107 research outputs found

    Chesapeake Bay benthic community restoration goals

    Get PDF
    Benthic macroinvertebrate assemblages have been an integral part of the Chesapeake Bay monitoring program since its inception due to their ecological importance and their value as biological indicators. The condition of benthic assemblages reflects an integration of temporally variable environmental conditions and the effects of multiple types of environmental stresses. As such, benthic assemblages provide a useful complement to more temporally variable chemical and water quality monitoring measures. While assessments using benthic monitoring data have been useful for characterizing changes in environmental conditions at individual sites over time, and for relating the condition of sites to pollution loadings and sources, the full potential of these assessments for addressing larger management questions, such as What is the overall condition of the Bay? or How does the condition of various tributaries compare? has not yet been realized. Regional-scale assessments of ecological status and trends using benthic assemblages are limited by the fact that benthic assemblages are strongly influenced by naturally varying habitat elements, such as salinity, sediment type, and depth. Such natural variability confounds interpretation of differences in the benthic community differences as simple responses to anthropogenic environmental perturbations. An additional limitation is that different sampling methodologies used in various programs often constrain the extent to which the benthic data can be integrated for a unified assessment. The objective of this project was to develop a practical and conceptually sound framework for assessing benthic environmental conditions in Chesapeake Bay that would address the general constraints and limitations just described. This was accomplished by standardizing benthic data from several different monitoring programs to allow their integration into a single, coherent data base. From that data base a set of measures (Chesapeake Bay Benthic Restoration Goals) was developed to describe characteristics of benthic assemblages expected at sites having little evidence of environmental stress or disturbance. Using these goals, benthic data from any part of the Bay could be compared to determine whether conditions at that site met, were above, or were below expectations defined for reference sites in similar habitats

    Correlation between Quantitative PCR and Culture-Based Methods for Measuring Enterococcus spp. over Various Temporal Scales at Three California Marine Beaches

    Get PDF
    ABSTRACT Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative PCR (qPCR) and the culture methods it is intended to replace. Here, we extend those studies by examining the stability of that relationship within a beach, as affected by time of day and seasonal variations in source. Enterococcus spp. were quantified at three southern California beaches in the morning and afternoon using two qPCR assays, membrane filtration, and defined-substrate testing. While qPCR and culture-based measurements were consistently and significantly correlated, strength of the correlation varied both among and within beaches. Correlations were higher in the morning (0.45 < ρ < 0.74 [ P < 0.002]) than in the afternoon (0.18 < ρ < 0.45 [ P < 0.021]) and higher when the fecal contamination was concentrated (0.38 < ρ < 0.83 [ P < 0.001]) than when it was diffuse (0.19 < ρ < 0.34 [ P < 0.003]). The ratios of culture-based and qPCR results (CFU or most probable number [MPN] per calibrator cell equivalents [CCE]) also varied spatially and temporally. Ratios ranged between 0.04 and 0.85 CFU or MPN per CCE and were lowest at the beach affected by diffuse pollution. Patterns in the ratios over the course of the day were dissimilar across beaches, increasing with time at one beach and decreasing at another. The spatial and temporal variability we observed indicate that the empirical relationship between culture-based and qPCR results is not universal, even within a beach

    Redox-Induced Src Kinase and Caveolin-1 Signaling in TGF-β1-Initiated SMAD2/3 Activation and PAI-1 Expression

    Get PDF
    Plasminogen activator inhibitor-1 (PAI-1), a major regulator of the plasmin-based pericellular proteolytic cascade, is significantly increased in human arterial plaques contributing to vessel fibrosis, arteriosclerosis and thrombosis, particularly in the context of elevated tissue TGF-β1. Identification of molecular events underlying to PAI-1 induction in response to TGF-β1 may yield novel targets for the therapy of cardiovascular disease.Reactive oxygen species are generated within 5 minutes after addition of TGF-β1 to quiescent vascular smooth muscle cells (VSMCs) resulting in pp60(c-src) activation and PAI-1 expression. TGF-β1-stimulated Src kinase signaling sustained the duration (but not the initiation) of SMAD3 phosphorylation in VSMC by reducing the levels of PPM1A, a recently identified C-terminal SMAD2/3 phosphatase, thereby maintaining SMAD2/3 in an active state with retention of PAI-1 transcription. The markedly increased PPM1A levels in triple Src kinase (c-Src, Yes, Fyn)-null fibroblasts are consistent with reductions in both SMAD3 phosphorylation and PAI-1 expression in response to TGF-β1 compared to wild-type cells. Activation of the Rho-ROCK pathway was mediated by Src kinases and required for PAI-1 induction in TGF-β1-stimulated VSMCs. Inhibition of Rho-ROCK signaling blocked the TGF-β1-mediated decrease in nuclear PPM1A content and effectively attenuated PAI-1 expression. TGF-β1-induced PAI-1 expression was undetectable in caveolin-1-null cells, correlating with the reduced Rho-GTP loading and SMAD2/3 phosphorylation evident in TGF-β1-treated caveolin-1-deficient cells relative to their wild-type counterparts. Src kinases, moreover, were critical upstream effectors of caveolin-1(Y14) phosphoryation and initiation of downstream signaling.TGF-β1-initiated Src-dependent caveolin-1(Y14) phosphorylation is a critical event in Rho-ROCK-mediated suppression of nuclear PPM1A levels maintaining, thereby, SMAD2/3-dependent transcription of the PAI-1 gene

    Party identification and party closeness in comparative perspective

    Full text link
    The present analysis uses data from 1974 and 1981 U. S. cross sections, which incorporate a panel, to compare the standard NES measure of party identification (ID) with a measure of partisanship derived from a party closeness question widely employed in cross-national research. Important features of the two scales are examined by transforming the closeness measure into a scale of very close, fairly close, not very close, and no preference corresponding to the seven-point ID scale. The scales are highly correlated and are similar in their reliability. More than 75% of the “independents” in the ID scale choose a party in the closeness version, and over half of these select the “fairly close” category. Respondents do not volunteer that they are independents when that alternative is not stated in the question.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45482/1/11109_2004_Article_BF00990552.pd

    The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars

    Get PDF
    We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Coalescing science for policy: Perspectives from a west coast ocean acidification and hypoxia science panel

    No full text
    The continental margin of the North American west coast holds some of the ocean\u27s most ocean acidification (OA)-vulnerable ecosystems. For many of these ecosystems, the intensification of OA will occur against a backdrop of additional changes in ocean conditions including shifts in hypoxia risks and coastal circulation. For decision-makers, whether and how to engage in OA policy-making is challenged by the rapid growth in OA research and the broad uncertainties inherent in projecting complex ecosystem. In 2013, the states of California, Oregon, Washington, and the province of British Columbia convened the West Coast Ocean Acidfication and Hypoxia Panel (OAH Science Panel) to build on regional science collaborations and to meet the need for obtaining policy-relevant knowledge. Results from this effort will be released in March 2016 and will include a series of key messages for decision-makers that are grounded in our evolving understanding of the drivers and consequences of OA and hypoxia. This presentation will summarize the Panel\u27s major findings and recommendations, and share perspectives on science engagement with ocean policy-making
    corecore