ISGs, which has since been revised to 401168,169. These 

genes were cloned into lentiviral vectors to establish libraries that can be used with 

in vitro based assays. Each lentivirus vector in the library co-expresses red 

fluorescent protein (TagRFP) and an ISG. Infection with a GFP virus then allows 

direct monitoring of virus replication in successfully transduced cells, thereby 

measuring the effect of ISG overexpression on viral replication168. 

To date the effects of these genes on HCMV infection have not been assessed. In this 

study we have investigated the effects of ISG overexpression on HCMV infection in 
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vitro, leading to the identification of several genes not previously known to affect 

HCMV. 

3.1.1 AIMS of the Study 

The aim of this study was to investigate how the interferon system affects HCMV 

infection in vitro and to identify the roles played by specific ISGs, using high 

throughput overexpression studies. 
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3.1.2 Assay Procedure 

A high throughput assay was conducted to study the effects of ISGs on HCMV 

infectivity. A total of 389 ISGs cloned into the SCRPSY lentivirus vector which 

expresses the ISG of interest as well as RFP (Figure 3.1) was provided by 

collaborators, Dr Sam Wilson from the University of Glasgow. SCRPSY encodes for 

the regulatory proteins Tat and Rev whose expression are both driven by the HIV 

LTR retroviral promoter. Tat is an RNA binding protein that acts as a transcriptional 

transactivator and is formed by early fully spliced mRNAs. The binding of Tat to the 

HIV LTR promotes the elongation phase of transcription leading to an increased rate 

of at least a 1000 fold170. The Tat protein therefore serves to allow the expression of 

the ISG in an 'early' context. The Rev protein on the other hand induces the transition 

from the early to the late phase of gene expression and therefore serves to allow the 

expression of the TagRFP in a 'late’ context171. 
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Figure 3.1: Map of SCRPSY-EGFP Plasmid. 
EGFP-SCRPSY plasmid generated by PlasMapper172 shows the components of the ISG 

expressing lentivirus plasmid used to generate the libraries. The ISG of interest would 

be cloned instead of eGFP and together with RFP they were both driven by the HIV LTR 

promoter. 

ISGs were cloned into the plasmid to generate the library used in this assay. Using 

fluorometry, the RFP levels were measured to determine the transduction 

levels/efficiency of the lentivirus. Primary human fibroblast cells were transduced 

with the ISG lentivirus library, as described in Materials and Methods 6.2.3.,2 then 

infected with a GFP expressing clinically derived strain of HCMV (TB40E) 72 hours 

post transduction (hpt) (Figure 3.2)173. The progress of infection was measured by 

GFP fluorescence at 24 hour intervals over a period of 7 days to establish growth 

curve data during the course of infection. To establish the viral replication levels 
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over the course of infection, area under the curve (AUC) was calculated, as 

described in Materials and Methods 6.3.2.4, and used as representative of viral 

replication levels. At 7 dpi, cells were harvested and analysed by FACS, allowing 

quantification of GFP levels, and thus viral growth, specifically in RFP positive 

cells. 

 

Figure 3.2: ISG High Throughput Assay.  

Cells were transduced with an ISG expressing lentivirus. At 72 hours post-transduction 

cells were infected with a GFP expressing HCMV virus. The progress of infection was 

followed by fluorometry, measuring GFP fluorescence, up to 7dpi at which point the 

cells were harvested and analysed by FACS. 

Infecting the cells for a duration of 7 days allowed the generation of a maximum 

dynamic range for GFP readings while maintaining cell viability crucial for the 

harvesting of the cells for FACS analysis. While fluorometry data will provide 

greater information over the full time course, FACS analysis is likely to be more 

sensitive as only successfully transduced RFP positive cells can be measured, 

excluding virus replication levels in non-transduced cells. Furthermore, by using two 

independent measures of virus replication greater confidence can be gained by 

comparing data sets. 
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3.2 Results 

3.2.1 Lentiviral library transduction 

Transductions were conducted on a 96 well plate basis, replicating the manner in 

which the libraries are produced. Libraries were made using 293T cells in 96 well 

plates on a large scale with each well producing a single specific lentivirus. As a 

result, lentivirus titres were variable and therefore it was important to measure RFP 

levels and determine the levels of transduction achieved by each lentivirus prior to 

infecting the cells. Low levels of transduction could result in little effect from the 

ISG and therefore a false negative, while transduction at high MOI with lentiviruses 

can prove toxic to primary cells (observations from previous pilot studies). In these 

pilot studies, cells were transduced with lentivirus in serial dilution. Cells death was 

observed at high concentrations of lentivirus. It was also surmised that at low 

transduction levels, expression of the ISG of interest will not be achieved in non-

transduced cells therefore the effect of the ISG could not accurately be determined. 

The assay was performed in primary neonate human dermal fibroblast cells 

(NHDFs), which are highly permissive to HCMV infection in vitro. To determine 

the level of transduction for each lentivirus, RFP levels were measured at 72 hpt 

prior to infection with HCMV (Figure 3.3). RFP levels ranged from 3,293 RFUs 

(relative fluorescence units) to 27,069 RFUs, reflecting variation in the levels of 

lentivirus titre. RFP levels of approximately 9,000 RFUs corresponded with 100% 

transduction as determined by microscopy. Microscopy checks were conducted on 

each plate throughout the duration of the assay to identify potential cytotoxic effects 

caused by high lentivirus transduction or expression of a toxic ISG and a total of 5 
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ISGs were identified as cytotoxic. This allowed exclusion of these samples in the 

final analysis, minimising false positives or false negatives from the results. The 

majority of transductions resulted in RFP levels within a desirable range that give a 

high percentage of cells successfully transduced with limited signs of cytotoxicity, 

enabling effective measurement of the majority of the library. 
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Figure 3.3: Transduction of NHDF cells with the ISG lentivirus library. 

RFP fluorescence represented transduction levels. RFP fluorescent levels were measured prior to infection at 72 hpt and revealed different levels of 

fluorescence indicative of the variable transductions levels/efficiencies. Sorting them from low to high showed the RFP levels ranged from the lowest 

value of 3,293 relative fluorescence units (RFUs), equivalent to background levels, to a highest value 27,069 RFUs. Negative controls, water and Emp 

transduced cells are shown in black and blue respectively. 
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Figure 3.4: Infection of transduced NHDFs, a representation of one time point (168 hpi). 

GFP levels were measured at 24 hour intervals. Here the 168 hpi time point results reveal different levels of infection indicative of the different ISG 

effects on infection levels.  GFP levels ranged from 2,041RFUs, equivalent to the uninfected background, to 97,587RFUs. Negative controls, water 

and Emp transduced cells are shown in black and red respectively. 
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3.2.2 Fluorometry Results 

At 72 hpt, cells were infected with TB40E at a MOI of 3 to achieve 100% infection of NHDF 

cells. GFP measurements, which correlate to infection levels, were taken at 24 hour intervals. 

Figure 3.4 represents the results of a single time point of 168 hpi. As expected the infection 

levels were variable, ranging from the lowest reading of 2,041 RFUs to the highest of 97,587 

RFUs. However, these results represent only a single time point. To determine the effects of 

ISGs over the entire seven-day period, infection levels were calculated as the area under the 

curve (AUC) derived from each daily measurement of GFP plotted over time. Each result 

was normalised to the average of the whole plate and calculated as a percentage. This method 

of normalisation was found to be more representative than using the average of the entire 

assays as plate-to-plate variation in average GFP signal occurred, likely due to the assay 

being staggered and assays being performed on a plate-by-plate basis. Each result was then 

calculated as a percentage to obtain infectivity relative to the mean infection levels of the 

entire 96 well plate. The results are represented in Figure 3.5. 

As would be expected the majority of ISGs clustered around the 100% infection level 

indicating limited specific effects against HCMV replication. However, a number of ISGs 

caused substantial inhibition or enhancement of replication as measured by GFP fluorescence 

levels. To identify candidates that gave a clear inhibition and a clear enhancement of HCMV 

growth, arbitrary cut-off points of 50% and 150% were chosen. Previous studies using ISG 

libraries have employed this methodology174. Using these cut-offs, 17 genes were identified 

as inhibiting, with cGAS inhibiting HCMV replication to the greatest extent reducing 

infectivity by 92%. Five genes were identified as enhancing with BCL3 showing the greatest 

level of enhancement (189%). 
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Figure 3.5: NHDFs Assay AUC results – Fluorometry Analysis.  

An overview of the results of the assay in NHDF cells. Area under the curve (AUC) was 

calculated for each growth curve generated from GFP measurements following HCMV infection 

in the presence of overexpressed ISGs. A: AUC was normalised as a percentage of the average 

infection across the whole 96 well plate and each dot represents effects of an individual specific 

ISG. B: Genes with an inhibitory effect of more than 50% on viral growth. C: Genes that 

enhanced HCMV infection more than 150%. 
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3.2.3 FACS Analysis  

As the lentiviruses had variable titres, transduction levels were also variable in some 

cases leading to a population of untransduced cells. Fluorometry analysis would 

therefore not be able to distinguish transduced cells from untransduced cells yet the 

infection levels of both cell populations would contribute to fluorescent readings. To 

address this potential limitation, cells were harvested at 7 dpi and analysed by FACS. 

With FACS analysis, cells would be selectively sorted by RFP expression, i.e. the 

successfully transduced population, and infection levels determined using GFP 

expression as a measure of infectivity. GFP mean fluorescence intensity (MFI) of the 

RFP positive cells was calculated using FlowJo v10 software. MFI measures the 

shift in fluorescence intensity of a population of cells, demonstrating an increase or 

decrease in the expression of the chosen parameter, in this case GFP. Normalisation 

of the results was achieved by calculating the percentage of MFI for each well 

relative to the average of the plate, as performed for AUC analysis. 

As expected FACS analysis was more sensitive than AUC analysis, most likely due 

to the ability to specifically analyse RFP positive cells. Wells were excluded from 

analysis when less than 500 RFP positive cells were detected, as these wells 

corresponded to transduction failures or cytotoxicity. Following exclusions, 372 

ISGs were analysed further. Following normalisation, 92 ISG constructs were 

identified to have inhibitory effects while 64 genes had enhancing effects. The 

sensitivity of FACS analysis also demonstrated a broader dynamic range with results 

ranging from 99% inhibition with DDX60 to 482% enhancement with IL28RA. For 

ease of representation and visualisation, the top thirty inhibiting and enhancing genes 

have been chosen and shown in Figure 3.6B and C respectively. 
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Figure 3.6: Assay in NHDF FACS Results  

Cells were harvested at 168 hpi and analysed by FACS. Infection levels in RFP+ cells 

were determined by calculating the GFP MFI values and represented as a percentage 

of the plate mean MFI.  A: Normalised FACS results with each dot representing an 

individual ISG. Here the top 30 genes of each category have been plotted as bar 

graphs. B: Genes that resulted in an inhibitory effect. C: Genes that enhanced HCMV. 
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3.2.4 Comparing AUC results to FACS results 

As expected, the results obtained from fluorometry and FACS analysis were not 

100% identical. Comparing the two would however corroborate the identified ISGs 

and increase confidence in their resulting effect on HCMV infection. The main 

difference in the two data sets lies in the number of hits identified as either inhibiting 

or enhancing. There were more hits in the FACS data corresponding to the increased 

sensitivity of this analysis as anticipated. Also, while FACS analysis resulted in the 

identification of very high numbers of hits, AUC analysis may identify those ISGs 

that caused very robust effects. Figure 3.7 demonstrates how the results obtained 

from the two analyses compare. 

 

Figure 3.7: Comparison of assay in NHDF cells’ AUC results to FACS results. 

Comparing AUC and FACS results would reveal genes identified to have the same 

effect from the two different of analysis. All genes identified by AUC analysis were also 

identified by FACS analysis for inhibitory and enhancing effects represented in A and B 

respectively. 

All 17 inhibiting genes identified by AUC were also identified by FACS, and all 5 

enhancing genes identified by AUC were also identified by FACS analysis. 

Although genes identified inclusively by AUC and FACS offer high confidence 

candidates for inhibiting or enhancing ISGs, those identified by FACS alone are 

potentially genuine. AUC may have failed to identify them due to low transduction 

A. NHDFs Inhibiting Genes B. NHDFs Enhancing Genes 
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efficiency or the ISGs’ effect being less robust, such that they were only identified in 

specifically transduced cells. However, the AUC and FACS analyses were found to 

significantly correlate (Figure 3.8). 

 

Figure 3.8: AUC analysis results correlates with FACS Analysis results. 

There was a significant correlation between the AUC and FACS results with a p-value 

(two tailed) of >0.0001 and an R2 value of 0.4382. 

3.2.4.1 Lentiviral Transduction of NHDF cells leads to an 

antiviral response 

Sorting the results by increasing levels of transduction highlighted a potential 

artefactual effect of the lentivirus transduction on the infectivity of NHDFs by 

HCMV as this revealed a negative correlation between the transduction and infection 

levels. Figure 3.9 is a representative plot from a single 96 well plate at 96 hpi. This 

shows a negative correlation of increasing levels of transduction with decreasing 

levels of HCMV replication as measured by GFP fluorescence. 
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Figure 3.9: Effect of lentivirus transduction on HCMV infection of NHDF cells. 

A plot of one-time point from one 96 well plate of the assay on NHDFs. There is a negative correlation between the RFP levels, indicative of 

transduction levels, and the GFP levels, indicative of HCMV infection levels suggesting an effect of lentiviral transduction on HCMV infection. The RFP 

levels of the negative controls, water and Emp transduced cells are shown in black and blue respectively and the corresponding GFP readings are 

plotted just before each RFP plot. 
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It is clear that the process of lentivirus transduction causes decreased HCMV 

replication, as transduction with a lentivirus without an ISG gene showed suppressed 

GFP levels when compared with untransduced cells (Figure 3.10). 

 

Figure 3.10: Lentiviral transduction of NHDFs cells leads to an antiviral induction. 

Transduction with an empty lentivirus, growth curve in red, led to suppressed GFP 

levels compared with cells treated with water, growth curve in blue. 

Although this effect adds some complexity to the analysis, it does not invalidate the 

data as the effects of many ISGs were far more robust and occurred at lower 

transduction levels. Previous studies with this ISG library had not reported a similar 

effect, and this result may have been due to a response of the primary cell line used 

in these experiments (personal communication and discussion with Sam Wilson). To 

address this issue, a second screen was conducted in a non-primary cell line in an 

attempt to avoid artefactual effects from the lentivirus transduction and to augment 

the original study. A glioblastoma cell line (U373), one of the few transformed cell 

lines permissive to HCMV infection, was used. Although U373 cells are permissive 

for HCMV infection they do not support complete virus replication with little or no 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

24 48 72 96 120 144 168

G
FP

: 
R

e
la

ti
ve

 I
n

fe
ct

io
n

Time (HPI)

NHDFsWater

Empty



134 

 

newly infectious particles produced. However viral DNA replication does occur with 

associated increase in GFP signal. 

 

Figure 3.11 Lentiviral transduction of U373 cells. 

Lentivirus transduction of U373 cells shows no effects on their infectivity with HCMV.  

Compared to NHDF cells, transduction with control empty SCRPSY lentivirus had 

no significant effect on HCMV infection of U373 cells supporting the hypothesis 

that the artefactual result may be specific to primary cell lines.  (Figure 3.11). 

 

 

 

 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

24 48 72 96 120 144 168

G
FP

: 
R

e
la

ti
ve

 I
n

fe
ct

io
n

Time (HPI)

U373sWater

Empty



135 

 

3.3 Assay in Glioblastoma Cell Line 

3.3.1 Transduction and HCMV Infection 

This assay was conducted following the same protocol used for the screen in NHDF 

cells (described in Materials and Methods, section 6.3.2). RFP levels, and therefore 

transduction levels, were found to be higher in U373 cells compared to NHDF cells. 

RFP fluorometry readings ranged from a minimum of 3,117 RFUs to a maximum of 

48,983 RFUs at 48 hpt (represented in appendices Figure 7.2). At 48 hpt U373 cells 

were infected at an MOI of 5 with TB40E, as U373 cells are less permissive to 

HCMV infection compared to NHDF cells. GFP measurements, representative of 

infection levels, were taken at 24 hour intervals. As expected the HCMV infection 

levels were lower than those observed in NHDF cells with levels ranging from the 

lowest reading of 3,265 RFUs to the highest of 51,859 RFUs (represented in 

appendices Figure 7.3). However, the negative correlation between RFP and GFP 

fluorometry readings observed in the assay in NHDF cells was not present in the 

assay in U373 cells (Figure 3.12). 
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Figure 3.12: Lentivirus transduction of U373 cell does not have an effect their infectivity by HCMV. 

