2,105 research outputs found

    Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes

    Get PDF
    AbstractPodocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell–cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell–cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate

    Conversational Alignment: A Study of Neural Coherence and Speech Entrainment

    Get PDF
    Conversational alignment refers to the tendency for communication partners to adjust their verbal and non-verbal behaviors to become more like one another during the course of human interaction. This alignment phenomenon has been observed in neural patterns, specifically in the prefrontal areas of the brain (Holper et al., 2013; Cui et al., 2012; Dommer et al., 2012; Holper et al., 2012; Funane et al., 2011; Jiang et al., 2012); verbal behaviors such acoustic speech features (e.g., Borrie & Liss, 2014; Borrie et al., 2015; Lubold & Pon-Barry, 2014), phonological features (e.g., Babel, 2012; Pardo, 2006), lexical selection (e.g., Brennan & Clark, 1996; Garrod & Anderson, 1989), syntactic structure (e.g., Branigan, Pickering, & Cleland, 2000; Reitter, Moore, & Keller, 2006); and motor behaviors including body posture, facial expressions and breathing rate (e.g., Furuyama, Hayashi, & Mishima, 2005; Louwerse, Dale, Bard, & Jeuniaux, 2012; Richardson, March, & Schmit, 2005; Shockley, Santana, & Fowler, 2003; McFarland, 2001). While conversational alignment in itself, is a largely physical phenomenon, it has been linked to significant functional value, both in the cognitive and social domains. Cognitively, conversational alignment facilitates spoken message comprehension, enabling listeners to share mental models (Garrod & Pickering, 2004) and generate temporal predictions about upcoming aspects of speech. From a social perspective, behavioral alignment has been linked with establishing turn-taking behaviors, and with increased feelings of rapport, empathy, and intimacy between conversational pairs (e.g., Lee et al. 2010; Nind, & Macrae, 2009; Smith, 2008; Bailenson & Yee, 2005; Chartrand & Barg, 1999; Miles, Putman & Street, 1984; Street & Giles, 1982). Benus (2014), for example, observed that individuals who align their speech features are perceived as more socially attractive and likeable, and have interactions that are more successful. These cognitive and social benefits, associated with conversational alignment, have been observed in both linguistic and neural data (e.g., Holper et al., 2012; 2013, Cui et al. 2012; Jiang et al., 2012; Egetemeir et al., 2011; Stephens et al. 2010). The purpose of the current study was to examine conversational alignment as a multi-level communication phenomenon, by examining the relationship between neural and speech behaviors. To assess neural alignment, we used Near-Infrared Spectroscopy (NIRS), a non-invasive neuroimaging technology that detects cortical increases and decreases in the concentration of oxygenated and deoxygenated hemoglobin at multiple measurement sites to determine the rate that oxygen is being released and absorbed (Ferrari & Quaresima, 2012). While still considered a relatively new neural imaging technique, NIRS has been well established as an efficacious and effective data collection approach, particularly appropriate for social interaction research (e.g., Holper et al., 2013; Jiang et al., 2012; Holper et al., 2012; Suda et al., 2010). We utilized hyperscanning, a technique that allows for the quantitation of two simultaneous signals, allowing us to document neural alignment between two individuals (Babiloni & Astolfi, 2012). Recent studies have revealed neural alignment between two persons in cooperative states, including alignment in the right superior frontal cortices and medial prefrontal regions (Cui et al., 2012; Dommer et al., 2012; Funane et al., 2011). This increased prefrontal interbrain alignment has also been observed in other social interactions, including joint attention tasks (Dommer et al., 2012), imitation tasks (Holper et al., 2012), competitive games (Cheng et al., 2015, Duan et al., 2013), teaching-learning interactions (Holper et al., 2013), face- to-face communication (Jiang et al., 2012), mother-child interactions (Hirata et al., 2014), and during cooperative singing tasks (Osaka et al., 2015). Interestingly, Jiang et al. (2012) showed that increased neural alignment only occurred between conversational participants when they were speaking face-to-face, but not when participants had their backs facing one another. The authors speculated that the multi-sensory information, for example motor behaviors such as gestures, was required for neural alignment to occur

