16 research outputs found

    Honeywell Enhancing Airplane State Awareness (EASA) Project: Final Report on Refinement and Evaluation of Candidate Solutions for Airplane System State Awareness

    Get PDF
    The loss of pilot airplane state awareness (ASA) has been implicated as a factor in several aviation accidents identified by the Commercial Aviation Safety Team (CAST). These accidents were investigated to identify precursors to the loss of ASA and develop technologies to address the loss of ASA. Based on a gap analysis, two technologies were prototyped and assessed with a formative pilot-in-the-loop evaluation in NASA Langleys full-motion Research Flight Deck. The technologies address: 1) data source anomaly detection in real-time, and 2) intelligent monitoring aids to provide nominal and predictive awareness of situations to be monitored and a mission timeline to visualize events of interest. The evaluation results indicated favorable impressions of both technologies for mitigating the loss of ASA in terms of operational utility, workload, acceptability, complexity, and usability. The team concludes that there is a feasible retrofit solution for improving ASA that would minimize certification risk, integration costs, and training impact

    Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues

    No full text
    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in immunity, inflammation, angiogenesis, and cancer. S1P lyase (SPL) is the essential enzyme responsible for S1P degradation. SPL augments apoptosis and is down-regulated in cancer. SPL generates a S1P chemical gradient that promotes lymphocyte trafficking and as such is being targeted to treat autoimmune diseases. Despite growing interest in SPL as a disease marker, antioncogene, and pharmacological target, no comprehensive characterization of SPL expression in mammalian tissues has been reported. We investigated SPL expression in developing and adult mouse tissues by generating and characterizing a β-galactosidase-SPL reporter mouse combined with immunohistochemistry, immunoblotting, and enzyme assays. SPL was expressed in thymic and splenic stromal cells, splenocytes, Peyer's Patches, colonic lymphoid aggregates, circulating T and B lymphocytes, granulocytes, and monocytes, with lowest expression in thymocytes. SPL was highly expressed within the CNS, including arachnoid lining cells, spinal cord, choroid plexus, trigeminal nerve ganglion, and specific neurons of the olfactory bulb, cerebral cortex, midbrain, hindbrain, and cerebellum. Expression was detected in brown adipose tissue, female gonads, adrenal cortex, bladder epithelium, Harderian and preputial glands, and hair follicles. This unique expression pattern suggests SPL has many undiscovered physiological functions apart from its role in immunity
    corecore