RFP readings for a single plate at 96HPI show that there is no obvious pattern of GFP expression related to the highest to lowest representation of the 

RFP results. The RFP levels of the negative controls, water and Emp transduced cells are shown in black and blue respectively and the 

corresponding GFP readings are plotted just before each RFP plot. 
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As was the case with the NHDF assay, normalised values of HCMV replication were 

calculated based on AUC analysis. Based on the hypothesis that non-primary cell lines are 

less sensitive to interferon and interferon triggering stimuli, it was predicted that this screen 

would result in fewer HCMV inihibiting and enhancing genes compared to the assay in 

NHDF cells. However, the results were similar with 18 genes identified as inhibitory and 17 

genes as enhancing using the same criteria employed in the NHDF screen. Relative infection 

levels ranged between 13% for the ISG MDA5 and 185% for PSCD1. 
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Figure 3.13: Assay in U373 cells AUC results.  

An overview of the results of the assay in U373 cells. Area under the curve (AUC) was calculated 

for each growth curve generated from GFP measurements following HCMV infection in the 

presence of overexpressed ISGs. A: AUC was normalised as a % of the average infection across 

a whole 96 well plate and each dot represents effects of an individual specific ISG. B: Genes with 

an inhibitory effect of more than 50% on viral growth. C: Genes that enhanced HCMV infection to 

more than 150%.  
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Consistent with the assay on NHDF cells, FACS analysis identified significantly 

more genes as both inhibiting and enhancing compared to AUC analysis in this 

assay. A total of 59 genes were identified to be inhibitory and 31 were found to be 

enhancing. A much broader dynamic range of infection levels determined by FACS 

analysis was also evident in this assay, with infection levels ranging from a 

minimum of 25% for cells transduced with the ISG CCNA1 to a maximum of 477% 

in TXNIP over-expressing cells. The top thirty inhibiting genes are shown in Figure 

3.14B and all 31 enhancing genes are shown in Figure 3.14C. 
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Figure 3.14: Assay in U373 cells FACS Results  
Cells were harvested at 168 hpi and analysed by FACS. Infection levels in RFP+ cells 

were determined by calculating the GFP MFI values and represented as a percentage.  

A: Normalised FACS results with each dot representing an individual ISG. B: The top 30 

genes that had an inhibitory effect on HCMV infection. C: All 31 identified genes that 

enhanced HCMV. 
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In contrast to the data obtained in NHDFs assay, fewer genes were identified to have 

the same effect from the two data sets obtained from AUC and FACS analysis 

(Figure 3.15). 

 

Figure 3.15: Comparison of AUC results to FACS results from U373 Assay. 

Comparison studies show that 5 inhibiting genes (A) and 8 for enhancing genes (B) 

were identified by both AUC and FACS analysis. 

However, there was significant correlation (p >0.0001, R2 0.1442) between the results 

from the two data sets as represented in Figure 3.16. 

A. U373s Inhibiting Genes B. U373s Enhancing Genes 
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Figure 3.16: AUC analysis results correlates with FACS Analysis results. 

Correlation analysis found the results obtained from AUC and FACS aspects of the 

U373 assay to be statistically significant (p >0.0001, R2 0.1442). 
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3.3.2 Hierarchical cluster analysis identifies genes 

with a universal effect from all data sets 

To identify ISGs that are broadly inhibitory within all four data sets, complete 

linkage hierarchical clustering analysis was performed using the statistical software 

package R to generate heat maps175. 

 

Figure 3.17: Complete linkage hierarchical cluster analysis confer all data sets 

results. 

R was used to analyse results from both NHDF and U373 cells, AUC and FACS. This 

analysis enabled comparison of an ISG in both cell lines for AUC and FACS, 

highlighting clustering of genes whose effect was the same in all data sets. Red 

represents inhibiting effect by the ISG, green represents an enhancing effect and black 

shows where there was not effect from the ISG. 

From this analysis, ISGs with the same effect on HCMV replication in all 4 data sets 

are easily identified as a cluster. Genes of interest with the same effect on HCMV 

infection across both cell lines were selected from regions of the heat map as 

represented in the following section. 
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3.3.2.1: Inhibiting ISGs 

A total of 31 ISGs were identified, both by plate reader and FACS analysis, as 

having an inhibitory effect on HCMV infection in NHDF and U373 cell lines (Figure 

3.18). Genes marked in red boxes, i.e. STAT2, IRF1, IRF7, RIG-I (DDX58), cGAS 

(MB21D1) and MX2 have previously been reported as broad antiviral 

effectors168,174. The genes marked with green boxes, CCNA1, NOD2, RIPK2 as well 

as IFI16 are known to have inhibitory effects against HCMV145,149. The remaining 

genes were identified as novel inhibitors of HCMV infection. The cluster of ISGs 

with an inhibitory effect on HCMV is enlarged and gene names are shown alongside 

the heat map. 

 

Figure 3.18: Heat Map representation of the high throughput assay results. 

Hierarchical cluster analysis of all standardised results from the four data sets on the left 

panel and enlargement of the cluster of inhibiting genes on the right panel. Genes 

marked in red boxes have previously been reported as broad antiviral effectors and in 

green are potential novel inhibitors of HCMV infection. 

Table 3.1 details the infection levels observed following the overexpression of ISGs 

identified as inhibitory in assays in NHDFs and U373s. 
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Table 3.1: HCMV Infection levels following Inhibitory ISGs overexpression. 

Gene Assay in NHDF cells 

Relative Infectivity (%) 

Assay in U373 cells 

Relative Infectivity (%) 

AUC FACS AUC FACS 

cGAS 8.0 2.1 36.8 63.3 

STAT2 14.4 2.9 93.7 51.9 

NOD2 21.8 1.8 120.9 88.8 

TXNIP 22.1 2.9 149.7 476.9 

IFI16 22.7 4.9 32.9 85.2 

RIPK2 23.2 1.7 19.2 50.2 

IRF7 25.4 2.5 17.7 70.9 

RIPK2 25.4 2.1 31.1 78.7 

IFIH1 / MDA5 28.7 11.9 12.9 334.8 

HPSE 29.8 14.2 67.7 69.4 

DDX60 32.2 1.6 119.2 112.1 

ELF1 33.4 9.9 84.5 196.4 

IRF1 39.4 2.5 27.5 67.1 

MT1H 44.2 25.6 93.8 62.3 

CCNA1 45.2 3.4 15.9 25.8 

TRIM25 47.0 2.8 88.3 81.7 

CHMP5 48.7 32.8 60.7 50.5 

DDX58 (RIG-I) 52.2 8.0 26.2 94.3 

CPT1A 57.1 7.1 108.1 102.2 

Infection levels of from cells transduced with ISGs identified as inhibiting hierarchical 

cluster analysis of all standardised results from the four data sets. The relative infectivity 

is a measure of infection levels of cells overexpressing an ISG of interest relative to 

average infection levels of all samples on the 96 well plate (Materials and Methods 

6.3.2.4). 

For representation purposes, infection profiles, growth curves and FACS histograms, 

results from assay in NHDF cells of ISGs with highly inhibitory effects as identified 

from all four data sets from the assay in are shown in Figure 3.19. Growth curves 

show the inhibition of virus replication in the NHDF cells. This also correlates with 

the FACS results where a shift of the histogram to the left, representing low GFP 

levels hence low HCMV infection, was observed for the cells transduced with the 

ISG of interest compared to those transduced with the control lentivirus. The 

sensitiveness of FACS analysis mentioned earlier can be visualised here with 
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CPT1A and RIG-I as examples where very few cells were RFP positive. As a result, 

their inhibitory effects as determined by AUC analysis were lower than the 50% cut-

off, however FACS analysis showed that CPT1A inhibited HCMV by 92.9% and 

RIG-I by 92%. By checking the MFI of those few cells, the infection levels can be 

determined more accurately as compared to the fluorometry analysis where infection 

of all cells is considered. However, few RFP+ cells could have been a result of 

cytotoxicity or low lentivirus titres which would result in false positive or negative 

results respectively. Therefore microscopy observations were taken into account in 

considering results for such ISGs. 
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Figure 3.19: Infection profiles of the highly inhibiting ISGs from the assay in 
NHDF cells. 
Graphs on the left hand side represents the infection profile of NHDF cells over 7 days 

(x-axis) following overexpression of a specific ISG, The y-axis shows the level of 

infection as measured by GFP fluorescence. In green is the resulting curve from the ISG 

of interest (names on the left) and in gold is the curve from the average of the plate. Red 

dot represents RFP levels from the transduction of the ISG of interest and blue dot 

represent the average of the plate.  

Cells were harvested at 7 days post infection and analysed by FACS and histograms on 

the right hand panel represents the results. On the x-axis is the GFP expression of the 

gated cells (RFP+) representing infection levels and on the y-axis is the cell count. In 

grey is the infection profile of cells transduced with the control lentivirus, emp, and in 

blue is the infection profile of the ISG of Interest. Relative infection levels (%) from 

FACS analysis are shown on the top right of each FACS plot. Results show a 

substantial inhibition of HCMV infection in both types of analysis, AUC and FACS. 
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3.4.2.2 Enhancing ISGs. 

From the same heat map showing the complete linkage hierarchical clustering 

analysis, a cluster of genes with enhancing effects was also identified across all four 

data sets (Figure 3.20). Tetherin (BST2/THN) and IFITM1 have been reported to 

have enhancing effects on HCMV152,155. Paradoxically, tetherin has also been shown 

to have inhibitory effects against other viruses, mostly enveloped viruses, including 

HIV, Ebola and KSHV by preventing budding/release of newly formed virions from 

cells152,176,177. The remaining genes represent novel enhancers of HCMV infection. 

 

Figure 3.20: Heat Map representation of the high throughput assay results. 
Hierarchical cluster analysis of all standardised results from the four data sets on the left 

panel and enlargement of the cluster of enhancing genes on the right panel. 

The data for enhancing genes identified from assays on both cell lines (NHDFs and 

U373s) is summarised in Table 3.2. 
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Table 3.2: HCMV Infection levels following Enhancing ISGs overexpression. 

Gene Assay in NHDF cells 

Relative Infectivity (%) 

Assay in U373 cells 

Relative Infectivity (%) 

AUC FACS  AUC FACS  

ODC1 151.6 372.9 124.0 108.5 

MKX 152.8 457.3 23.2 49.1 

BST2/THN 131.3 294.3 174.6 195.6 

IL28R/CRF2 160.1 482.4 98.1 49.1 

BCL3 188.9 326.6 154.1 123.8 

The infection profiles, growth curves and FACS histograms are shown in Figure 

3.21 and are also for representative purposes therefore genes discussed in section 3.4 

have been selected from the assay in NHDF cells. Growth curves show increased 

virus infection levels in cells transduced with the ISG of interest (in green) compared 

to the average infection levels observed on the whole plate (in gold). This also 

corresponds to the FACS results particularly IL28RA, ODC1 and MKX where a 

shift of the histogram to the right, representative of higher GFP levels hence 

increased HCMV infection, was observed for the cells transduced with the ISG of 

interest compared to those transduced with the control lentivirus. 
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Figure 3.21: Infection profiles of a few selected ISGs with enhancing effects from 
the assay in NHDF cells. 
Graphs on the Left hand side represents the infection profile of NHDF cells over 7 days 

(x-axis) following overexpression of a specific ISG, the y-axis shows the level of 

infection as measured by GFP fluorescence. In green is the resulting curve from the ISG 

of interest (names on the left) and in gold is the curve from the average of the plate. Red 

dot represents RFP levels from the transduction of the ISG of interest and blue dot 

represent the average of the plate.  

Cells were harvested at 7 days post infection and analysed by FACS and histograms on 

the right hand panel represents the results. On the x-axis is the GFP expression of the 

gated cells (RFP+) representing infection levels and on the y-axis is the cell count. In 

grey is the infection profile of cells transduced with the control lentivirus, Emp, and in 

blue is the infection profile of the ISG of interest. Relative infection levels (%) from 

FACS analysis are shown on the top right of each FACS plot. 
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3.4.3 Multiple pathways trigger inhibition of HCMV 

The results presented thus far show that expression of ISGs involved in recognising 

both RNA and DNA PAMPS result in significant inhibition of HCMV infectivity. 

RNA sensing genes such as DDX58 (RIG-I), IFIH1 (MDA5) and DDX60 (RIG-I 

and MDA5 enhancer) reduced HCMV infectivity by over 40% while DNA sensing 

genes cGAS and IFI16 reduced HCMV infectivity by more than 70% as measured 

by fluorometry. AIM2, also a DNA sensing gene, showed significant reduction in 

HCMV infectivity by FACS analysis (94%), although this inhibition was not 

reflected in the AUC analysis, possibly due to low transduction levels. Expression of 

TLR3, an endosomal resident sensor of double stranded RNA, resulted in reduced 

HCMV infectivity, whereas surprisingly, TLR7 expression resulted in slight 

enhancement of virus infectivity, as did the downstream signalling gene MyD88. 

The downstream signalling molecule IRF7 is a potent inhibitor of HCMV infectivity 

as is the IFN receptor downstream signalling molecule STAT2, with IRF9 causing a 

more moderate inhibition. In contrast STAT1 expression resulted in moderate 

enhancement of HCMV infectivity suggesting differential effects of downstream 

IFN signalling pathways. 
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Known viral inhibitors were mapped to their pathways with the AUC results 

obtained from the screen in NHDF cells (Figure 3.22). 

 

Figure 3.22: Summary of identified genes. 
Genes from DNA and RNA sensor pathways, as well as from the interferon pathway 
had effects on HCMV infection. 
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3.4.4 Effects within related gene families 

3.4.4.1 TRIM Family genes 

Included in the ISG library were evolutionarily related genes from the same family. 

There were six genes belonging to the tripartite motif (TRIM) protein family in the 

library. More than 60 TRIM proteins are known to be encoded by the human 

genome178.  TRIM5α was the first to be identified to have inhibitory effects on HIV-

1 in a species-specific manner. HIV-1 could efficiently enter the cells of Old World 

monkeys but is quickly inactivated before reverse transcription and TRIM5α was 

shown to be a causative agent of this restriction. However, the human orthologue of 

TRIM5α could not inhibit HIV-1 infection179.  Further studies revealed that TRIM5α 

is ubiqutinated upon interaction with the viral capsid leading to the composite’s 

proteasome degradation, before the virus has had the opportunity to reverse 

transcribe180. TRIM gene expression was also investigated in human primary 

lymphocytes and monocyte-derived macrophages in response to interferons (IFNs, 

type I and II) or following FcγR-mediated activation of macrophages. Of the 72 

TRIM proteins investigated, 27 were induced by IFNs and these included previously 

reported DNA and RNA virus inhibitors TRIM 19 as well as TRIM11, 31 and 62 

that were previously shown to interfere with various stages of HIV-1 replication181. 

While only TRIM25 demonstrated clear inhibition of HCMV replication by AUC 

analysis, all TRIM members inhibited to some extent when measured by FACS 

analysis, with TRIM21 and TRIM25 demonstrating particularly potent effects 

(summarised in Table 3.3 and illustrated in Figure 3.23). Other than TRIM25, 

growth curves show that overexpressing TRIM genes has no effect on HCMV 
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infection however, based on FACS analysis, all TRIM genes inhibit HCMV 

infection. 

Table 3.3: Results of TRIM ISGs from assay in NHDF cells. 

Gene AUC  

(Relative Infectivity %) 

FACS  

(Relative Infectivity %) 

TRIM5 68.1 29.4 

TRIM14 98.5 25.0 

TRIM21 75.3 2.3 

TRIM25 47.0 2.8 

TRIM34 87.7 24.0 

TRIM38 82.4 43.0 
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Figure 3.23: Members of the TRIM superfamily inhibits HCMV 

Graphs on the Left hand side represents the infection profile of NHDF cells over 7 days 

(x-axis) following overexpression of a specific ISG, The y-axis shows the level of 

infection as measured by GFP fluorescence. In green is the resulting curve from the ISG 

of interest (names on the left) and in gold is the curve from the average of the plate. Red 

dot represents RFP levels from the transduction of the ISG of interest and blue dot 

represent the average of the plate.  

 

Cells were harvested at 7 days post infection and analysed by FACS.  Histograms on 

the right hand panel represents the results. On the x-axis is the GFP expression of the 

gated cells (RFP+) representing infection levels and on the y-axis is the cell count. In 

grey is the infection profile of cells transduced with the control lentivirus, Emp, and in 

blue is the infection profile of the ISG of interest. Relative infection levels (%) from 

FACS analysis are shown on the top right of each FACS plot. 
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3.4.4.2 IFITM Family Genes 

As previously mentioned, IFITM1 has been shown to have enhancing effects on 

HCMV infection. It was therefore interesting to compare the effects of IFITM2 and 

IFITM3. Table 3.4 shows the summary of the normalised HCMV infection levels, 

from both AUC and FACS analysis in NHDF cells. 