    Specific MHC-I Peptides Are Induced Using PROTACs

    Get PDF
    Peptides presented by the class-I major histocompatibility complex (MHC-I) are important targets for immunotherapy. The identification of these peptide targets greatly facilitates the generation of T-cell-based therapeutics. Herein, we report the capability of proteolysis targeting chimera (PROTAC) compounds to induce the presentation of specific MHC class-I peptides derived from endogenous cellular proteins. Using LC-MS/MS, we identified several BET-derived MHC-I peptides induced by treatment with three BET-directed PROTAC compounds. To understand our ability to tune this process, we measured the relative rate of presentation of these peptides under varying treatment conditions using label-free mass spectrometry quantification. We found that the rate of peptide presentation reflected the rate of protein degradation, indicating a direct relationship between PROTAC treatment and peptide presentation. We additionally analyzed the effect of PROTAC treatment on the entire immunopeptidome and found many new peptides that were displayed in a PROTAC-specific fashion: we determined that these identifications map to the BET pathway, as well as, potential off-target or unique-to-PROTAC pathways. This work represents the first evidence of the use of PROTAC compounds to induce the presentation of MHC-I peptides from endogenous cellular proteins, highlighting the capability of PROTAC compounds for the discovery and generation of new targets for immunotherapy

    The Program of Gene Transcription for a Single Differentiating Cell Type During Sporulation in \u3cem\u3eBacillus subtilis\u3c/em\u3e

    Get PDF
    Asymmetric division during sporulation by Bacillus subtilis generates a mother cell that undergoes a 5-h program of differentiation. The program is governed by a hierarchical cascade consisting of the transcription factors: σE, σK, GerE, GerR, and SpoIIID. The program consists of the activation and repression of 383 genes. The σE factor turns on 262 genes, including those for GerR and SpoIIID. These DNA-binding proteins downregulate almost half of the genes in the σE regulon. In addition, SpoIIID turns on ten genes, including genes involved in the appearance of σK. Next, σK activates 75 additional genes, including that for GerE. This DNA-binding protein, in turn, represses half of the genes that had been activated by σK while switching on a final set of 36 genes. Evidence is presented that repression and activation contribute to proper morphogenesis. The program of gene expression is driven forward by its hierarchical organization and by the repressive effects of the DNA-binding proteins. The logic of the program is that of a linked series of feed-forward loops, which generate successive pulses of gene transcription. Similar regulatory circuits could be a common feature of other systems of cellular differentiation

    The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis

    Get PDF
    Asymmetric division during sporulation by Bacillus subtilis generates a mother cell that undergoes a 5-h program of differentiation. The program is governed by a hierarchical cascade consisting of the transcription factors: σ(E), σ(K), GerE, GerR, and SpoIIID. The program consists of the activation and repression of 383 genes. The σ(E) factor turns on 262 genes, including those for GerR and SpoIIID. These DNA-binding proteins downregulate almost half of the genes in the σ(E) regulon. In addition, SpoIIID turns on ten genes, including genes involved in the appearance of σ(K) (.) Next, σ(K) activates 75 additional genes, including that for GerE. This DNA-binding protein, in turn, represses half of the genes that had been activated by σ(K) while switching on a final set of 36 genes. Evidence is presented that repression and activation contribute to proper morphogenesis. The program of gene expression is driven forward by its hierarchical organization and by the repressive effects of the DNA-binding proteins. The logic of the program is that of a linked series of feed-forward loops, which generate successive pulses of gene transcription. Similar regulatory circuits could be a common feature of other systems of cellular differentiation

    Haptoglobin Genotype Is a Consistent Marker of Coronary Heart Disease Risk Among Individuals With Elevated Glycosylated Hemoglobin

