142 research outputs found

    Spiral2 Project: Integration of the Accelerator Processes, Construction of the Buildings and Process Connections

    Get PDF
    TUA2C01International audienceThe GANIL SPIRAL 2 Project is based on the construction of a superconducting ion CW LINAC (up to 5 mA - 40 MeV deuteron and 33 MeV proton beams, up to 1 mA - 14.5 MeV/u heavy ion beams) with two experimental areas named S3 ('Super Separator Spectrometer' for very heavy and super heavy element production) and NFS ('Neutron For Science'), The building studies as well as the accelerator and experimental equipment integration started in 2009. The ground breaking started at the end of 2010. The integration task of the different equipments into the buildings is managed by a trade-oriented integration unit gathering the accelerator integration team, the building prime contractor and a dedicated contracting assistant. All work packages are synthesized at the same time using 3D models. 3D tools are used to carry out integration, synthesis, process connections and the preparation of the future assembly. Since 2014, the buildings and process connections are received and the accelerator installation is well advanced. This contribution will describe these 3D tools, the building construction, the process connection status and our experience feedback

    Independence of spin-orbit torques from the exchange bias direction in Ni81_{81}Fe19_{19}/IrMn bilayers

    Full text link
    We investigated a possible correlation between spin Hall angles and exchange bias in Ni81_{81}Fe19_{19}/IrMn samples by performing spin torque ferromagnetic resonance measurements. This correlation is probed by patterning of Ni81_{81}Fe19_{19}/IrMn bilayers in different relative orientations with respect to the exchange bias direction. The measured voltage spectra allow a quantitative determination of spin Hall angles, which are independent of the orientation around 2.8\pm0.3%.Comment: 10 page

    End-binding 1 protein overexpression correlates with glioblastoma progression and sensitizes to <i>Vinca</i>-alkaloids <i>in vitro</i> and <i>in vivo</i>

    No full text
    International audienceEnd-binding 1 protein (EB1) is a key player in the regulation of microtubule (MT) dynamics. Here, we investigated the role of EB1 in glioblastoma (GBM) tumor progression and its potential predictive role for response to Vinca-alkaloid chemotherapy. Immunohistological analysis of the 109 human GBM cases revealed that EB1 overexpression correlated with poor outcome including progression-free survival and overall survival. Downregulation of EB1 by shRNA inhibited cell migration and proliferation in vitro. Conversely, EB1 overexpression promoted them and accelerated tumor growth in orthotopically-transplanted nude mice. Furthermore, EB1 was largely overexpressed in stem-like GBM6 that display in vivo a higher tumorigenicity with a more infiltrative pattern of migration than stem-like GBM9. GBM6 showed strong and EB1-dependent migratory potential. The predictive role of EB1 in the response of GBM cells to chemotherapy was investigated. Vinflunine and vincristine increased survival of EB1-overexpressing U87 bearing mice and were more effective to inhibit cell migration and proliferation in EB1-overexpressing clones than in controls. Vinca inhibited the increase of MT growth rate and growth length induced by EB1 overexpression. Altogether, our results show that EB1 expression level has a prognostic value in GBM, and that Vinca-alkaloid chemotherapy could improve the treatment of GBM patients with EB1-overexpressing tumor

    Role of Spin-Orbit Coupling in High-order Harmonic Generation Revealed by Super-Cycle Rydberg Trajectories

    Full text link
    High-harmonic generation is typically thought of as a sub-laser-cycle process, with the electron's excursion in the continuum lasting a fraction of the optical cycle. However, it was recently suggested that long-lived Rydberg states can play a particularly important role in atoms driven by the combination of the counter-rotating circularly polarized fundamental light field and its second harmonic. Here we report direct experimental evidence of long and stable Rydberg trajectories contributing to high-harmonic generation. We confirm their effect on the harmonic emission via Time-Dependent Schr{\"o}dinger Equation simulations and track their dynamics inside the laser pulse using the spin-orbit evolution in the ionic core, utilizing the spin-orbit Larmor clock. Our observations contrast sharply with the general view that long-lived Rydberg orbits should generate negligible contribution to the macroscopic far-field high harmonic response of the medium. Indeed, we show how and why radiation from such states can lead to well collimated macroscopic signal in the far field

    Lactobacillus rhamnosus GG encapsulation by spray-drying: milk proteins clotting control to produce innovative matrices

    Get PDF
    A well-known probiotic strain, L.\ua0rhamnosus GG, was encapsulated by spray-drying in milk water-insoluble matrices upon reconstitution in hot water by exploiting and controlling the clotting reaction of milk proteins during the process. The feed solution, composed of probiotic bacteria and milk proteins, was or not subjected to the action of chymosin, a proteolytic enzyme. To optimize microencapsulation efficiency, different outlet air temperatures were tested (55, 70 and 85\ua0°C). After spray-drying, small microparticles were recovered for further characterization. All drying conditions led to excellent bacterial survival rates

    Recommendations for the design of therapeutic trials for neonatal seizures

    Get PDF
    Although seizures have a higher incidence in neonates than any other age group and are associated with significant mortality and neurodevelopmental disability, treatment is largely guided by physician preference and tradition, due to a lack of data from welldesigned clinical trials. There is increasing interest in conducting trials of novel drugs to treat neonatal seizures, but the unique characteristics of this disorder and patient population require special consideration with regard to trial design. The Critical Path Institute formed a global working group of experts and key stakeholders from academia, the pharmaceutical industry, regulatory agencies, neonatal nurse associations, and patient advocacy groups to develop consensus recommendations for design of clinical trials to treat neonatal seizures. The broad expertise and perspectives of this group were invaluable in developing recommendations addressing: (1) use of neonate-specific adaptive trial designs, (2) inclusion/exclusion criteria, (3) stratification and randomization, (4) statistical analysis, (5) safety monitoring, and (6) definitions of important outcomes. The guidelines are based on available literature and expert consensus, pharmacokinetic analyses, ethical considerations, and parental concerns. These recommendations will ultimately facilitate development of a Master Protocol and design of efficient and successful drug trials to improve the treatment and outcome for this highly vulnerable population
    corecore