Table 3.4: Results of IFITM ISGs from assay in NHDF cells. 

Gene AUC (Relative 

Infectivity %) 

FACS (Relative 

Infectivity %) 

IFITM1 142.5 464.2 

IFITM2 105.9 125.2 

IFITM3 116.7 78.8 

 

In contrast to IFITM1, overexpression of IFITM2 and IFITM3 did not result in an 

increase in HCMV infection in both types of analysis, AUC and FACS. Figure 3.24 

represents the data for effects of IFITM proteins on HCMV infection in NHDF cells. 
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Figure 3.24: Members of the IFITM family of ISGs have different effects on HCMV 
infection. 
Graphs on the Left hand side represents the infection profile of NHDF cells over 7 days 

(x-axis) following overexpression of a specific ISG, The y-axis shows the level of 

infection as measured by GFP fluorescence. In green is the resulting curve from the ISG 

of interest (names on the left) and in gold is the curve from the average of the plate. Red 

dot represents RFP levels from the transduction of the ISG of interest and blue dot 

represent the average of the plate. Cells were harvested at 7 days post infection and 

analysed by FACS. Histograms on the right hand panel represents the results. On the x-

axis is the GFP expression of the gated cells (RFP+) representing infection levels and 

on the y-axis is the cell count. In grey is the infection profile of cells transduced with the 

control lentivirus, Emp, and in blue is the infection profile of the ISG of interest. 
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3.5 siRNA Studies 

To understand the extent in which candidates identified from the assay affects 

HCMV replication, siRNA studies were conducted on selected ISGs with either 

inhibitory or enhancing effects. Silencing of inhibiting ISGs by siRNA would 

potentially lead to an increase in HCMV replication. An ISG was silenced by a 

“smart-pool” of siRNAs, obtained from GE Dharmacon Inc182. NHDFs were 

transfected with the siRNAs twice, double transfection protocol, and infected with 

GFP expressing HCMV TB40E 48 hours post the first transfection. Virus replication 

levels were determined by fluorometry over seven days and the resulting growth 

curves are shown in appendices (Figure 7.7). The AUC was calculated and plotted as 

bar charts, Figure 3.25. 

 

Figure 3.25: siRNA studies of inhibiting ISGS. 

siRNA transfections in NHDF cells to target inhibitory ISGs were conducted and cells 

were infected with GFP expressing HCMV. Infection levels were measured over 168 

hours and calculated as AUC (Materials and Methods section 6.3.2.4) and normalised to 

siNeg transfected cells. (n=4 one tailed homoscedastic Student t-Test: ns = p>0.05, 

*=p≤0.05, ** =p≤0.01 and ***=p≤0.001). 

 Silencing of the ISGs cGAS, CPT1A, IRF1 and STAT2 resulted in a significant 

increase in HCMV infection. This suggests that these ISGs are restrictive to HCMV 
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infection at their endogenous levels in NHDF cells. Surprisingly, silencing of MDA5 

and IRF7 resulted in a significant reduction of HCMV infection. This could be a 

result of functional compensation within the pathways these ISGs are part of. 

Silencing of all the other ISGs did not result in a significant difference in the HCMV 

infection which could be a result of functional redundancy. 

In contrast, silencing of enhancing ISGs would potentially lead to a decrease in 

HCMV replication. Figure 3.26 is a representation of AUC results calculated from 

growth curves shown in appendices (Figure 7.8) generated following silencing of the 

ISGs BCL3, IL28RA, MKX and ODC1. 

 
Figure 3.26: siRNA studies of enhancing ISGS.  
NHDF cells were transfected with siRNAs against ISGs identified to enhance HCMV 
infection and cells were infected with GFP expressing HCMV. Infection levels were 
measured over 168 hours and calculated as AUC (Materials and Methods section 
6.3.2.4) and normalised to siNeg transfected cells. (n=4 one tailed homoscedastic 
Student t-Test: ns = p>0.05, *=p≤0.05, ** =p≤0.01 and ***=p≤0.001). 
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Silencing of BCL3 and ODC1, resulted in a significant reduction of HCMV 

infection. Although there was a reduction in HCMV infection when IL28RA and 

MKX were silenced, it was not statistically significant. 

To determine whether identified ISGs play a critical role in inhibiting HCMV 

following interferon treatment, selected ISGs were knocked-down by siRNA in the 

presence of interferon. Following siRNA knockdown, cells were treated with 

increasing concentrations of interferon-containing supernatant generated from 

transfecting A549 cells with poly I:C, prior to infection with TB40E. As before, 

AUC was calculated based on 7 days infection with replication levels from IFN 

treated cells compared to untreated cells. In cells transfected with the negative 

control siRNA, increasing concentrations of poly:IC supernatant resulted in 

increased inhibition of HCMV replication according to GFP fluorescence (Figure 

3.27). In contrast knockdown of cGAS and STAT2 resulted in rescue of HCMV 

replication in cells treated with 1/125 dilution of poly:IC supernatant. This effect was 

overcome by higher concentrations of IFN as demonstrated by the results in cells 

treated with undiluted poly:IC supernatant. Knockdown of CPT1A also rescued virus 

replication, although not to the same extent as knockdown of cGAS or STAT2. 
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Figure 3.27: Infection of NHDFs in the presence of interferons following silencing 

of ISGs reveals pathway dominant acting ISGs. 

NHDF cells were transfected with siRNAs against ISGs identified to inhibit HCMV 

infection and treated with interferon containing supernatant harvested from A549 cells 

treated with polyIC. Cells were then infected with GFP expressing HCMV. Infection 

levels were measured over 168 hours and calculated as AUC (Materials and Methods 

section 6.3.2.4) and normalised to siNeg transfected cells 

However, the effect of siRNAs’ non-specific targeting cannot be ruled out, for both 

inhibiting and enhancing ISGs, in assays conducted at this stage. This would be 

addressed by the use of deconvoluted siRNA and qPCR studies to establish whether 

observed phenotypes are due to specific gene knockdown of artefactual off-target 

effects. 
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3.4 Discussion  

3.4.1 ISGs cause Inhibition and Enhancement of 
HCMV Infection 

The aim of this project was to study the effects of ISGs on HCMV infection using a 

lentivirus library in a high throughput manner. The study would identfy anti- and 

pro-viral molecules, giving more insight in the virus-cell interactions that occur 

during HCMV infection. Overexpression of different ISGs had distinct effects on the 

infection of the two cell lines used, ranging from more than 90% to a nearly two-fold 

increase in infection levels. Greater than 50% inhibition was caused by 17 ISGs in 

both fibroblast and U373 cells, while 5 ISGs and 17 ISGs caused greater than 50% 

enhancement of HCMV infectivity in fibroblast and U373 cells respectively. Effects 

ranged from 92% reduction in infectivity following expression of cGAS to a 189% 

increase following expression of BCL3 in fibroblast cells and 87% reduction 

following expression of MDA5 and 185% increase following overexpression of 

PSCD1 in U373 cells. 

Adding to the complexity of the assay, different effects of the same ISG were 

observed betweeen the 2 cell lines used. Examples include well characterised 

inhibiting ISGs such as STAT2, NOD2, DDX60 and HPSE as well as novel 

inhibitory ISGs identified from our assay which are TXNIP, ELF1, FAM46C, 

MT1H and CHMP5. The difference in the overexpression of these ISGs on HCMV 

infection may suggest functional differences in signalling pathways involved with 

these ISGs. This also potentially explains the lack of significant correlation between 

the results from the two cell lines. Also, the difference in infection susceptibility of 

the two cell lines could have influenced the assay infectivity results, with reduction 

of already low levels of infection in U373s not being efficiently detected. 
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3.4.1.1 Inhibiting Genes 

Two of the most dominant ISGs in inhibiting HCMV infection were STAT2 and 

cGAS. It is not surprising that overexpression of STAT2 (signal transducers and 

activators of transcription 2) resulted in a strong inhibition of HCMV infection. As 

represented in Figure 1.9: Pathways of Interferon (IFN)-signalling.111 and 1.10 

(Introduction, section 1.5.1.1), STAT2 is important in the induction of the type-1 

interferon pathway as it forms a heterodimer with STAT1 that binds to interferon 

regulatory factor 9 (IRF9) to make the complex IFN-stimulated factor gene 3 

(ISFG3). ISFG3 activates the IFN-stimulated response element (ISRE) promoter, 

leading to the expression of interferon stimulated genes. This results in a cellular 

viral refractory state so it is no surprise that HCMV infection is inhibited. siRNA 

studies revealed that STAT2 plays a potentially dominant role in the interferon 

signalling pathways in which it is involved. 

Additionally, ISGs are also known to inhibit translation183.  Manual inspection of 

FACS data indicated that a number of ISGs appear to fall into two phenotypic 

categories which we termed cGAS-like and STAT2-like, based on the profiles of the 

two most dominant ISGs in the screen Figure 3.28. cGAS not only reduces viral GFP 

expression but blocks RFP expression from the lentivirus, while STAT2 does not 

block RFP expression. 
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Figure 3.28: Inhibiting genes exhibit distinct FACS profiles.  

Sorting of RFP cells revealed that ISGs can inhibit the RFP expression resulting in the 

cGAS-like profile on the left hand panel or RFP expression is not affected such as with 

STAT-2 like ISGs represented in the right hand panel. 

cGAS-like inhibiting ISGs included IRF1, IRF7, CPT1A, RIG-I, MDA5 and 

MAP3K14 while STAT2-like ones included ELF1, RIPK2, NOD2, TLR3, TRIM25, 

AKT3 and CYP1B1. It is likely that cGAS-like ISGs have an effect on whole 

cellular transcription or translation systems. 

Although IFIT1 did not have an effect on HCMV from results in this assay, it has 

been well studied and shown to inhibit translation by competing with eIF4E for the 

binding of 5’ post-transcriptionally modified mRNA184. The mRNA modification 

involves the addition of 7-methylguanosine to the 5' end of mRNA generating what 

is also referred to as “cap 0 mRNA”185. This may be a likely scenario in the low RFP 

levels observed in cGAS transduced cells, as well as other ISGs mentioned that gave 

a cGAS-like FACS profile. 

cGAS (Cyclic GMP-AMP synthase) is a cytosolic DNA sensor that belongs to the 

nucleotidyltransferase family. cGAS has been recently identified as a potent 

inhibitory ISG through studies using the same lentivirus libraries used in this study, 
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as well as a number of independent studies. cGAS has been shown to have broad 

spectrum inhibitory effects, predominately against DNA viruses, but has been shown 

to have antiviral effects against RNA viruses168,174,186.  Upon sensing DNA, cGAS 

synthesises cyclic GMP-AMP (cGAMP), a second messenger that binds and 

activates the adaptor protein STING186. STING in turn activates the protein kinases 

IkB kinase (IKK) and TANK-binding kinase 1 (TBK1), leading to the activation of 

the transcription factors NF-kB and IRF3 resulting in type-1 interferon pathway 

activation186,187. The second messenger cGAMP is known to be translocated between 

cells through gap junctions to activate IFN production in neighbouring cells in a 

STING-dependent manner. This results in a rapid protection of cells without the 

production of interferons and offers a possible explanation of the low levels of RFP 

cells observed in NHDF cells transduced with cGAS lentivirus188. FACS analysis 

identified 575 cells as RFP positive which is substantially lower compared to an 

average of 4546 cells observed for the assay. However, cGAS transduction resulted 

in >90% inhibition of HCMV infection, supporting a possible role for cGAMP 

produced in the early transduced cells translocating to non-transduced neighbouring 

cells. This mechanism offers effective protection even when viral antagonists block 

IFN production in the virus-infected cells. 

IFI16 (interferon gamma-inducible protein 16) is also known to signal through the 

same STING-TBK1-IRF3 pathway as cGAS and HCMV has been shown to 

antagonise IFI16 inhibitory effects via the tegument protein pUL83 as described in 

introduction, section 1.5.1.1. However, as IFI16 was overexpressed prior to 

infection, HCMV counteractive measures may have been circumvented. 
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HPSE (heparanase) has already been reported to inhibit HCMV infection. The 

attachment of HCMV glycoproteins to extracellular heparin sulphate proteoglycans 

initiates infection. HPSE digests these extracellular proteoglycans thereby inhibiting 

the attachment of HCMV virions onto the cells189. It is therefore not surprising that 

overexpression of HPSE inhibits HCMV infection and this had been previously 

shown using microbinding assays to specifically monitor virus attachment as well as 

plaque titration assays on fibroblast cells digested with heparanase. This also resulted 

in the blockage of IE gene expression and infectivity of the cells189,190. 

MDA5 (melanoma differentiation associated gene 5) also known as IFIH1 

(interferon induced, with helicase C domain 1) or DDX58 has been extensively 

studied and shown to have antiviral effects against dsRNA viruses. As illustrated in 

Figure 3.22, MDA5 is part of the RNA sensor pathway and therefore it is intriguing 

that it results in the inhibition of HCMV replication. MDA5 is a pattern recognition 

receptor belonging to the RIG-1-like helicases (RLHs). Viral RNA is recognised by 

the RLHs’ C-terminal and through the interferon promoter-stimulating factor 1 (IPS-

1) adaptor protein, RLHs interact with the mitochondrial antiviral-signalling protein 

(MAVS)191,192. MAVS in turn activate the cytosolic kinases IKK and TBK1, leading 

to the activation of transcriptional factors NF-κB and IRF3 respectively and the 

proceeding innate immune responses that include production of type-1 and 3 

interferons192.  How MDA5 would detect HCMV is less clear as it is a DNA virus. 

Potential factors that may bind to MDA5 are the cellular and viral RNAs known to 

be contained in the virus tegument193. Also, dsRNA has been shown to accumulate 

during HCMV infection, and could be detected within 24 hpi, hence it would trigger 

the RNA sensor pathways126. There may be a different mechanism or patterns by 
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which RLHs detect danger in the cell leading to the initiation of the signalling 

cascade resulting in the innate immune response. Interestingly, silencing of MDA5 

did not reverse IFNs inhibitory effect on HCMV infection. This could be a result of 

redundancy in the PAMPS involved in the same pathway as MDA5. For example, 

RIG-I, another RLH, has the same downstream effect and importantly, it has been 

reported that MDA5 and RIG-I are individually dispensable meaning they can 

function in the absence of the other191. Results from the assay in the NHDF cells 

showed that RIG-1 resulted in an HCMV infectivity of 52.2% by AUC analysis and 

8.0% by FACS analysis. This result, as well as inhibiting effects of DDX60, another 

member of the RLHs, confirm that RNA pathway plays a role in the inhibition of 

HCMV infection.  A better understanding on how expression of these genes is 

related is required as there may be a possibility of compensation, meaning and 

enhanced expression of one gene in the absence of the other resulting in 

hypersensitivity to a pathogen. Therefore HCMV inhibition will still be achieved 

following silencing of MDA5. In addition to the complexity of these intertwined 

pathways, activation of toll–like receptors (TLR) such as TLR3 also results in the 

activation of MAVS. Also, these pathways activate IRF7 leading to the activation of 

type-1 IFN pathway and production of IFNα194. Like MDA5, siRNA studies revealed 

that silencing of IRF7 did not halt inhibition of HCMV infection, which may signify 

that these pathways potentially have cooperative mechanisms. 

In addition to the genes discussed above, of significant interest, we identified 

potential novel ISGs with inhibitory effects against HCMV. Most of these genes are 

not well studied in the context of virus infection, therefore there is limited 
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information about potential mechanisms. However functional summaries are shown 

below (Table 3.5). 

Table 3.5: Potential novel HCMV inhibitory ISGs. 

Gene ID ISG Full Name Gene Details 

ELF1 E74-like factor 1 

(ets domain 

transcription factor) 

The protein encoded by this gene is an E26 

transformation-specific related transcription factor 

and is primarily expressed in lymphoid cells. ELF1 

protein acts as both an enhancer and a repressor 

to regulate transcription of various genes195. 

CHMP5 Charged 

Multivesicular body 

Protein 5 

Known to be a component of the ESCRT-III 

(endosomal sorting complex required for transport 

III), a complex involved in degradation of surface 

receptor proteins and formation of endocytic 

multivesicular bodies (MVBs)195. 

CPT1A Carnitine 

palmitoyltransferase 

1A 

Located on the outer membrane of the 

mitochondria and is a critical enzyme for β-

oxidation of long-chain fatty acids. Was shown to 

be a target for oxidative inactivation which results 

in the generation of reactive oxygen species195,196. 