    Get PDF
    ObjectivesThis study sought to investigate into the biologically plausible interaction between the common haptoglobin (Hp) polymorphism rs#72294371 and glycosylated hemoglobin (HbA1c) on risk of coronary heart disease (CHD).BackgroundStudies of the association between the Hp polymorphism and CHD report inconsistent results. Individuals with the Hp2-2 genotype produce Hp proteins with an impaired ability to prevent oxidative injury caused by elevated HbA1c.MethodsHbA1c concentration and Hp genotype were determined for 407 CHD cases matched 1:1 to controls (from the NHS [Nurses' Health Study]) and in a replication cohort of 2,070 individuals who served as the nontreatment group in the ICARE (Prevention of Cardiovascular Complications in Diabetic Patients With Vitamin E Treatment) study, with 29 CHD events during follow-up. Multivariate models were adjusted for lifestyle and CHD risk factors as appropriate. A pooled analysis was conducted of NHS, ICARE, and the 1 previously published analysis (a cardiovascular disease case-control sample from the Strong Heart Study).ResultsIn the NHS, Hp2-2 genotype (39% frequency) was strongly related to CHD risk only among individuals with elevated HbA1c (≥6.5%), an association that was similar in the ICARE trial and the Strong Heart Study. In a pooled analysis, participants with both the Hp2-2 genotype and elevated HbA1c had a relative risk of 7.90 (95% confidence interval: 4.43 to 14.10) for CHD compared with participants with both an Hp1 allele and HbA1c <6.5% (p for interaction = 0.004), whereas the Hp2-2 genotype with HbA1c <6.5% was not associated with risk (relative risk: 1.34 [95% confidence interval: 0.73 to 2.46]).ConclusionsHp genotype was a significant predictor of CHD among individuals with elevated HbA1c

    Depressive symptoms and cortisol variability prior to surgery for suspected endometrial cancer

    Get PDF
    Endometrial cancer (EC) is the most common type of gynecologic cancer affecting women; however, very little research has examined relationships between psychological factors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation in this population. The current study examined relations between depressive/anxious symptoms and salivary cortisol diurnal rhythm and variability in women undergoing surgery for suspected endometrial cancer. Depressive and anxious symptoms were measured prior to surgery using the Structured Interview Guide for the Hamilton Depression Inventory (SIGH-AD). Saliva was collected four times a day for the three days prior to surgery and then assayed by ELISA to obtain cortisol concentrations. Cortisol slopes and intraindividual variability were then calculated across subjects. Relations between depressive/anxious symptoms and cortisol indices were examined using multilevel modeling and linear regression analyses. Participants were 82 women with nonmetastatic endometrial cancer. Anxious symptoms were not associated with either cortisol slope or intraindividual variability, and depressive symptoms were unrelated to cortisol slope. However, after controlling for presence of poorer prognosis cancer subtypes, greater depressive symptoms (excluding symptoms possibly/definitely due to health/treatment factors) in the week preceding surgery were significantly related to greater cortisol intraindividual variability (β=.214; p<.05). These results suggest that depressive symptoms prior to surgery for suspected endometrial cancer are related to greater cortisol intraindividual variability, which is suggestive of more erratic HPA axis arousal. Future research should examine whether mood symptoms may be associated with compromised health outcomes via erratic HPA axis arousal in this population

    Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    Get PDF
    <p/> <p>Background</p> <p>Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer) beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours.</p> <p>Methods/Design</p> <p>The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT) centre as monocentric trial.</p> <p>Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume) in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose) in proton therapy respectively. The 5 year local-progression free survival (LPFS) rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points.</p> <p>Discussion</p> <p>Up to now it was impossible to compare two different particle therapies, i.e. protons and carbon ions, directly at the same facility in connection with the treatment of low grade skull base chondrosarcomas.</p> <p>This trial is a phase III study to demonstrate that carbon ion radiotherapy (experimental treatment) is not relevantly inferior and at least as good as proton radiotherapy (standard treatment) with respect to 5 year LPFS in the treatment of chondrosarcomas. Additionally, we expect less toxicity in the carbon ion treatment arm.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov identifier: NCT01182753</p

    Measurement of the Lifetime Difference Between B_s Mass Eigenstates

    Get PDF
    We present measurements of the lifetimes and polarization amplitudes for B_s --> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B_s system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07 +{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s and average Gamma_s, of the decay rates of the two eigenstates, the results are DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47 +{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters on 16 March 2005; revisions are for length and typesetting only, no changes in results or conclusion
    corecore