1,598 research outputs found

    Utility of photochemical traits as diagnostics of thermal tolerance amongst great barrier reef corals

    Full text link
    © 2018 Nitschke, Gardner, Goyen, Fujise, Camp, Ralph and Suggett. Light availability is considered a key factor regulating the thermal sensitivity of reef building corals, where excessive excitation of photosystem II (PSII) further exacerbates pressure on photochemical pathways already compromised by heat stress. Coral symbionts acclimate to changes in light availability (photoacclimation) by continually fine-tuning the photochemical operating efficiency of PSII. However, how this process adjusts throughout the warmest months in naturally heat-tolerant or sensitive species is unknown, and whether this influences the capacity to tolerate transient heat stress is untested. We therefore examined the PSII photophysiology of 10 coral species (with known thermal tolerances) from shallow reef environments at Heron Island (Great Barrier Reef, Australia), in spring (October-November, 2015) vs. summer (February-March, 2016). Corals were maintained in flow-through aquaria and rapid light curve (RLC) protocols using pulse amplitude modulated (PAM) fluorometry captured changes in the PSII photoacclimation strategy, characterized as the minimum saturating irradiance (Ek), and the extent of photochemical ([1-C], operating efficiency) vs. non-photochemical ([1-Q]) energy dissipation. Values of Ek across species were > 2-fold higher in all coral species in spring, consistent with a climate of higher overall light exposure (i.e., higher PAR from lower cloud cover, rainfall and wind speed) compared with summer. Summer decreases in Ek were combined with a shift toward preferential photochemical quenching in all species. All coral species were subsequently subjected to thermal stress assays. An equivalent temperature-ramping profile of 1°C increase per day and then maintenance at 32°C was applied in each season. Despite the significant seasonal photoacclimation, the species hierarchy of thermal tolerance [maximum quantum yields of PSII (Fv/Fm), monitored at dawn and dusk] did not shift between seasons, except for Pocillopora damicornis (faster declines in summer) and Stylophora pistillata (total mortality in spring). Furthermore, the strategy for dealing with light energy (i.e., preferential photochemical vs. non-photochemical quenching) was unchanged for thermally tolerant species across seasons, whereas thermally sensitive species switched between preferential [1-Q] and [1-C] from spring to summer. We discuss how such traits can potentially be used as a diagnostic of thermal tolerance under non-stressed conditions

    Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave

    Get PDF
    Repeat marine heat wave‐induced mass coral bleaching has decimated reefs in Seychelles for 35 years, but how coral‐associated microbial diversity (microalgal endosymbionts of the family Symbiodiniaceae and bacterial communities) potentially underpins broad‐scale bleaching dynamics remains unknown. We assessed microbiome composition during the 2016 heat wave peak at two contrasting reef sites (clear vs. turbid) in Seychelles, for key coral species considered bleaching sensitive (Acropora muricata, Acropora gemmifera) or tolerant (Porites lutea, Coelastrea aspera). For all species and sites, we sampled bleached versus unbleached colonies to examine how microbiomes align with heat stress susceptibility. Over 30% of all corals bleached in 2016, half of which were from Acropora sp. and Pocillopora sp. mass bleaching that largely transitioned to mortality by 2017. Symbiodiniaceae ITS2‐sequencing revealed that the two Acropora sp. and P. lutea generally associated with C3z/C3 and C15 types, respectively, whereas C. aspera exhibited a plastic association with multiple D types and two C3z types. 16S rRNA gene sequencing revealed that bacterial communities were coral host‐specific, largely through differences in the most abundant families, Hahellaceae (comprising Endozoicomonas), Rhodospirillaceae, and Rhodobacteraceae. Both Acropora sp. exhibited lower bacterial diversity, species richness, and community evenness compared to more bleaching‐resistant P. lutea and C. aspera. Different bleaching susceptibility among coral species was thus consistent with distinct microbiome community profiles. These profiles were conserved across bleached and unbleached colonies of all coral species. As this pattern could also reflect a parallel response of the microbiome to environmental changes, the detailed functional associations will need to be determined in future studies. Further understanding such microbiome‐environmental interactions is likely critical to target more effective management within oceanically isolated reefs of Seychelles