TXNIP Thioredoxin 

interacting protein 

A member of the alpha arrestin protein family. Is 

involved in the regulation of cellular redox 

signalling thereby protecting cells from oxidative 

stress by interacting with and inhibiting the 

antioxidative function of thioredoxin thereby 

resulting in the accumulation of reactive oxygen 

species and cellular stress195. 

MT1H Metallothionein 1H Has been shown to have an increased expression 

in HIV-1 infected circulating monocytes where the 

protein and associated increases in zinc content 

mediates an increased resistance to apoptosis and 

hence maintenance of immune-activated 

monocytes during active HIV-1 viremia197. 

FAM46C Family with 

sequence similarity 

46, member C 

No information present for this gene. However, 

previous studies using the ISG library used in this 

assay found FAM46C to enhance yellow fever, 

West Nile, chikungunya and Venezuelan equine 

encephalitis viruses168. 

Two of the genes, CPT1A and TXNIP, are involved in the generation of reactive 

oxygen species (ROS). HCMV has been shown to upregulate the generation of ROS 

intermediates during early time points of infection and co-opt them for its own gene 
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expression and replication198. However, generation of high levels of ROS leads to 

oxidative stress which can inhibit vital cellular functions and has a negative impact 

on HCMV replication199. HCMV therefore induces the expression of antioxidant 

molecules and detoxifying enzymes that remove or detoxify ROS and levels of 

glutathione, an antioxidant, have been reported to be significantly increased in 

HCMV infected cells compared to uninfected cells, leading to the maintenance of 

mTOR signalling199. It therefore makes sense for proteins that increase ROS, as is 

the case with CPT1A and TXNIP, to be inhibitory against HCMV. 

Relating to ELF1, one can speculate that it enhances important genes involved in 

HCMV inhibition or represses HCMV enhancing genes. However, the identification 

of FAM46C as inhibitory to HCMV adds to the complex function of ISGs as it was 

reported to enhance several viruses mentioned in the table. Without further studies, 

as is the case with MT1H and CHPM5, we cannot ascertain the mode of action of 

these potential novel inhibitory ISG. 
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3.4.1.2 Enhancing Genes 

Several ISGs enhanced HCMV infection. These included IFITM1 and Tetherin, 

whose effects have been reported and mechanisms have been described in section 

1.5.3.3. Also identified as enhancing were the ISGs IL28RA, MKX, BCL3 and 

ODC1. 

IL28RA (interleukin 28 receptor, alpha), also known as IFNLR1 (interferon lambda 

receptor 1), is a member of the class II cytokine receptor family and binds to the 

interleukin 10 receptor beta (IL10Rβ) to form a heterodimer receptor complex that 

interacts with cytokines particularly IL28A, IL28B and IL29200. Activation of this 

heterodimer is known to induce an antiviral state in a fashion similar to type-1 

interferon signalling. It is therefore surprising that overexpression of IL28RA 

enhances HCMV infection. However, HCMV encodes a cmvIL10 gene that also 

binds to this receptor to evade immune system detection. Also, IL10’s primary 

function is thought to be the attenuation of inflammatory responses200. Therefore, it 

is possible that overexpression of IL28RA provides more binding sites for cmvIL10 

and IL10 such that together they result in an environment more conducive for 

HCMV replication hence enhancement of infection. However, silencing of IL28RA 

did not cause a significant decrease in HCMV replication suggesting that IL28RA at 

endogenous levels does not play a role in HCMV infection. 

Overexpression of the ISGs MKX (Mohawk homeobox), BCL3 (B-cell 

CLL/lymphoma 3) and ODC1 (ornithine decarboxylase 1) also resulted in an 

increase in HCMV infection. However, silencing of MKX did not result in a 

significant decrease of HCMV infection whereas silencing BCL3 and ODC1 led to a 

decrease. BCL3 is a proto–oncogene involved in cell proliferation, oncogenesis and 
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TLR signalling. BCL3 is also known to bind to NF-κB through association with the 

p50 or p52 homodimers201. TLR signalling leads to the production of inflammatory 

cytokines resulting in the triggering of innate immunity against pathogens.  BCL3 

acts as a negative regulator of TLR signalling by binding to the p50 homodimer. 

Typically, p50 binds to DNA inhibiting gene transcription and therefore maintains 

TLR signalling in an inactivated state. However, binding of p50 to DNA is followed 

by the ubiquitination and degradation of the p50 homodimer. By comparing wild 

type macrophages and dendritic cells to their corresponding BCL3 deficient cells, it 

was shown that the absence of BCL3 increases the production of cytokines. Also, 

overexpression of BCL3 in macrophages almost doubled the half-life of p50202. It 

may therefore be the case in HCMV infection that overexpressing BCL3 negatively 

regulates the TLR signalling resulting in increased infection. 

ODC1 is a rate-limiting enzyme of the polyamine biosynthesis pathway which 

catalyses ornithine to putrescine. Polyamines are important in the proliferation, 

growth, differentiation, apoptosis, and malignant development of mammalian cells 

with their function involving DNA, RNA and protein synthesis as well as 

stabilisation of membrane and cytoskeletal structures203,204. ODC1 has been shown, 

through co-immunoprecipitation studies and confocal microscopy, to interact with a 

structural protein, VP1, of the Enterovirus 71 (ETV71). ETV71 is an RNA which 

causes hand foot and mouth disease. Yeo et al. postulated that the interaction of VP1 

and ODC1 interferes with polyamine biosynthesis, growth and proliferation of 

EV71-infected cells205, therefore stopping the spread of the virus infection, showing 

that ODC1 is acting as an antiviral agent. However, overexpression of ODC1 

enhanced HCMV infection suggesting that ODC1 plays a different role resulting in 
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an opposite effect on HCMV infection compared to EV71 infection. Also, the two 

viruses are different with the former being a DNA virus and the later an RNA virus 

hence ODC1 may result in a different effect during infection by either of the viruses. 

How ODC1 enhances HCMV infection can be elucidated with further studies and 

more understanding of the virus and components involved in the interaction to the 

protein. 

3.4.2: Conclusions 

In conclusion, results from the screen demonstrate how this high throughput assay is 

a powerful tool for studying host-viral interactions. Overexpression of individual 

genes from a library of 389 ISGs allowed for the study of their effects on HCMV 

infection. Results from the assay identified well characterised inhibitory ISGs with 

cGAS and STAT2 being dominant inhibitory agents. Knocking down these ISGs as 

well as CPT1A in the presence of interferon rescued HCMV infection suggesting 

they play a critical role in their respective signalling pathways. In addition, multiple 

less well-characterised factors were also identified as inhibitory. More work is 

required to validate and understand their mode of action. Classifying the inhibitors of 

HCMV infection into known cellular response pathways revealed that both RNA and 

DNA sensor pathways have regulatory effects on HCMV infectivity. HCMV 

enhancing ISGs were also identified. 
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4.1 Introduction 

It is evident from the general introduction, particularly section 1.5.3.3, that HCMV is 

highly adept at evading the interferon system. Thus it is likely that HCMV will have 

evolved counteracting strategies to host genes that severely limit viral replication, 

such as ISGs. Because of this, many of the ISGs expressed in this screen may have 

little effect on HCMV replication due to viral counteracting measures. 

The majority of herpes viruses show species specificity. For example, there are 

murine, chimpanzee and rhesus cytomegaloviruses (MCMV, CCMV, and RhCMV 

respectively). These different CMV species have likely evolved mechanisms to 

efficiently infect and co-exist with their respective host. One such mechanism is 

interactions with specific host cellular proteins to promote virus replication or in the 

case of antiviral molecules such as ISGs, to disrupt their functions. However, 

orthologous genes from closely related species may be different enough from the 

normal host protein to nullify the counteracting strategy employed by CMV, and 

restore restriction on viral replication. It was therefore hypothesised that HCMV may 

not be able to counteract the effects of ISGs from an evolutionary related species 

such as rhesus macaque (Macaca mulatta). The Macaca mullata (Mm) is known to 

have diverged from a common ancestor of the Homo sapiens (Hs) 25 million years 

ago. As a result, they are genetically and physically similar to humans with an 

average genomic sequence identity of 93%206. However, the average human gene 

differs from its orthologue in the macaque by 12 nonsynonymous and 22 

synonymous substitutions also resulting in an 89% difference of human-macaque 

orthologues at the amino acid level206. Importantly, HCMV and RhCMV are closely 

related. Sequencing of the 68-1 strain of RhCMV revealed that 60% of RhCMV 
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ORFs are homologous to known HCMV proteins207. The conserved ORFs include 

the structural, replicative, and transcriptional regulatory proteins, immune evasion 

elements, G protein-coupled receptors, and immunoglobulin homologues207-209. This 

therefore suggests that host-viral interactions that occur during CMV infection are 

relatively similar. However, subjecting HCMV to the Mm immune system molecules 

may result in a different outcome and could shed light on these interactions. In this 

study, the effect of Mm ISGs on HCMV infection was investigated to gain more 

insight in the evolutionary arms race between humans and CMV and such genes 

could have potential clinical applications. 

4.2 Aims of the study 

Based on this hypothesis, a study was conducted with the aim of identifying 

potential ISGs that HCMV has evolved counteracting measures against by: 

1. Screening HCMV replication using a comparative Rhesus ISG library. 

2. Identifying and validating ISGs that show inhibitory effects in the rhesus but not 

the human library, suggesting species-specific viral counter-measures. 
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4.3 Results 

4.3.1 Transductions 

Rhesus macaque ISGs orthologous to the human ISGs were cloned into a SCRPSY 

lentivirus vector. This was provided to us as lentivirus by collaborators at The 

University of Glasgow. The resulting Mm ISG library consisted of 460 genes. The 

Hs library contained 389 ISGs and the difference in the number of ISGs between the 

2 libraries was mainly due to cloning of several Mm isoforms of the same ISG as 

well as additional novel Mm ISGs. 

Using the Mm library, NHDF cells were transduced as described before (section 

3.2.1) and in Materials and Methods section 6.3.2.2. Consistent with the human ISG 

screen the transduction levels, as measured by RFP at 72 hpt, were variable, ranging 

from the lowest relative fluorescence units (RFUs) of 3,205 to a highest of 23,329 

(Figure 4.1). A level of 100% transduction was also achieved at approximately 9,000 

RFUs and RFP readings for 214 ISGs were ≥9,000 RFUs. Therefore, transduction 

levels were comparable to transduction levels with the human library. 
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Figure 4.1: Transduction of NHDF cells with Mm ISG lentivirus library. 

NHDF cells were transduced with the Mm ISG library and RFP levels, representing transduction levels, were measured at 72 hpt. Variable 

transduction levels were achieved as revealed by differences in the RFP readings which ranged from the lowest relative fluorescence units (RFUs) of 

3,205 to a highest of 23,329. A level of 100% transduction was achieved at approximately 9,000 RFUs and RFP readings for 214 ISGs were ≥9,000 

RFUs.  The RFP levels of the negative controls, water and Emp transduced cells are shown in black and blue respectively. 
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As before, cells were infected with TB40E at 72 hpt as described in section 6.3.2.3. GFP 

levels were measured by fluorometry at 24 hour intervals for a period of 7 days. GFP levels at 

168hpi are shown in appendices (Figure 7.5). As in previous screens GFP levels were highly 

variable, ranging from 2,221 RFUs to 81,918RFUs. Growth curves were generated from 24 

hourly GFP readings, representing HCMV replication, and area under the curve calculated to 

determine the extent of viral replication over the 7-day period. Results were normalised to the 

average of the plate and calculated as a percentage Figure 4.2. A represents the results from 

the whole assay with infection levels ranging from the lowest of 22% for TRIMCYP-

transduced cells and the highest of 240% for IRF2 transduced cells 
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Figure 4.2: Normalised AUC results of Mm Library Assay.  

The assay was conducted in NHDF cells using an Mm ISG library and 24 hour GFP readings, 

representative of infection, were used to generate growth curves. Area under the curve (AUC) was 

calculated to determine infection levels over 7 days and normalised results are represented in A. as a 

percentage and B represents all ISGs with 50% or more inhibitory effects on HCMV infection. 
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Figure 4.3: Normalised FACS results of Mm Library Assay.  
Following FACS sorting of cells at 7 dpi, infection levels in RFP+ cells were determined by calculating the 
MFI of GFP expression and normalised results are represented in A. as a percentage and B represents 
top 30 ISGs with 50% or more inhibitory effects on HCMV infection. 
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4.3.4 FACS Analysis 

Cells from the assay were harvested at 7 dpi and analysed by FACS. Normalised 

results, shown in Figure 4.3A, showed a broad dynamic range of infection levels 

ranging from 1% for TRIMCYP and 597% for RNF24. A total of 142 Mm ISGs 

caused greater than 50% inhibition of HCMV. All genes identified by AUC were 

also identified by FACS analysis consistent with the Hs screen. 

 

Figure 4.4: Relationship between genes identified by AUC and FACS analysis. 

All genes identified by AUC were also identified from FACS analysis. 
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4.3.5 Identification of Rhesus-specific inhibitory ISGs 

The aim of the study was to identify Mm ISGs that inhibit HCMV but whose 

orthologous Hs ISGs had no effect. It was therefore essential to establish ISG 

libraries, Hs and Mm, with identical genes. This allowed for a direct comparison of 

the assays’ results. Therefore a “harmonised” library with 100% identity of 

candidates in both libraries was established and comprised of 298 genes. The 

comparison of inhibiting genes within these libraries was systematically conducted 

as illustrated in the flow chart below. 

 
Figure 4.5: Flowchart for the identification of HCMV inhibitory Mm ISGs whose Hs 

orthologous shows no effect. 

From the harmonised library, a total of 22 Mm ISGs were found to inhibit HCMV 

infection by ≥50% by AUC and FACS analysis. Using both AUC and FACS as a 

criteria increased the robustness of the selected candidates. Next, any Hs ISG that 

resulted in greater than 50% inhibition by FACS was removed from the list. Using 
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FACS rather than AUC at this stage reduced the inclusion of false positive 

candidates due to low transduction efficiency. This resulted in 8 candidates where 

the Mm ISG resulted in substantial inhibition whereas the equivalent Hs ISG caused 

little or no inhibition. The 8 candidates identified are BUB1, ERLIN1, GPX2, IFIT1, 

SAMHD1, SLFN5, TNFSF10 and ZC3HAV1.  Table 4.1 shows the assay results of 

these 8 genes from both assays.   

Table 4.1: Results of Mm Inhibiting ISGs compared to their homologous Hs ISGs.  

Gene Hs AUC 

Results (%) 

Hs FACS 

Results (%) 

Mm AUC 

Results (%) 

Mm FACS 

Results (%) 

BUB1  90.7 88.9 41.0 5.3 

ERLIN1 105.2 146.0 39.7 3.7 

GPX2 101.2 151.6 48.5 7.9 

IFIT1  96.7 105.3 39.6 9.6 

SAMHD1 (a) 104.6 106.5 35.1 4.2 

SAMHD1 (b) 104.6 106.5 51.0 11.8 

SLFN5 110.5 135.3 44.8 2.4 

TNFSF10  89.1 102.3 44.4 3.8 

ZC3HAV1 63.3 72.5 35.4 3.1 

 

As mentioned before, in some cases more than one isoform of an ISG was included 

in the Mm library, hence there is SAMHD1 (a) and (b). The variability between the 

results from these isoforms could be due to differences in the coding or transduction 

levels. However, the trend is the same for both isoforms. Figure 4.6 show HCMV 

infection profiles, both AUC and FACS, resulting from the overexpression of these 8 

ISGs. 
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Figure 4.6: Representation of species-specific ISGs (continued on page 192). 

Growth curves and FACS scatter plots for 8 inhibitory ISGs identified to be potentially 

counteracted by HCMV. X-axis of growth curves is the time in 24 hr intervals up to 168 

hpi and y-axis is the GFP fluorescence representative of infection levels. The green and 

purple/gold curves represent ISG of interest and control respectively - green being for 

the Hs and purple for Mm ISG. On the X-axis of FACS plots is GFP expression and y-

axis is the RFP expression. 
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Continued on page 193. 
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Continued on page 194. 
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Continued on page 195. 
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There are 4 main possible explanations for the difference in the inhibitory effects of 

the Hs ISG versus its Mm counterpart. 1) The Hs and Mm libraries may contain 

different isoforms of the same ISG. 2) Differences in transduction levels between the 

screens may have generated artefactual results. 3) Mutations introduced during 

cloning reduced or inactivated the Hs ISG. 4) Inhibition of HCMV by the Mm ISG is 

directly due to species-specific differences. 

