8 research outputs found

    DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics.

    Get PDF
    The vinegar fly Drosophila melanogaster is a pivotal model for invertebrate development, genetics, physiology, neuroscience, and disease. The whole family Drosophilidae, which contains over 4,400 species, offers a plethora of cases for comparative and evolutionary studies. Despite a long history of phylogenetic inference, many relationships remain unresolved among the genera, subgenera, and species groups in the Drosophilidae. To clarify these relationships, we first developed a set of new genomic markers and assembled a multilocus data set of 17 genes from 704 species of Drosophilidae. We then inferred a species tree with highly supported groups for this family. Additionally, we were able to determine the phylogenetic position of some previously unplaced species. These results establish a new framework for investigating the evolution of traits in fruit flies, as well as valuable resources for systematics

    Directed motion of proteins along tethered polyelectrolytes

    No full text
    We present the first time-resolved investigation of motions of proteins in densely grafted layers of spherical polyelectrolyte brushes. Using small-angle x-ray scattering combined with rapid stopped-flow mixing, we followed the uptake of bovine serum albumin by poly(acrylic acid) layer with high spatial and temporal resolution. We find that the total amount of adsorbed protein scales with time as t1/4. This subdiffusive behavior is explained on the basis of directed motion of the protein along the polyelectrolyte chains

    Evolution of the YABBY gene family in seed plants

    No full text
    International audienceMembers of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants

    Absence of equilibrium cluster phase in concentrated lysozyme solutions

    No full text
    In colloidal systems, the interplay between the short range attraction and long-range repulsion can lead to a low density associated state consisting of clusters of individual particles. Recently, such an equilibrium cluster phase was also reported for concentrated solutions of lysozyme at low ionic strength and close to the physiological pH. Stradner et al. [(2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492-495] found that the position of the low-angle interference peak in small-angle x-ray and neutron scattering (SAXS and SANS) patterns from lysozyme solutions was essentially independent of the protein concentration and attributed these unexpected results to the presence of equilibrium clusters. This work prompted a series of experimental and theoretical investigations, but also revealed some inconsistencies. We have repeated these experiments following the protein preparation protocols of Stradner et al. using several batches of lysozyme and exploring a broad range of concentrations, temperature and other conditions. Our measurements were done in multiple experimental sessions at three different high-resolution SAXS and SANS instruments. The low-ionic-strength lysozyme solutions displayed a clear shift in peak positions with concentration, incompatible with the presence of the cluster phase but consistent with the system of repulsively interacting individual lysozyme molecules. Within the decoupling approximation, the experimental data can be fitted using an effective interparticle interaction potential involving short-range attraction and long-range repulsion

    The growing world of small heat shock proteins: from structure to functions

    Get PDF
    Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world\u27s experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016)
    corecore