    Variation in hospital cleaning practice and process in Australian hospitals: A structured mapping exercise

    Get PDF
    BackgroundThe purpose of this paper is to highlight the range of cleaning practices and processes in 11 Australian hospitals and to discuss the challenges this variation poses to the implementation of clinical trials or changes to hospital cleaning practices.MethodsA cross-sectional study design was used to determine cleaning practices and processes in hospitals participating in the ‘Researching Effective Approaches to Cleaning in Hospitals’ (REACH) study. A standardised template and approach was used to collect information. Data collection activities included structured on-site discussions, a review of hospital practices and a document review of policy and procedural documents related to cleaning.ResultsVariations in the auditing process used to evaluate environmental cleanliness, cleaning practices, product use, training and communication pathways available to cleaning staff were identified. There was also variation in workforce structure and responsibilities for cleaning.ConclusionThis paper is the first to describe the differences in cleaning practices between Australian hospitals. The variations identified present a number of challenges for the conduct of research and have important implications for both monitoring of and standards for cleanliness. These challenges include implementing a practice change or cleaning study where hospitals have different processes, practices and structure

    Researching effective approaches to cleaning in hospitals: protocol of the REACH study, a multi-site stepped-wedge randomised trial

    Get PDF
    BackgroundThe Researching Effective Approaches to Cleaning in Hospitals (REACH) study will generate evidence about the effectiveness and cost-effectiveness of a novel cleaning initiative that aims to improve the environmental cleanliness of hospitals. The initiative is an environmental cleaning bundle, with five interdependent, evidence-based components (training, technique, product, audit and communication) implemented with environmental services staff to enhance hospital cleaning practices.Methods/designThe REACH study will use a stepped-wedge randomised controlled design to test the study intervention, an environmental cleaning bundle, in 11 Australian hospitals. All trial hospitals will receive the intervention and act as their own control, with analysis undertaken of the change within each hospital based on data collected in the control and intervention periods. Each site will be randomised to one of the 11 intervention timings with staggered commencement dates in 2016 and an intervention period between 20 and 50 weeks. All sites complete the trial at the same time in 2017. The inclusion criteria allow for a purposive sample of both public and private hospitals that have higher-risk patient populations for healthcare-associated infections (HAIs). The primary outcome (objective one) is the monthly number of Staphylococcus aureus bacteraemias (SABs), Clostridium difficile infections (CDIs) and vancomycin resistant enterococci (VRE) infections, per 10,000 bed days. Secondary outcomes for objective one include the thoroughness of hospital cleaning assessed using fluorescent marker technology, the bio-burden of frequent touch surfaces post cleaning and changes in staff knowledge and attitudes about environmental cleaning. A cost-effectiveness analysis will determine the second key outcome (objective two): the incremental cost-effectiveness ratio from implementation of the cleaning bundle.The study uses the integrated Promoting Action on Research Implementation in Health Services (iPARIHS) framework to support the tailored implementation of the environmental cleaning bundle in each hospital.DiscussionEvidence from the REACH trial will contribute to future policy and practice guidelines about hospital environmental cleaning. It will be used by healthcare leaders and clinicians to inform decision-making and implementation of best-practice infection prevention strategies to reduce HAIs in hospitals

    Isolation and characterisation of Leishmania donovani protein antigens from urine of visceral leishmaniasis patients.