To rule out the first possibility the cloned sequences were compared to determine 

whether the same isoform exists in both libraries. Amino acid sequence alignment 

showed that the Hs isoform of SLFN5 had 551 amino acids missing at the C-

terminal in comparison to the Mm isoform (see appendices: sequence alignment 
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analysis). Also, there was no sequence available for the cloned Hs ZC3HAV1. These 

two were therefore excluded from further analysis. 

Next, we repeated the assay for the remaining selected candidates. Lentiviruses were 

produced as detailed in materials and methods. A key part of this experiment would 

be to achieve the closest transduction levels for the corresponding Hs and Mm ISGs 

for the results to be comparable. This was determined by measuring RFP levels 

following transductions. Table 4.2 shows the RFP levels achieved for the 6 ISGs 

plus Emp, negative control. 

Table 4.2: RFP levels of repeated assays with 6 remaining ISGs at 72 hpt. 

Gene Hs RFP Levels 

(RFUs) 

Mm RFP Levels 

(RFUs) 

SAMHD1 19773.5 12697 (A) 12697 (B) 

Hs ERLIN1 17639 20024 

Hs BUB1 19736 15669.5 

HS GPX2 10147.5 15181 

Mm IFIT1 22875.5 20919.5 

Hs TNFSF10 19398 17032.5 

EMP 22729 

Transduced cells were infected with TB40E as before and GFP levels measured by 

fluorometry at 24 hour intervals for the generation of growth curves. Figure 4.7 

represents the results of the repeat assay for the 6 ISGs. 
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Figure 4.7: Results from assay repeated with 6 remaining ISGs.  

Following sequence alignment analysis, 6 ISGs were left as potential candidates with 

inhibitory effects that are counteracted by HCMV. Lentiviruses of these ISGs were 

generated, transductions conducted to achieve equal levels between the Hs and Mm 

isoforms. Growth curves were generated and on the x-axis is time (hrs), y-axis GFP 

(RFUs), in red is Emp control, Hs in green, Mm in purple. 

The result from this assay was not clear cut, however the trend exhibited by 

SAMHD1 was consistent with the previous result, unlike other ISGs. Inhibition by 

the Hs SAMHD1 in this case may be due to the high transduction levels, 

highlighting the challenges associated with the non-specific effects of the lentivirus 

transduction. SAMHD1 was therefore chosen for further analysis. It must however 

be noted that RFP levels in this repeat were high, and could have contributed to the 

inhibition on HCMV infection. Therefore, these candidates cannot fully be ruled out 

but more repeats would be needed to investigate if lower RFP levels would restore 

the pattern identified in the initial assay. 
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Nonetheless, SAMHD1 was of great interest to us as it had been reported to have 

viral restriction abilities that are counteracted by several viruses, most notably HIV-

2210. Further studies were therefore conducted on SAMHD1. 
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4.4 Mm SAMHD1 inhibits HCMV but the Hs 
orthologue does not 

Based on the results above we focused our efforts on SAMHD1. To rule out the 

possibility of disruptive mutations in the human SAMHD1 inactivating function, we 

sequenced the Hs clone. The sequenced clone was aligned to the annotated sequence 

obtained from ensembl211. Sequence alignment showed a total of 4 mismatches. Two 

of the mismatches were silent and two resulted in amino acid changes at position 

404, from glycine to glutamic acid, and position 546, from alanine to valine (Figure 

4.8). 

 

Figure 4.8: SAMHD1 sequence analysis.  

A. Representation of the nucleotide alignment of SAMHD1 sequence cloned into 

SCRPSY to the annotated sequence. B. Representation of the amino acid alignment 

SAMHD1 sequence cloned into SCRPSY to the annotated sequence. 

Instead of repairing the mutations, a new insert with the correct sequence was 

synthesised and cloned into the SCRPSY vector as detailed in material and methods 

section 6.3.2.8. Successful cloning was verified by restriction enzyme digestion and 

analysis by gel electrophoresis (Figure 4.9). The plasmid was sequenced and the 

correct sequence verified before making the lentivirus. 
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Figure 4.9: restriction enzyme digestion and analysis by gel electrophoresis. 

Following cloning of Hs SAMHD1 insert with the correct sequence into SCRPSY vector, 
the clone was digested by the restriction enzymes Not1, XHO1 and Xho1 + Not1 to 
verify that the insert had been successfully cloned into the vector. 

 

The assay was repeated alongside a control without an ISG insert (Empty), as well as 

both rhesus SAMHD1 clones from the library and the results are represented in 

Figure 4.10. 
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Figure 4.10 Mm SAMHD1 inhibits HCMV infection whereas Hs SAMHD1 does not. 

Lentiviruses with correct sequence of Hs SAMHD1 cloned into SCRPSY as well as Mm 

SAMDH1 clones were produced and transductions conducted to achieve equal levels 

between the Hs and Mm isoforms. Cells were infected and GFP measurements taken to 

generate growth curves. 

As was the case with the high throughput assay, HCMV infection was inhibited in 

cells overexpressing both Mm SAMHD1. However, overexpression of the Hs 

SAMHD1 did not inhibit HCMV replication as compared to the control (Empty). 

This result suggests that HCMV is able to counteract the effects of Hs SAMHD1 but 

not Mm SAMHD1. The difference between the Mm SAMHD1 (a) and (b) is a single 

amino acid at position 33 where (a) has phenylalanine and (b) has serine. 

Interestingly, the Hs SAMHD1 has serine at position 33 which makes Mm SAMHD1 

(b) more similar to the human protein. However, this does not affect the inhibitory 

effects of the Mm SAMHD1. 

We next asked the question if the effect of SAMHD1 was CMV species-specific. To 

answer this, we investigated if RhCMV could be inhibited by Hs SAMHD1 while it 
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could counteract the effects of Mm SAMHD1. To address this, rhesus fibroblast cells 

were transduced with Hs and Mm SAMHD1 as well as the negative control plasmid, 

Empty, and infection with rhesus CMV (Figure 4.11). 

 

Figure 4.11: Mm and Hs SAMHD1 ISGS do not inhibit rhesus CMV.  

Hs and Mm SAMHD1 were overexpressed in NHDF cells which were then infected with 

RhCMV and GFP measurements taken for growth curve generation. 

Although there was a slight inhibition of rhesus CMV by all three ISGs compared to 

the negative control, virus replication was the same in cells transduced with both Hs 

and Mm SAMHD1 clones. Therefore Mm SAMHD1 was unable to inhibit RhCMV 

consistent with the idea that RhCMV can counteract Rhesus SAMHD1 but HCMV 

cannot, due to species-specific differences. Interestingly Hs SAMHD1 did not inhibit 

RhCMV suggesting the converse situation does not occur and RhCMV is able to 

inhibit Hs SAMHD1 or Hs SAMHD1 does not interfere with RhCMV replication.  
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4.5 Discussion 

The aim of this study was to identify ISGs whose anti-viral effects are counteracted 

by HCMV. This was investigated by comparing the effects of human ISGs to the 

closely related rhesus macaque ISGs on HCMV infection. Although the primary aim 

was to identify ISGs for which HCMV potentially has countermeasures, it was 

encouraging that some ISGs were identified to have inhibitory effects from both 

libraries. These ISGs are CCNA1, cGAS, CHMP5, ELF1, HPSE, IFI16, IRF1, IRF7, 

MDA5 and STAT2 and some of them have been discussed in detail in section 3.4. 

Analysis of the high throughput assay initially identified 8 genes where the human 

ISG had little or no effect on HCMV replication but the rhesus macaque ISG caused 

substantial inhibition. Sequence analysis resulted in 2 of the genes, SLFN5 and 

Z3HAV1, being ruled out and SAMHD1 was chosen for further analysis following 

repeats of the assay on the remaining 6 ISGs. 

A major finding of this study was that human SAMHD1 does not inhibit HCMV 

replication, whereas its rhesus macaque orthologue reduced HCMV replication in 

human cells in vitro. This result was true when approximately equal titres of 

lentivirus were used to transduce NHDF cells. These 2 isoforms have the same 

number of amino acids however with a primary structure difference. Sequence 

analysis of the Hs SAMHD1 showed mutations in the cloned ISG. However, the 

correct sequence was shown to not inhibit HCMV in repeat experiments indicating 

mutations had not disrupted function. 
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The enzyme SAM domain and HD domain-containing protein 1 (SAMHD1) is an 

ISG that restricts retroviruses in myeloid cells210. SAMHD1 has a 

triphosphohydrolase activity that leads to the depletion of intracellular 

deoxynucleotide triphosphate (dNTP) pool, thereby restricting the reverse 

transcription of retroviruses212. Dendritic cells express SAMHD1 and are known to 

be refractory to HIV-1 infection. However, HIV-2 and other closely related simian 

immunodeficiency viruses (SIVs) encode the Vpx protein that counteracts SAMDH1 

by inducing its ubiquitin-proteasome-dependent degradation210. The DNA replication 

of DNA viruses is dependent on the intracellular dNTP concentration and therefore 

may be restricted by SAMHD1. Kim et al. showed that SAMHD1 restricts HSV-1 

growth in macrophages by limiting DNA replication, consistent with SAMHD1 

being able to inhibit herpes viruses in certain circumstances213. 

We also showed that Hs SAMHD1 was not capable of inhibiting rhesus CMV. It 

would have been interesting if the Hs SAMHD1 was able to inhibit RhCMV while 

the Mm SAMHD1 was not. However, as all 3 ISGs did not show clear inhibitory 

effects on RhCMV, it is still possible that their effects were counteracted. It is 

therefore possible that HCMV, like HIV-2, has strategies to counteract SAMHD1 

potentially by the same mechanism employed by HIV-2 of targeting for degradation 

following specific interactions. These interactions could be abolished when HCMV 

is presented with an orthologous SAMHD1 resulting in the ISG retaining its antiviral 

activity. Further studies will be essential to fully understand the interaction between 

HCMV and SAMHD1. Identifying the viral factor involved in the SAMHD1 

counteracting effect by HCMV will be valuable in understanding this interaction. As 
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current knowledge suggests that targeting of SAMHD1 by a viral factor, Vpx in the 

case of HIV-2, leads to degradation, further experiments would aim to find out if this 

is the case with HCMV. Potential experiments would initially include a time course 

experiment to identify whether SAMHD1 expression is lost in infected cells. 

Immunoprecipitation experiments, at a point before SAMHD1 degradation, in 

combination with mass spectrometry would potentially identify the viral factor that 

interacts with SAMHD1. 
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Viruses are obligate intracellular pathogens. Therefore, their successful replication, 

at every stage from attachment to assembly and egress, is dependent on host cell 

functions. The host cell in turn engages mechanisms to counteract virus replication. 

As a result, viruses have evolved mechanisms to evade these counteracting measures 

as well as ways to reshape the cellular environment into one that’s favourable for 

successful replication. Thus complex virus-cell interactions occur during infection 

and thousands of cellular as well as viral genes are involved. Many of these genes 

are not known or their functions are not fully understood. Systematic studies offer a 

platform for unravelling virus-cell interactions and in particular can address three 

important aspects 1) increase our understanding of basic biology of the virus, 2) 

identify and characterise new cellular genes and 3) can provide important leads for 

novel targets for antiviral therapy. 

It is without doubt that virus-centric approach studies have achieved remarkable 

results and contributed immeasurably to the characterisation and categorisation of 

viruses. They were also instrumental in defining the steps of viral attachment, entry, 

replication and release. Importantly, the knowledge obtained from these studies, 

particularly viral protein function, directed drug discovery projects and antiviral 

drugs that target viral enzymatic activities and have widely been licenced for use214. 

However, these drugs have had limitations, mainly due to viruses being highly adept 

in devolving drug resistance mechanisms. Therefore there has been the need of a 

different approach and systems biology offers a platform for identifying host based 

antiviral therapy. 
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Systematic studies have increasingly been used and are proving pivotal in the 

understanding of complex biological systems. These biological systems often have a 

vast number of elements acting, either individually or in cooperation, to influence 

different mechanisms. Therefore, the identification and characterisation of specific 

members is extremely difficult. However, systems studies using techniques such as 

microarrays, ribosomal profiling, proteomics, immunoprecipitations and RNA-seq 

have proved powerful in viral studies. The use of these tools has the potential to 

achieve a comprehensive understanding of biological systems with outputs such as 

global transcriptome profiling, proteome variations, profiling of microRNA 

expression and DNA methylation, providing information on virus-host interactions. 

With HCMV in particular, examples include microarray studies that revealed the 

regulation of multiple constituents of the prostaglandin E2 synthesis pathway215. 

This regulation includes the induction of cytosolic phospholipase A2 (cPLA2), and 

cyclooxygenase (COX-2) mRNAs as well as the inhibition of lipocortin 1, a negative 

regulator of prostaglandin E2 synthesis215. Collectively, these changes result in 

increased levels of prostaglandin E2, leading to the efficient replication of HCMV. 

This was validated by the fact that inhibiting COX-2 in fibroblast cells blocked the 

accumulation of HCMV’s IE mRNA and protein215,216. 

The previously described profiling and transcript analysis of the HCMV genome by 

Stern-Ginossar et al. (section 1.2.2) using ribosomal profiling also exemplify 

systems approaches. Results from this study led to the identification of 
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approximately 4 times more ORFs to the previously known. A total of 751 translated 

ORFs were identified with 147 having previously been reported to be coding28. 

The invention of next-generation sequencing technology that enables comprehensive 

analyses of genomic variations occurring during viral infections as well as other 

biological systems added an extra dimension in systems approaches. An example is 

RNA-seq, a method for transcriptome analysis based on next generation sequencing 

technology, which offers a much dynamic range and therefore improved 

quantification of low-abundance transcripts compared to previous techniques such as 

microarray217. RNA-seq has been used in combination with the CLIP technique in 

the profiling of cellular and HCMV small RNAs from HCMV infected fibroblast 

cells83. This study showed that HCMV miRNAs accumulate and constitute 

approximately 20% of the small RNA population at late stages of infection. Also, 2 

novel HCMV miRNAs, miR-US22 and miR-US33as were discovered in this study. 

Additionally, a cluster of host miRNA consisting miR-96, miR-182 and miR-183 

was shown to be significantly upregulated by HCMV infection83. A separate study 

also used next-generation sequencing in combination with qPCR and bioinformatics 

tools and discovered a potential 4 new HCMV encoded miRNA precursors as well as 

10 miRNAs84. 

It is therefore evident that systematic studies can mine and concentrate information 

from complex systems into more defined and potentially specific virus-cell 

interaction components. In our lab, we are using different techniques to understand 

factors important for viral replication during HCMV infection. We have, over the 
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years, invested our efforts in understanding how HCMV reshapes the cellular 

environment to enhance infection with a particular interest in viral encoded miRNAs. 

Our approach is to identify HCMV miRNA targets and from that, we can begin to 

elucidate host factors whose expression is targeted by the virus. 

Previously, RISC IP studies were used in the identification of multiple targets for 

HCMV’s miR-US25-1. These studies established that miR-US25-1 resulted in a 

significant reduction of the expression of genes associated with cell cycle control, 

including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, and that it’s binding to 

the target transcripts was within the 5′ UTRs87. Additionally, in 2015, Landais et al. 

used bioinformatics approaches to identify the TLR innate immunity pathway as a 

possible target of HCMV miRNAs. Systematic studies employing luciferase reporter 

assay screens, Western blot and mutagenesis studies confirmed the targeting of 

TLR2 by HCMV miR-UL112-3p92. Down regulation of TLR2 will therefore have a 

proviral effect as the TRL signalling pathway is inhibited together with the 

proceeding NFκB pathway92. It can be hypothesised that viral miRNAs targeting of 

transcripts during infection represent a mechanism by which viruses interact with the 

host. 

To study the potential adaptions employed by HCMV during infection, part of the 

study in this thesis focused on miRNA studies. Using a cutting edge biochemical 

technique for studying viral miRNA targets known as CLASH, we sought to identify 

and study transcript targets of HCMV expressed miRNAs. CLASH differs to other 

techniques that have been used to study miRNA targets, such as HITS- or PAR-
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CLIP, in that hybrids obtained from deep sequencing can reveal the binding between 

the miRNA and target transcript. This therefore means we can identify the specific 

miRNA and target transcript with confidence. 

We aimed at establishing and optimising the CLASH technique in the context of 

HCMV infection to generate high confidence miRNA target data sets. This required 

the overexpression of a tagged version of Ago2 protein in NHDF cells to enable 

immunoprecipitation. However, the expression was not stable, presenting us with a 

technical challenge that resulted in low quality cDNA libraries being generated. We 

attempted large scale transductions but on comparison to a HEK293T cell line with a 

stable expression of the tagged Ago2 protein, the NHDF cells showed low levels of 

expression. Nonetheless, 2 cDNA libraries, infected and uninfected, were sequenced 

to assess the extent to which the assay was working. Analysis of the sequencing 

results, which itself was still being optimised, identified 2 potential HCMV encoded 

miRNAs’ targets. These were miR-US25-1-5p targeting NLR family, apoptosis 

inhibitory protein (NAIP) transcript and miR-US25-2-5p targeting disco-interacting 

protein 2 homolog A (dip2A) human gene. Also identified was the HCMV UL6 

transcript to be potentially targeted by has-miR-42. But further work is required to 

demonstrate if these hybrids were real. Most importantly, although high quality data 

sets were not generated, the work was crucial for the establishment of the system 

which is now generating promising data. 

Virus-cell interactions can also be elucidated by probing for host factors that are 

important for virus replication. Using siRNA libraries, the effect of silencing 
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individual genes can be studied and factors essential for HCMV replication 

identified.  Over expression of genes can also serve the same purpose. This approach 

and the established ISG libraries have been used in several studies to investigate the 

effects of ISGs on viruses168,169,174. Initial experiments to test the potential of this 

system by Schoggins et al. assessed the effects of 11 ISGs on vesicular stomatitis 

virus (VSV) and yellow fever virus (YFV)168. They showed that YFV was inhibited 

by IFI16, and VSV by MX1, with the ISGs showing virus specificity. IFITM3 was 

capable of inhibiting both viruses, suggesting that it has a broad-spectrum action 

consistent with a report by Brass et al. that influenza A, west nile (WNV) and 

dengue viruses were susceptible to IFITM3168,218. These experiment established the 

benefits of applying the ISG library on a larger scale and two large-scale assays were 

subsequently conducted. Results from these screens revealed that ISGs have both 

inhibitory and enhancing effects on viruses. The inhibitory ISGs either had broad-

acting effects or showed virus specificity. In some cases, specificity was directed 

towards virus families, such as Flavi-, Toga- and Retroviridae. Other ISGs displayed 

specificity towards entire virus genera such as DNA, single stranded positive-sense 

RNA (+ssRNA) or negative-sense RNA (-ssRNA) viruses. The broad-acting ISGs 

included cGAS, IRF1, HPSE, RIG-I, MDA5, IFITM3, IRF3, IRF7, and 

NAMPT168,174. Dittmann et al. have recently used the library to probe for ISGs that 

inhibit late stages of viral replication cycle. Their image-based screen used influenza 

A virus (IAV) as a model virus and comprised accurately monitoring and quantifying 

the spread of viral infection after challenging cells with virus at low MOI. As well as 

broad-acting ISGs, they identified a further 11 antiviral ISGs, MAP3K14, ELF1, 

PMM2, FAM46C, TBX3, SCO2, CRY1, TNFSF10, FAX1, MAFF and SERPINE1. 
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They further validated SERPINE1 (serine protease inhibitor, member E1) and found 

that the protein encoded by this gene, PAI-1 (Plasminogen activator inhibitor-1), 

prevented the haemagglutinin HA cleavage of IAV progeny particles169. 

In 2014, Weekes et al. published their work representing a successful 

implementation of a systematic analysis. Termed Quantitative Temporal Viromics 

(QTV), the study investigated temporal changes in host and viral proteins during 

HCMV infection219. This study identified up- and down-regulated signalling 

pathways and established that the expression of some ISGs is rapidly reduced 

following HCMV infection.  Upregulation of ISGs occurred from 6 hours post 

infection and they were down-regulated by 24 hours post infection219. 

The second part of this thesis studied the effects of ISGs on HCMV infection. We 

used 2 cells lines, NHDF and U373 cells, and overexpressed ISGs by lentivirus 

transduction. Cells were then infected with a GFP expressing HCMV strain, TB40E. 

To determine the effects of ISG on HCMV infection, 2 types of analysis were 

performed, fluorometry and FACS. In fluorometry analysis, GFP fluorescence was 

measured at 24-hour intervals for a period of 7 days and used to generate growth 

curves. The area under the curve (AUC) was calculated as representative of infection 

levels. As fluorometry analysis would not distinguish between transduced or 

untransduced cells, FACS analysis was performed to enable a direct measure of 

infection levels in transduced cells. FACS analysis therefore presented increased 

sensitivity from a broad range of infection levels. Therefore fewer inhibiting or 
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enhancing genes were identified by plate reader fluorometry and AUC analysis than 

by FACS analysis in both cell lines. 

Over-expression of ninety-two ISGs resulted in more than 50% inhibition of viral 

growth. Greater than 50% enhancement was seen when sixty-four ISGs were 

overexpressed in NHDF cells. Overall infection levels ranged from 99% inhibition 

with DDX60 to 482% enhancement with IL28RA. In U373 cells, fifty-nine ISGs 

inhibited HCMV infection by greater than 50% and thirty-one ISGs enhanced the 

same virus by more than 50%, ranging from 85% inhibition for CCNA1 to 477% 

enhancement for TXNIP. Correlation analysis showed significant correlation 

between the fluorometry and FACS results from each cell line. However, the 

correlation was less significant when results from the two cells lines were compared. 

This is not overly surprising as signalling pathways would be different between the 

two cell lines. Nonetheless, the unison between results from both data sets was 

determined and ISGs with a universal effect were considered higher confidence 

candidates. These included well-characterised ISGs such as cGAS, STAT2, NOD2, 

DDX60 and HPSE as well as novel candidates including TXNIP, ELF1, FAM46C, 

MT1H and CHMP5. 

We believe fewer hits from AUC analysis suggested its robustness as an analysis 

tool. Also apparent was a much broader dynamic range of infection levels from 

FACS analysis compared to the plate reader results. Additionally, due to the 

sensitivity, FACS analysis identified candidates that were not identified by AUC 

analysis. For example, CPT1A relative infection by AUC analysis was 57.1% 
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meaning it would have been excluded from inhibiting genes. However, FACS 

analysis identified a total of 3,735 RFP+ cells whose relative infection was 7.1 %. 

Interestingly, the most potent ISGs were mostly the same as the well characterised 

ISGs, highlighting their importance and effectiveness in pathogen regulation hence 

were successfully recognised and studied before. However, there are also ISGs that 

we expected to have an inhibitory effect on HCMV but did not, suggesting 

differential effects of downstream IFN signalling pathways as mentioned in Chapter 

3. Examples include TLR7 and MYD88 which actually resulted in slight 

enhancement of virus infectivity. MYD88 is mapped downstream of TLR7, in the 

same signalling pathway, and they lead to the up-regulation of NF-κB which has 

been shown to be important during early stages of productive HCMV infection220,221. 

Using the ISG assay results as a lead, we also investigated the extent of ISG effects 

at endogenous levels on HCMV infection by siRNA studies. Knock down of 4 

inhibiting ISGs, cGAS, CPT1A, IRF1 and STAT2, resulted in increased HCMV 

replication. Furthermore, knocking down of cGAS, STAT2 and CPT1A in the 

presence of interferons revealed that they potentially play a dominant role within the 

pathways they are involved in as HCMV replication was rescued. On the contrary, 

knocking down of MDA-5 and IRF7, both HCMV inhibitory ISGs, resulted in a 

significant reduction of HCMV replication, suggesting potentially redundant 

activities within pathways they are involved in. Knock-down of 2 of the ISGs 

identified as enhancing, ODC1 and BCL3, resulted in the expected significant 
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reduction of HCMV replication. Repeat experiments are however required to show 

reproducibility of these results and downstream validations will also be needed. 

It is fair to say that our assay does not directly mimic the natural physiological 

environment as ISGs were overexpressed. It could therefore be argued that this type 

of assay provides an invaluable approach in identifying potent ISGs whose effects, at 

endogenous levels, are nullified by HCMV. Weekes et al. supports the notion as they 

clearly show that the expression of several ISGs is quickly (within 12 hours of 

infection in most cases) down-regulated during HCMV infection219. 

The use of rhesus macaque ISGs orthologous to human ISGs provides an interesting 

and extra dimension in the studies to understand the virus-cell interactions during 

HCMV infection. In this study, we anticipated the identification of potent inhibitors 

of HCMV whose effect is counteracted by the virus. SAMHD1 was identified as one 

such gene. Further studies also showed that both Mm and Hs orthologues of 

SAMHD1 had no inhibitory effects against RhCMV. More in-depth investigation is 

however needed particularly to establish which viral factor interacts with SAMHD1. 

Also, the identification of the specific peptide or amino acids involved in this 

interaction would be useful. Mutagenesis and chimeric studies would also be 

important in these studies. 

In addition, the effect of some ISGs is expected to be conserved across species. With 

human and Rhesus being genetically similar and both infected by similar 

cytomegaloviruses, it is not surprising that several Mm orthologous of Hs inhibitory 
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ISGs were inhibitory to HCMV. Identifying the same ISGs from the assay with Mm 

ISG library, 10 ISGs, augments the findings with the assay with Hs ISG library. 

These 10 ISGs were CCNA1, cGAS, CHMP5, ELF1, HPSE, IFI16, IRF1, IRF7, 

MDA5 and STAT2 some of which have been described in Chapter 3 (section 3.6). 

It is without doubt that the assay had limitations. Lentivirus transduction of NHDF 

cells resulted in a slight inhibition of HCMV infectivity. This reduction in infection 

levels of highly transduced cells could be explained by the interferon response that 

can be caused by lentivirus transduction, perhaps as a result of using a primary cell 

line. U373 cells were therefore used to screen for the same library’s effects on 

HCMV infection. However this presented us with the challenge of U373 being less 

permissive to HCMV infection. Also, as previously described, variable results were 

observed between the cells lines, highlighting the complexity of the interferon 

response to viral infection. Secondly, the act of overexpressing these genes may be 

sufficient to activate the pathway without the respective ligand. Regardless of this, 

this assay would serve as an effective tool for looking at activation of IFN rather 

than identifying underlying inhibitory ISGs. Future experiments using knock-out 

cells defective for IFN signalling would serve to identify the specific ISGs involved 

in direct HCMV inhibition. 

An additional caveat is the lack of repeat assays and statistics available for these 

screens. A major technical challenge was the limited lentivirus libraries available 

during these experiments such that repeat experiments were not possible during the 

time scale of the project. However, following the identification of ISGs of interest 
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from the initial screen, the clones’ glycerol stocks were obtained from a 

collaborators’ library and more lentivirus produced. Future experiments with these 

lentivirus stocks would be aimed at investigating the reproducibility of the results 

thereby enabling statistical tests to be conducted. Equal lentivirus titres would also 

be used in transductions to ensure results are comparable. 

Finally, we summarised the inhibitory Hs library assay results into RNA and DNA 

pathways as well the interferon receptor downstream signalling molecules based on 

our understanding and available information on these pathways. It will be important 

to broaden this summary and include, if possible, all ISGs identified in the screen. 

Therefore future studies will also include Ingenuity Pathway Analysis (IPA). IPA is 

a powerful tool that can map large datasets into pathways and would be effective in 

answering questions such as what biological pathways do the identified ISG 

candidates participate in and which of the proteins interact with each other directly 

or through intermediate molecules. Following the identification of the specific ISGs, 

siRNA experiments in combination with plaque assays would further elucidate and 

validate the importance of these ISGs in regulating HCMV infection. 

In conclusion, systematic studies and analysis offer a powerful and potent tool to 

unravel specific features and complexities of biological systems. The use of high 

throughput studies in the project and the subsequent analysis generated valuable 

ISGs candidates that can be investigated further to understand the viral-cell 

interactions that occur during HCMV infection and can reveal specific possible 
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targets for antiviral therapy. Also, the application of CLASH in miRNA studies gave 

a foundation from which a future improved use of the protocol can follow. 
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6.1 General Materials and Procedures 

6.1.1: Materials and Equipment 

Nunclon delta coated 175 cm2 flasks – Fisher Scientific (178883EB). 

Dulbecco’s modified eagle medium (DMEM) – Sigma (D5796EB) 

Trypsin-EDTA (0.05%), phenol red – ThermoFisher (25300-054). 

Nunc Cell Scrapper 23cm – Scientific Laboratory Supplies Ltd (179693K). 

Ultracentrifuge tubes, Ulta clearTM, 38.5 ml, 25 x 89 mm – Beckman Coulter 

(344058) 

Category II tissue culture facilities 

6.1.2 Procedures 

6.1.2.1 Cell culture  

NHDF, U373 and HEK293 cell lines were cultured in Nunclon delta coated 175 cm2 

flasks in Gibco® Dulbecco’s modified eagle medium (DMEM) supplemented with 

10% heat-activated foetal bovine serum (FBS) and penicillin/streptomycin (0.5 

units/ml). THP1 cells were grown in Nunclon delta coated 175 cm2 flasks in Sigma-

Aldrich RPMI supplemented with 10% heat-inactivated (by 30 minutes incubation at 

65oC) foetal bovine serum (FBS) and penicillin/streptomycin (0.5 units/ml). All cells 

were incubated at 37oC and at 5% carbon dioxide. 

6.1.2.2 TB40E production 

TB40E (a clinical HCMV strain tagged with green fluorescent protein (GFP) by 

engineering the GFP between the US34 and TRS1173) was cell-free purified virus 
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stocks were prepared in sub-confluent NHDFs in 175 cm2 flasks.  NHDFs were 

infected with a sub-master virus stock at an MOI of 3 in 15mL of DMEM (+10% 

FBS and pen/strep).  After two days, 5 ml of the medium was replaced with fresh 

medium.  The cells were harvested after 8 days by scrapping off the flask surface, 

homogenised, and cell debris removed from the supernatant by centrifugation (1,200 

x g; 10 minutes). 5 ml of 20% sorbitol solution was used to buffer the virus 

precipitating and virus was isolated from the supernatant by ultracentrifugation 

(42,500 x g; 1 hour).  Pelleted virus was re-suspended in DMEM. To determine the 

virus titre, plaque assays were conducted by seeding a 24 well plate with 1 x 106 

NHDF cells which were infected by the virus in 10-fold serial dilution and in a total 

of 300 µl inoculum per well. Infected cells were overlaid with 0.5% 

carboxymethylcellulose sodium salt (CMC) i.e. 300 µl. CMC was prepared by 

adding 0.75g of low viscosity CMC (Sigma-Aldrich catalogue number C5678) and 

0.75 of high viscosity CMC (Sigma-Aldrich catalogue number C5013) to 50ml of 

PBS and left overnight to dissolve. The dissolved CMC was autoclaved before 

adding 300 µl DMEM media. As TB40E was GFP tagged, GFP plaques were 

counted 7 to 10 days post infection and plaque-forming units (PFU) per millilitre 

(PFU/ml) calculated. 
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6.2 CLASH Material and Procedures 

6.2.1 Materials and Equipment 

Humidified 37°C, 5% CO2 incubator. 

150mm cell culture dishes (Thermo Scientific; 157150) 

Fugene HD™ - Promega. 

UV Stratalinker 1800 crosslinking machine with UV bulbs, λ = 254nm. 

Vortex 

10 μl, 20μl, 200μl and 1,000 μl Filter tips (Starlab) 

1.5 ml microcentrifuge tubes 

15 ml conical tubes 

Disposable pipettes 

Pipette aid (e.g. Pipetboy) 

Radioactivity monitor 

Transparency film (e.g. 3M CG6000) 

Scalpels 

LB agar plates with Ampicillin for bacterial selection. 

Spin Columns with snap-caps (Thermo Scientific, 69725). 

Magnetic rack for 15ml conical tubes (Life Technologies, Dynal MPC-15). 

Magnetic rack for microcentrifuge tubes (Life Technologies, CS15000). 
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Thermoblock with shaking (Eppendorf Thermomixer comfort). 

Refrigerated centrifuge for conical tubes (Sorvall Legend RT). 

Refrigerated benchtop centrifuge (Eppendorf, 5417R). 

A HEK293 cell line constitutively expressing Ago2 carrying a dual Protein A and 

His tag were created using the Invitrogen Flip-in™ system: 

http://biochem.dental.upenn.edu/GATEWAY/Vector_manual/flpinsystem_man.pdf. 

These cells were a generous gift from David Tollervey. 