    Get PDF
    Diagnosis of visceral leishmaniasis (VL) relies on invasive and risky aspirate procedures, and confirmation of cure after treatment is unreliable. Detection of Leishmania donovani antigens in urine has the potential to provide both a non-invasive diagnostic and a test of cure. We searched for L. donovani antigens in urine of VL patients from India and Sudan to contribute to the development of urine antigen capture immunoassays. VL urine samples were incubated with immobilised anti-L. donovani polyclonal antibodies and captured material was eluted. Sudanese eluted material and concentrated VL urine were analysed by western blot. Immunocaptured and immunoreactive material from Indian and Sudanese urine was submitted to mass spectrometry for protein identification. We identified six L. donovani proteins from VL urine. Named proteins were 40S ribosomal protein S9, kinases, and others were hypothetical. Thirty-three epitope regions were predicted with high specificity in the 6 proteins. Of these, 20 were highly specific to Leishmania spp. and are highly suitable for raising antibodies for the subsequent development of an antigen capture assay. We present all the identified proteins and analysed epitope regions in full so that they may contribute to the development of non-invasive immunoassays for this deadly disease

    Diel variation of seawater volatile organic compounds, DMSP-related compounds, and microbial plankton inside and outside a tropical coral reef ecosystem

    Get PDF
    Biogenic volatile organic compounds (VOCs) play key roles in coral reef ecosystems, where, together with dimethylated sulfur compounds, they are indicators of ecosystem health and are used as defense strategies and infochemicals. Assessment and prediction of the exchange rates of VOCs between the oceans and atmosphere, with implications for atmospheric reactivity and climate, are hampered by poor knowledge of the regulating processes and their temporal variability, including diel cycles. Here, we measured the variation over 36h of the concentrations of DMSPCs (dimethylsulfoniopropionate (DMSP)-related compounds, namely DMSP, dimethylsulfoxide, acrylate, dimethylsulfide, and methanethiol as dimethyl disulfide) and VOCs (COS, CS2, isoprene, the iodomethanes CH3I and CH2ClI, and the bromomethanes CHBr3 and CH2Br2), in surface waters inside the shallow, northern coral-reef lagoon of Mo’orea (French Polynesia) and 4 km offshore, in the tropical open ocean. Comparisons with concurrent measurements of sea surface temperature, solar radiation, biogeochemical variables (nutrients, organic matter), and the abundances and taxonomic affiliations of microbial plankton were conducted with the aim to explain interconnections between DMSPCs, VOCs, and their environment across diel cycles. In open ocean waters, deeper surface mixing and low nutrient levels resulted in low phytoplankton biomass and bacterial activity. Consequently, the diel patterns of VOCs were more dependent on photochemical reactions, with daytime increases for several compounds including dissolved dimethylsulfoxide, COS, CS2, CH3I, and CH2ClI. A eukaryotic phytoplankton assemblage dominated by dinoflagellates and haptophytes provided higher cell-associated DMSP concentrations, yet the occurrence of DMSP degradation products (dimethylsulfide, dimethyl disulfide) was limited by photochemical loss. Conversely, in the shallow back reef lagoon the proximity of seafloor sediments, corals and abundant seaweeds resulted in higher nutrient levels, more freshly-produced organic matter, higher bacterial activity, and larger algal populations of Mamiellales, diatoms and Cryptomonadales. Consequently, DMSP and dimethylsulfoxide concentrations were lower but those of most VOCs were higher. A combination of photobiological and photochemical processes yielded sunny-daytime increases and nighttime decreases of dimethylsulfide, dimethyl disulfide, COS, isoprene, iodomethanes and bromomethanes. Our results illustrate the important role of solar radiation in DMSPC and VOC cycling, and are relevant for the design of sampling strategies that seek representative and comparable measurements of these compounds

    Travel Tales of a Worldwide Weed: Genomic Signatures of Plantago major L. Reveal Distinct Genotypic Groups With Links to Colonial Trade Routes

    Get PDF
    Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species’ establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.publishedVersio

    Travel Tales of a Worldwide Weed: Genomic Signatures of Plantago major L. Reveal Distinct Genotypic Groups With Links to Colonial Trade Routes

    Get PDF
    Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species’ establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.info:eu-repo/semantics/publishedVersio
    • 

    corecore