All materials required for CLASH assay are published here: Mapping the miRNA 

interactome by cross-linking ligation and sequencing of hybrids (CLASH)156. They 

are however detailed in Table 6.1. 
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Table 6.1: CLASH Reagents 

Reagent Supplier Catalogue 

Number 

Peroxidase-anti-peroxidase soluble 

complex antibody   

Sigma-Aldrich  P1291 

Dynabeads M-270 Epoxy Life Technologies 14301 

IgG antibody from rabbit serum Sigma-Aldrich I5006 

rATP, 100 mM Promega E6011 

ATP, 10 mM supplied with T4 RNA 

ligase 1 

New England BioLabs - 

Bovine serum albumin  Sigma-Aldrich A3294 

Guanidine hydrochloride Sigma-Aldrich  G4505 

Ni-NTA Superflow beads QIAGEN 30410 

RNasin Promega N2111 

PEG 8000 Sigma-Aldrich P1458 

miRCat-33 Conversion Oligos Pack Integrated DNA 

Technologies 

51011310 

32P-γ-ATP 6000 Ci/mmol Perkin Elmer NEG502Z 

Kodak BioMax MS Autoradiography Film  8222648 

MetaPhor agarose Lonza 50180 

SYBRSafe Life Technologies S33102 

Protease inhibitors, EDTA-free  Roche Applied Science 11873580001 

RNace-IT Agilent 400720 

NuPAGE LDS Sample Buffer 4X Life Technologies N0007 

NuPAGE 4-12% polyacrylamide Bis-Tris 

gels 

Life Technologies NP0335 

NuPAGE SDS MOPS running buffer  Life Technologies NP0001 

NuPage Transfer Buffer Life Technologies NP00061 

GlycoBlue Life Technologies AM9515 

MinElute PCR purification kit  QIAGEN 28004) 

MinElute Gel extraction kit  QIAGEN 28604 

GeneRuler 50 bp DNA ladder Thermo Scientific SM0371 

6 x DNA Loading dye Thermo Scientific R0611 

T4 PNK, T4 Polynucleotide Kinase New England BioLabs M0201L 

T4 RNA ligase 1 New England BioLabs M0204L 

T4 RNA ligase reaction buffer, 10× 

supplied with T4 RNA ligase 1 

New England BioLabs - 

T4 RNA ligase 2 truncated, K227Q New England BioLabs M0351L 

TSAP, Thermosensitive Alkaline 

Phosphatase 

Promega M9910 

Proteinase K  Roche Applied Science 03115836001 

SuperScript III Reverse Transcriptase Life Technologies 18080-044 
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Reagent Supplier Catalogue 

Number 

5 x First strand buffer supplied with 

SuperScript III Reverse Transcriptase 

Life Technologies - 

0.1M DTT supplied with SuperScript III 

Reverse Transcriptase 

Life Technologies - 

RNase H New England BioLabs M0297L 

TaKaRa LA Taq Clontech RR002M 

10X LA PCR Buffer ll (Mg2+ plus) 

supplied with TaKaRa LA Taq 

Clontech - 

dNTPs 2.5mM (supplied with TaKaRa LA 

Taq) 

Clontech - 

TOPO TA Cloning® Kit for Sequencing, 

with One Shot® TOP10 Chemically 

Competent E. coli 

Life Technologies K4575-40 

Phenol Sigma-Aldrich P4557 

Tris Life Technologies 15504-020 

HCl Thermo Fisher 

Scientific 

10000180 

NaCl Thermo Fisher 

Scientific 

10326390 

NP-40 Roche Applied Science 11754599001 

EDTA Thermo Fisher 

Scientific 

10213570 

Glycerol Thermo Fisher 

Scientific 

10336040 

BME, β-mercaptoethanol  Sigma-Aldrich M3148 

MgCl2 Sigma-Aldrich  M8266 

TCA, 100% trichloroacetic acid Sigma-Aldrich 91228 

Acetone  Thermo Fisher 

Scientific 

10162180 

Imidazole Sigma-Aldrich I2399 

SDS, Sodium dodecyl sulphate Sigma-Aldrich L4390 

Methanol  Thermo Fisher 

Scientific 

11976961 

Ethanol Hayman Limited AR100-X 

Sodium acetate Thermo Fisher 

Scientific 

10122350 

Chlorophorm Thermo Fisher 

Scientific 

10293850 

Isoamyl alcohol Sigma-Aldrich I9392 

Phosphorescent rulers for 

autoradiography 

Sigma-Aldrich R8133 



227 

 

Primers and Linkers 

miRCat-33 Conversion Oligos Pack (Illumina compatible 3′ adapter and RT primer, 

Integrated DNA Technologies, #51-01-13-10) C = 10 μM in water. 

P5 PCR primer: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCT

TCCGA TCT (Integrated DNA Technologies, custom order), C = 10 μM in water.  

PE_miRCat_PCR primer:  

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGGCCTTGGC

ACCC GAGAATTCC (Integrated DNA Technologies, custom order), C= 10 μM in 

water. 

Illumina-compatible L5 adapters (Integrated DNA Technologies, custom ordered, 

stock concentration = 100 μM in water). r stands for ribonucleotide, rN indicates a 

random ribonucleotide: 

5′-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrU-rNrNrN-barcode3′. The 

sequences of barcodes used are detailed in Table 6.2: Sequences for 5’ barcodes 

used in CLASH assayTable 6.2 

Table 6.2: Sequences for 5’ barcodes used in CLASH assay 

Barcode Sequence 

L5Aa 5′-rUrArArGrC-3′OH 

L5Ab 5′-rArUrUrArGrC-3′OH 

L5Ac 5′-rGrCrGrCrArGrC-3′OH 

L5Ad 5′-rCrGrCrUTrUrArGrC-3′OH 

L5Ba 5′-rArGrArGrC-3′OH 

L5Bb 5′-rGrUrGrArGrC-3′OH 

L5Bc 5′-rrCrArCrUrArGrC-3′OH 

L5Bd 5′-rUrCrUrCrUrArGrC-3′OH 
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6.2.2 Buffers used in CLASH 

10 x TBE buffer 890 mM Tris, 890 mM Boric acid, 20 mM EDTA. Store at room 

temperature. 

All buffers listed below were filter sterilised before use and, unless stated otherwise, 

stored at 4°C for at least a year. 

Lysis buffer Mix 50mM Tris-HCl (pH 7.8), 300 mM NaCl, 1% NP-40 (vol/vol., use 

50% stock), 5 mM EDTA (pH 8.0), 10% glycerol (vol/vol. use 50% stock) in the 

deionized water. Add 5mM beta-mercaptoethanol (beta-ME) and protease inhibitors 

just before use. 

LS-IgG buffer Mix 50 mM Tris-HCl (pH 7.8), 300 mM NaCl, 0.5 % NP-40 

(vol/vol.), 2.5 % glycerol (vol/vol.), 5 mM MgCl2 in the deionized water. Add 5mM 

beta-ME just before use. 

HS-IgG buffer Mix 50 mM Tris-HCl (pH 7.8), 800 mM NaCl, 0.5 % NP-40 

(vol/vol.), 2.5 % glycerol (vol/vol.), 10 mM MgCl2 in the deionized water. Add 

5mM beta-ME just before use. 

PNK-WB buffer Mix 50 mM Tris-HCl (pH 7.8), 50 mM NaCl, 0.5 % NP-40 

(vol/vol.), 10 mM MgCl2 in the deionized water. Add 5mM beta-ME just before use. 

5 x PNK buffer Mix 250 mM Tris-HCl (pH 7.5), 250 mM NaCl, 2.5 % NP-40 

(vol/vol.), 50 mM MgCl2, 50 mM beta-ME . After filtering aliquot buffer into small 

portions and keep frozen at −20°C. 

Ni-WBI buffer Mix 50 mM Tris-HCl (pH 7.8), 300 mM NaCl, 0.1 % NP-40 

(vol/vol.), 10 mM Imidazole (pH 8.0), 6 M Gu-HCl in deionized water. Add 5mM 

beta-ME just before use. Protect from light. 

Ni-WBII buffer Mix 50 mM Tris-HCl (pH 7.8), 300 mM NaCl, 0.1 % NP-40 

(vol/vol.), 10 mM Imidazole (pH 8.0) in the deionized water. Add 5mM beta-ME 

just before use. Protect from light. 

Ni-EB buffer Mix 50 mM Tris-HCl (pH 7.8), 50 mM NaCl, 0.1 % NP-40 (vol/vol.), 

150 mM Imidazole (pH 8.0) in the deionized water. Add 5 mM beta-ME just before 

use. Protect from light. 

Proteinase K buffer Mix 50 mM Tris-HCl (pH 7.8), 50 mM NaCl, 0.1 % NP-40 

(vol/vol.), 10 mM Imidazole (pH 8.0), 1% SDS (wt/vol., use 10% stock), 5 mM 

EDTA (pH 8.0) and 5 mM beta-ME in the deionized water. Protect from light. 
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6.2.3 Procedures 

6.2.3.1 Lentivirus production 

Lentiviruses were produced by transfecting HEK283T cells with plasmid expressing 

gene of interest and the packaging plasmids pMD2G and PAX2 in the presence of 

Fugene HD™. To produce lentivirus from a 15cm dish, 3 x107 HEK293T cells were 

seeded and after 24 hours transfected with: 15µlg of plasmid of interest (pLVX-

Ago2 or (iRES-Ago2), 1.5µg pMD2G and 13.5µg PAX2 all diluted in 1ml OptiMem 

medium and incubated at room temperature for 5 minutes. The plasmids were mixed 

with 100µl Fugene HD™ diluted in 1ml OptiMem medium and incubated at room 

temperature for 15 minutes. The transfection mixture was then applied onto cells. 

Medium was changed at 24 hours post transfection. Lentivirus was harvested in 

supernatant 72 hours post transfection, spun down at 800 x g room temperature for 5 

minutes and filtered with 0.45µm Millipore filter. For the lentivirus that was 

concentrated, the supernatant was spun at 42,500 x g rpm at 4oC for 2 hours in an 

ultracentrifuge. The pellet was re-suspended in 1ml of DMEM medium and sored at 

-80oC. 

6.2.3.2 NHDF transductions 

Transductions were mainly carried out in 15cm dishes seeded at a density of 7.2 x 

106 cells per dish. The amount of lentivirus to be used for transductions was 

determined empirically by transducing NHDF cells on a 24 well plate in 2 fold serial 

dilutions for lentivirus harvested as supernatant and 5 fold serial dilutions for 

concentrated lentivirus in the presence of polybrene at a final concentration of 

6µg/ml. A suitable dilution for the lentivirus produced from the plasmid pLVX-
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Ago2 was determined following puromycin selection which allowed to determine 

transduction efficiency as well as western blot analysis to determine tagged-Ago2 

expression levels. For lentivirus produced from iRES-Ago2 plasmid, the dilution 

factor was also determined empirically but transduction efficient was checked on a 

microscope and tagged-Ago2 expression levels determined by western blot analysis. 

Therefore, the required amount of lentivirus, as determined empirically, was added, 

following dilution in a total of 15 ml for each 15 cm dish, in the presence of 

polybrene at a final concentration of 6µg/ml. pLVX-Ago2 transduced cells were 

selected by puromycin at a final concentration of 1m/ml and iRES-Ago2 transduced 

cells were FACS sorted to separate GFP+ cells which were subsequently cultured. 

6.2.3.3 Lysate production 

Lysates were produced from 15 cm dishes. A total of 10 ml of lysate was prepared 

for each sample. Each plate was washed with PBS and immediately UV cross-linked 

on ice using the UV Stratalinker 1800 at 400 mJ/cm2. Cells were lysed directly on 

the plate by adding cooled 1%NP40 and 5mM 2-Mercaptoethanol containing lysis 

buffer and then scrapped off. The lysates were incubated on ice for 10 minutes, 

centrifuged at 3.250 x g and 4oC to remove cell debris and the cytoplasmic fraction 

was stored at -80oC. Infected cells were harvested at 72 hours post infection for 

infected samples. 

For THP1-Ago2 and HEK293-Ago2 lysates, four 15 cm dishes seeded at 6x107 and 3 

x 107 respectively were used for lysate production per sample, while six dishes 

seeded at 7.2 x 106 cells were used for NHDF lysates. THP1-Ago2 cells were seeded 
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per dish and differentiated with phorbol myristate acetate for 72 hours at a 

concentration of 0.01µg/ml. For infected samples, both NHDF and THP1 samples 

were obtained by infecting with the TB40E virus stock at an MOI of 3 and 5 

respectively. HEK293-Ago2 lysates were transfected with a HCMV miRUL112-1 

expressing plasmid. 30µg of plasmid DNA was transfected per 15cm dish of 70% 

confluent HEK293-Ago2 cells using 120µl of Fugene HD™ (Promega), as a carrier 

and OptiMem media following the manufacturer’s guidelines. Tagged Ago2 

expression was induced 5 hours post transfection using 500mg/ml of doxycycline. 

Supplemented DMEM was changed prior to transfection and also 24 hours post 

transfection. Transfection levels were checked using the Carl Zeiss Colibri 

Illumination System Microscope by checking for the green fluorescence on the 

EGFP transfected cells 24 hours post transfection. 

6.2.3.4 IgG-Dynabeads Conjugation 

300mg of Dynabeads® M270 Epoxy from Invitrogen were conjugated using 3, 

525µl (from a stock solution of 14mg/ml) of rabbit IgG from Sigma following the 

optimised and established protocol from Rout laboratory: 

(http://commonfund.nih.gov/pdf/Conjugation-of-Dynabeads.pdf). In summary, 

Dynabeads were washed 3 times using PBS and incubated with the IgG antibody 

mix at 30oC with gentle agitation for 18 to 24 hours.  Following incubation, 

conjugated Dynabeads were washed with glycine, tris, triethylamine and PBS prior 

to storing in PBS + 0.02% Sodium azide at 4oC. 

http://commonfund.nih.gov/pdf/Conjugation-of-Dynabeads.pdf
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6.2.3.5 Western Blot Analysis 

20µl of each sample was loaded, run on 10% acrylamide gels for 1.5 hrs at 150 V 

using the Bio-Rad Mini-PROTEAN® Tetra system, and transferred onto a PVDF 

membrane (Millipore) by semi-dry transfer using the Bio-Rad Trans-Blot® Turbo™ 

Transfer system. Blocking of the membrane to minimise non-specific antibody 

binding was conducted using 5% milk powder (Marvel) in PBST solution ((NaCl 

137mM + KCl 7 mM + Tris base 19 mM + 1ml per litre 0.05% Tween® 20)). 

Protein levels were detected using peroxidase-anti-peroxidase (PAP) from Sigma, an 

antibody specific for Ago2 protein and do not require a primary antibody. The 

membrane was washed 3 times, 20 mins each time, using TBST buffer solution. 

ECL plus agent (Amersham) was used for the detection of protein presence 

following manufacturer’s guidelines and the membrane was visualised under UV 

using the FluorChem® HD2 gel box. 

6.2.3.6 CLASH Experiment 

The CLASH procedure was previously described in the publication “Mapping the 

miRNA interactome by cross-linking ligation and sequencing of hybrids 

(CLASH)”156. In brief, CLASH assay is conducted under stringent and denaturing 

conditions selectively leaving the tagged Ago2 crosslinked RNA molecules in the 

samples. The crosslinking is achieved by exposing cells to 4000 µJ of UV energy to 

using the Stratagene UV stratalinker 1800. RNA incorporated and crosslinked to 

RISCs are pulled down from the lysates initially by immunoprecipitated using 

Dynabeads (M-270 Epoxy™ Invitrogen) conjugated to the antibodies IgG (sigma) 

followed by a limited on-bead RNA digestion of the mRNA by an RNase-IT cocktail 
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(Agilent). The complexes are further pulled down using nickel beads before ligating 

the 3’ Linker and radioactive labelling of 5’ ends of the RNA molecules using RNA 

ligase 1 enzyme (Biolabs). Gel electrophoresis purification of the complexes 

following radioactive labelling was conducted on a NuPage 4-12% precast gel (10 

well, product NP0335BOX, Invitrogen) using the Invitrogen™ Novex® Mini-Cell 

system. The complexes were transferred onto a PVDF membrane (Millipore) by wet 

transfer using the Bio-Rad Mini Protean II™ system. Following excision of the 

region containing the Ago2/RNA complexes, the membranes are treated with a 

proteinase K mix allowing for the release of the RNA molecules from the Ago2 

proteins. The RNA molecules are extracted using the phenol chloroform isoamyl 

following manufacturer’s guidelines and then the 5’ linker is ligated by the RNA 

ligase 1 enzyme (Biolabs). Reverse transcription followed by PCR using the Taqara 

Ex Taq™ polymerase enzyme is conducted on the RNA molecules to generate a 

cDNA library. The cDNA is run on a 3% metaphor gel at 80V for 60 minutes and 

products were extracted from the gel, cloned by the TOPO one shot kit (Invitrogen) 

following manufacturer’s guidelines before being sent for small scale sequencing. 

High quality cDNA libraries are sent for high throughput sequencing. 

6.2.3.7 BLAST (Basic Local Alignment Tool) 

The link below was used for the analysis of the CRAC sequence results. The 

parameters: Others (nr etc.) and highly similar sequences (megablast), were selected. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=

megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=bl

asthome 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome
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6.2.3.8 High throughput sequencing 

The libraries were checked for their quality and quantity using the Agilent 

Bioanalyser DNA 1000 chip(Agilent Technologies UK Ltd, Stockport, Cheshire) 

and the KAPA Illumina SYBR Universal Lib Q. Kit (Anachem Ltd, Luton Beds) 

respectively.  The libraries were pooled and the pool concentration was adjusted to 

10nM for input to the Illumina Truseq cluster generation kit. The flow cell was 

prepared using the Illumina Truseq PE Cluster kit V3 (Illumina Ltd., Little 

Chesterford Essex) following the manufacturer’s recommendations. The library pool 

was loaded onto the flow cell at a final concentration of 9pM using the Illumina 

cBOT instrument. The sequencing, 100 cycles single end, was carried out using an 

Illumina HiSeq 2000 instrument with Truseq SBS v3 chemistry. 

6.2.3.10 High throughput sequencing data analysis 

Sequencing data analysis was conducted using Hyb: a bioinformatics pipeline for the 

analysis of CLASH data developed and published by Travis et al. (2014). This 

analysis can be represented in a flowchart format as below (Figure 6.1). 
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Figure 6.1: Schematic representation of CLASH high-throughput sequencing data 

analysis163. 
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6.3 ISG Assay Materials and Methods 

6.3.1 Materials 

Primary neonate human dermal fibroblast cells (NHDF cells). 

Human glioblastoma cell line (U373 cells). 

Polybrene (Santa Cruz Biotechnology, Inc. - sc-134220). 

Para formaldehyde (PFA) (Scientific Laboratory Supplies Ltd. - CHE2036). 

QIAprep Spin Miniprep Kit (50), (Qiagen 27104). 

TOPO cloning kit (Life Technologies catalogue number - K4575-40). 

96 well flat bottom plates tc treated (Scientific Laboratory Supplies Ltd. - 353916). 

96 well round bottom with lid sterile plates (Scientific Laboratory Supplies Ltd. - 

3879). 

P200 and P10 Multichannel pipette. 

Reservoirs (Scientific Laboratory Supplies Ltd. – 4870). 

BD LSR Fortessa (16 colour Analyser) with High Throughput Sampler. 
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6.3.2 Procedures 

6.3.2.1 ISG Lentivirus Library generation 

Lentivirus libraries were provided by collaborators, Sam Wilson laboratory at the 

CVR, University of Glasgow. Lentiviruses are produced on a 96 well plate and each 

library, Hs or Mm, requires five 96 well plates. On day one, HEK293T cells are 

seeded on 10 plates at a density of 0.35x105 cells/well (100 µl/well of a 3.5x105 

cells/ml suspension). On day 2, 125ng of each ISG expressing SCRPSY vector is 

added to a 96-well PCR plate referred to as ‘transfection plate’. A master mix of 

packaging protein expressing plasmids is prepared in a 50 ml falcon tube by adding 

25 ng of NLGP and 5 ng of VSVg per transfection. Therefore 14.6 µg of NLGP and 

2.9 µg of VSVg plasmids are added to 17.5 ml of serum free medium (DMEM) and 

mixed thoroughly using a vortex for at least 3 x 10 seconds. 30ul of the master mixes 

added to each well of the transfection plate and mixed thoroughly by pipetting up 

and down at least 10 times. 30 µl of 0.2% polyethylenimine (PEI) mix, prepared by 

adding 362 µl of PEI to 17.138 ml of serum free medium in a 50 ml falcon and 

mixed thoroughly using a vortex for at least 3x 10 seconds, is added to each well of 

the transfection plate. The transfection mix is then added to Hek293T cells two hours 

after adding the PEI mix. On day 3, medium on HEK293T cells is changed by 

carefully removing 100 µl, using a multichannel pipette, from each well (this allows 

for the accounting of ~20 µl evaporation and at least 30ul residual volume) and 

replacing with 200 µl fresh medium (DMEM 10% FCS). Lentivirus is then harvested 

into new 96 well plates 72 hours post transfection. 
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6.3.2.2 ISGs Transduction 

Two ISG libraries, human (Hs) and rhesus macaque (Mm), were used in this assay. 

The Hs ISG library consisted of 421 samples, including controls, contained on five 

96 well plates, simply labelled plate 1 to 5, for the whole library and the Mm library 

consisted of 460 samples also on five 96 well plates. Following preliminary 

experiments, it was determined that 90µl of the lentivirus, both Hs and Mm, would 

be needed for effective transduction of NHDF cells with the ISG lentivirus library, 

also allowing for 10µl of culturing fresh medium to be added with the required 

amount of polybrene, 6ug/ml, diluted in it. Input levels for lentivirus were 

determined empirically to give maximum transduction levels while avoiding 

cytotoxicity. 

NHDF cells were seeded on a 96 well plate at a density of 1 x 106 cells/plate in a 

total of 100 µl DMEM medium and transduced when they were 90% confluent, 

approximately 24 hours after seeding. Cells were also transduced for 72 hours before 

infection with HCMV and RFP measurements, indicative of transduction levels, 

were determined by fluorometry at 24 hour intervals. 

The glioblastoma cell line (U373) were seeded at a density of 1.8 x 106 cells per 96 

well plate in 100µl of DMEM medium per well. U373cells showed high levels of 

transduction efficiency with high RFP levels achieved with 30µl of the lentivirus 

therefore the wells of the 96 well plates were topped up with 70µl of fresh DMEM 

medium with polybrene to the final concentration of 6µg/ml. Cells were transduced 
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for 48 hours before infection and RFP measurements were also determined by 

fluorometry at 24 hour intervals. 

6.3.2.3 Assay Infection  

Cells were infected with GFP expressing HCMV TB40E strain. For NHDF cells, 

infections were conducted at an MOI of 3 by diluting TB40E in clear medium, 

phenol red free DMEM, allowing for GFP measurements without the need to change 

medium. A total of 100µl per well of a 96 well plate was used for infections. 

For U373 cells, infections were conducted at an MOI of 5 with the virus diluted in a 

total of 100µl per well of a 96 well plate. The inoculum was removed 24 hours post 

infection and replaced with clear medium. GFP levels were measured at 24 hour 

intervals for a total of 168 hours. 

6.3.2.4 Fluorometry and AUC calculation 

RFP and GFP measurements were taken on transduced and TB40E infected cells at 

24 hour intervals. First, the transduction inoculum was replaced with phenol red free 

DMEM (clear medium) 24 hours post transduction and the first RFP measurement 

taken. A Biotech Synergy HT plate reader was used for quantifying both GFP and 

RFP expression (excitation 485 nm: emission 528 nm for GFP and excitation 530 

nm: emission 590 nm for RFP). GFP measurements were taken up to 168 hours post 

infection. GFP readings were used to generate growth curves in excel and the area 

under the curve (AUC) was calculated using the Trapezoid rule where AUC is 
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partitioned into trapeziums and the sum of trapezoids’ area is determined the using 

the formula: 

 

For example: 

 

Figure 6.2: An illustration of AUC calculation. 

The area under the curve is divided into trapeziums of equal width (Trap1 to 3), their 

areas is calculated and the sum gives the AUC222. 

 

6.3.2.5 FACS 

Cells were harvested at 168 hours post infection and analysed by FACS using the BD 

LSR Fortessa (16 colour Analyser) with High Throughput Sampler (HTS). 

Harvesting and sample preparation was conducted by trypsinising cells using 

Trypsin-EDTA (0.05%), phenol red and transfer to a U-bottomed plate. Cells were 

spun up to 800 x g and centrifuge stopped when it immediately reaches 800 x g. 

Supernatant was taken off by a quick inversion of the plate. And cells were fixed by 

re-suspending them in 100µl of 1% paraformaldehyde for at least 1hr at 4oC and then 
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re-suspended in 120µl FACS buffer (1x PBS + 1% BSA) and FACS analysed. Cells 

can be stored in 1 x PBS + 3% FBS at 4oC for a few days before sorting. 

Cells were sorted on 96 well plates using the HTS for loading samples on to the 

machine. Compensation setup was achieved by using Emp control transduced cells 

for RFP+ only cells, TB40E infected cells for GFP+ only cells and AD196 infected 

cells for unstained control. The B530/30 channel was used for sorting GFP, 

YG586/15 for sorting RFP. Parameters were set at FCS-395, SSC-210, B530/30-259 

and    YG586/15-231. Data was sorted using the FLowJo10 software where RFP+ 

cells were gated and GFP mean fluorescent intensity (MFI) determined as a measure 

of infection levels. Infection levels were determined per single 96 well plate basis 

and expressed as a percentage by normalising to average of the 96 well plate. 

6.3.2.6 Hierarchical analysis 

The heat maps are hierarchical cluster heat maps, generated by complete linkage 

clustering using the statistical computing and graphics package R version 3.1.0. 

Normalised AUC and FACS results were saved in a .csv file format which was used 

as input for analysis. Representation of infection levels was classed into 3 different 

segments based on cut-offs used to identify inhibiting and enhancing genes, 0% to 

50%, 50% to 150% and >150% with red, black and green used to represent these 

segments repressively. 
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6.3.2.7 siRNA transfections 

siRNAs were transfected into NHDF cells using lipofectamine RNAiMax® reagent 

according to the manufacturer’s instructions (Life Technologies). Cells were seeded 

to 60-80% confluence and transfected with 20 nM siRNA in Optimem® serum free 

medium (Life Technologies). Cells were transfected with the siRNAs twice with a 

minimum of 6 hours apart, double transfection protocol, and infected with GFP 

expressing HCMV TB40E 48 hours post the first transfection. 

6.3.2.8 Statistical Analysis 

A one tailed homoscedastic Student t-Test with n=4 was conducted on the obtained 

data to determine significance. 

6.3.2.9 Cloning 

Cloning of the correct Hs SAMHD1 gene into SCRPSY was achieved by digesting 

SCRPSY-GFP plasmid with Xho1 and Not1 enzymes following the manufacturer 

guidelines (New England Biolabs) to obtain the plasmid backbone. The reaction 

mixture was set up in a total of 50µl as below: 

5µg of the plasmid DNA    

20 units of Xho1 enzyme (Catalogue number: R0146S at 5 000units/ml) =1µl 

10 units of Not1 enzyme (Catalogue number: R0146Sat 10 000 units/ml) = 1µl 

5µl of 10x Cutsmart buffer 38µl of water 

 

Digestion products were separated on a 1% agarose gel and SCRPSY was gel 

extracted. The SAMHD1 DNA oligo with the correct sequence was ordered and 

synthesised by Integrated DNA Technologies. The SAMHD1 oligo was first cloned 
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in the TOPO vector, following the addition of A-tails, and transformed into bacteria 

following the manufacturer guidelines (InvitrogenTM). Bacteria was cultured and 

plasmids extracted by mini-prep using Qiagen kit. The plasmid was digested with 

Xho1 and Not1 enzymes separated on a 1% agarose gel. SAMHD1 was extracted 

from the gel and ligated into SCRIPSY following the addgene protocol from: 

https://www.addgene.org/plasmid-protocols/dna-ligation/. Correct cloning was 

verified by digestion of the plasmid with Xho1 and Not1 enzymes and analysis by 

gel electrophoresis. The plasmid was also sequenced to confirm the sequence of the 

SAMHD1 cloned into SCRPSY.  

https://www.addgene.org/plasmid-protocols/dna-ligation/
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UV Crosslinking and Dynabeads-IgG specificity 

CLASH is dependent on the IP of RISC bound RNAs. Cells are UV crosslinked, before being 

harvested for lysates, to establish strong covalent binding of the RNA molecules to the Ago2 

proteins, allowing for stringent denaturing washes. As the CLASH assay follows an 

extensively multi-step protocol, it was important to check how effective a number of crucial 

steps, UV crosslinking, IgG-Dynabeads conjugation and specificity for tagged Ago2 protein, 

were working. These steps were checked by running a small scale CLASH assay where 

lysates and materials were downsized by a factor of 100. Crosslinked and non-crosslinked 

lysates derived from HEK293 cells stably expressing Ago2 (293-Ago2) and a HEK293T cell 

line were used in this experiment. Cells were lysed and IPs performed using IgG antibodies 

conjugated to Dynabeads. Lysates were washed as described previously, RNA radiolabelled 

and harvested in protein loading buffer, before running on PAGE gels, transferred to 

nitrocellulose and exposed to film (Figure 7.1). 

 

Figure 7.1: UV Crosslinking efficiency check. 

IPs of tagged Ago2 protein was conducted on HEK 293 cells using IgG-Dynabeads. Lane 1: 293-

Ago2 cells were crosslinked by UV treatment, lane 2: 293-Ago2 cells without crosslinking and 

lane 3: 293 cells as a negative control. Following IP, samples were RNA radiolabelled and 

harvested in protein loading buffer, before running on an SDS-PAGE gel, transferred to 

nitrocellulose and exposed to film for 3 hours. Results show successful UV crosslinking and that 

the binding of IgG antibodies efficient and specific for tagged Ago2 protein as the protein was 

enriched in the 293-Ago2 crosslinked cells sample. 
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An enhanced radioactive signal was detected at approximately 100KDa, equivalent to the size 

of the tagged Ago2 protein. Although signal was detected in both cross linked and non-cross 

linked samples the signal was stronger in the cross linked samples indicating that the cross 

linking improved IP of Ago2 associated RNA. There was no detectable signal in lysate from 

cells not expressing the tagged Ago2 protein. These results confirm the successful 

conjugation of the IgG antibody to dynabeads and also supports that IgG-Dynabeads’ binding 

is specific for the tagged Ago2 protein. 
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Figure 7.2: Transduction of U373 cells with the ISG lentivirus library. 
RFP levels were measured 48 HPT and revealed different levels of RFP, indicative of variable transductions levels or efficiencies. Transduction 

efficiencies of U373 cells were observed to be high and sorting the RFP values from low to high showed the variable transduction levels. The RFP 

levels of the negative controls, water and Emp transduced cells are shown in black and blue respectively. 
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Figure 7.3: Infection of transduced U373s, a representation of one time point (168HPI). 
HCMV infection levels, as measured by GFP, at 168 HPI. GFP levels were measured at 24 hour intervals and here the 168 hpi time point results 
reveal different levels of infection indicative of the different ISG effects on HCMV growth. Sorting them from low to high showed the GFP levels ranged 
from the lowest value of 3,265 RFUs equivalent to background levels, to a highest value 51,859 RFUs. The GFP levels of the negative controls, water 
and Emp transduced cells are shown in black and blue respectively. 
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Figure 7.4: AUC Results from NHDFS correlate with U373s but FACS results do not. 

AUC results from NHDFs and FACS had a significant correlation (A) but FACS results from the 

different cell lines did not correlate (B). 

There was a significant correlation between the AUC and FACS results from the same cell 

line (p >0.0001, Figure 3.7, 3.16). Correlation across the cell lines was somewhat different, 

U373 and NHDF AUC results showed a significant correlation again with a p-value (two 

tailed) of >0.0001 but correlation of the FACS results was not significant (Figure 7.4A, B). 
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Figure 7.5: Infection of Mm transduced NHDF cells, a representation of time point (168 hpi). 

GFP levels were measured at 24 hour intervals. Here the 168 hpi time point results reveal different levels of infection indicative of the different ISG 

effects on infection levels. The GFP levels of the negative controls, water and Emp transduced cells are shown in black and blue respectively. 
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Figure 7.6: Comparison of Mm and Hs homologous ISGs effects on HCMV 

infection. 

A. Comparison of the AUC results of the same gene from the Hs and Mm libraries. B 

compares the FACS results of the same genes too from the Hs and Mm libraries. 
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Figure 7.7: Growth curves from siRNA transfected and TB40E infected NHDF 

cells. 

Cells were double transfected with siRNAs and infected with TB40E. GFP readings were 

taken on 24 hour intervals up to 168 hpi and used to generate growth curves. AUC was 

calculated as representative of infection levels. 
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Figure 7.8: Growth curves from siRNA transfected and TB40E infected NHDF 

cells. 

Cells were double transfected with siRNAs and infected with TB40E. GFP readings were 

taken on 24 hour intervals up to 168 hpi and used to generate growth curves. AUC was 

calculated as representative of infection levels. 
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Sequence alignment results 

Hs ISG clones in the library were sequenced and compared to the annotated and 

published sequences obtained from Ensembl to check for mutations in the cloned 

genes. Mm clones were also aligned alongside the Hs sequences to check how they 

differ. Translated sequences are shown. 

 

 

 

 

SAMHD1 amino acid alignments 

 

 

 

 

 



272 
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ERLIN1 amino acid alignments 
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