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Abstract 24 

A well-known probiotic strain, L. rhamnosus GG, was encapsulated by spray-drying in milk 25 

water-insoluble matrices upon reconstitution in hot water by exploiting and controlling the 26 

clotting reaction of milk proteins during the process. The feed solution, composed of probiotic 27 

bacteria and milk proteins, was or not subjected to the action of chymosin, a proteolytic enzyme. 28 

To optimize microencapsulation efficiency, different outlet air temperatures were tested (55, 70 29 

and 85 °C). After spray-drying, small microparticles were recovered for further characterization. 30 

All drying conditions led to excellent bacterial survival rates (< 0.5 log reduction) whereas only 31 

the highest outlet air temperature allowed the production of microparticles with acceptable 32 

moisture contents (< 7 %) to ensure storage stability. Finally, enzymatic cleavage of milk 33 

proteins by chymosin before atomization led to matrices presenting innovative functionalities 34 

when microparticles are reconstituted with water: rehydration or dispersion in cold (8 °C) or 35 

warm (40 °C) water, respectively. 36 

 37 

Keywords 38 
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 41 
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CFU: Colony Forming Units; CMP: Caseino-macro-peptide; IMCU: International Milk Clotting 43 

Units; SEM: Scanning Electron Microscopy; MRS: Man, Rogosa, Sharpe broth culture. 44 
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1. Introduction 46 
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Consumer requests for healthy food products that prevent illnesses strongly increased at the 47 

beginning of the 21st century. The interest for functional food, among which probiotic food, has 48 

rapidly grown these last years (Abd El-Salam and El-Shibiny, 2015). Probiotic bacteria are 49 

defined as “live microorganisms which when administered in adequate amounts confer a health 50 

benefit on the host” (FAO/WHO, 2002). Probiotics have been incorporated in many food 51 

products, such as dairy products that usually constitute suitable probiotic carriers (Burgain et al., 52 

2011; Granato et al., 2010). Nevertheless, after introduction in the product, a loss of viable cells 53 

during preservation has often been observed (Blanchette et al., 1996; Ding and Shah, 2008; Shah 54 

et al., 1995; Tripathi and Giri, 2014). For example, during refrigerated storage, five commercial 55 

yogurts containing Lactobacillus acidophilus and Bifidobacterium bifidum presented a constant 56 

decrease in the viable counts of these two strains (Shah et al., 1995). In dairy products, pH 57 

decrease and accumulation of inhibitory substances, like lactic acid produced during 58 

fermentation, were the main factors identified for the loss of probiotics viability in yogurt (Shah, 59 

2000). This viability decrease was also observed in other dairy product such as cheeses (Amine et 60 

al., 2014; Blanchette et al., 1996; Gobbetti et al., 1998) and in a huge number of other food 61 

products, such as dark chocolate (Laličić-Petronijević et al., 2015) and fruit juices (Ding and 62 

Shah, 2008; Saarela et al., 2006). During digestion, a decrease in viable probiotics in the 63 

gastrointestinal transit is well documented (Burgain, Gaiani, Cailliez-Grimal, Jeandel, & Scher, 64 

2013; Jantzen, Gopel, & Beermann, 2013; Pinto et al., 2015) meaning that few or no 65 

microorganisms would be able to reach the intestine to exert their activity, presumably because of 66 

the low gastric pH and the presence of bile salts (Charteris et al., 1998; Cook et al., 2012). For 67 

example, a high loss of viable cells is observed for some strains (L. rhamnosus GG, L. reuteri and 68 

Bifidobacterium BB-12) in simulated gastric digestion, but these bacteria remain stable under the 69 
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physicochemical conditions of the small intestine (Burgain et al., 2013; Charteris et al., 1998; 70 

Jantzen et al., 2013; Pinto et al., 2015).  71 

To exert their probiotic activity, bacteria need to be viable when reaching the intestine. 72 

Microencapsulation is undeniably one solution. This technology is used to maintain probiotic 73 

viability from their processing up to their consumption and their passage through the 74 

gastrointestinal tract by entrapping and protecting sensitive living cells (De Prisco and Mauriello, 75 

2016). Many microencapsulation technologies are successful in encapsulating probiotic bacteria, 76 

e.g., spray-drying, emulsion, coacervation, extrusion, fluid bed or gel-particle technologies 77 

(Burgain, Gaiani, Linder, & Scher, 2011; Krasaekoopt, Bhandari, & Deeth, 2003; Martín, Lara-78 

Villoslada, Ruiz, & Morales, 2015).  79 

Among these encapsulation methods, gelation properties of milk proteins are sometimes 80 

exploited (Burgain, Gaiani, Cailliez-Grimal, et al., 2013; Heidebach, Först, & Kulozik, 2009). To 81 

this end, milk-clotting enzymes, as rennet or transglutaminase, are required to form a resistant 82 

matrix. Rennet is a proteolytic enzyme that is capable of hydrolyzing the κ-casein from the casein 83 

micelle surface and releases the caseinomacropeptide. By releasing these hydrophilic fragments, 84 

repulsive forces between caseins disappear allowing thereby the close approach of the micellar 85 

caseins via calcium bond formation. Upon heat treatment, micelle aggregation occurs until 86 

forming a gel (Dalgleish and Corredig, 2012). Different authors encapsulated probiotic cells (L. 87 

rhamnosus GG, B. lactis Bb12, L. paracasei  F19) in milk water-insoluble microparticles by 88 

exploiting these enzymatically-induced gelation properties (Burgain, Gaiani, Cailliez-Grimal, et 89 

al., 2013; Heidebach et al., 2009). The main drawback of these processes is the use of an 90 

emulsification method that is no straight forward for the food industry. 91 
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The most common method used to encapsulate probiotic bacteria in food industry is spray-92 

drying. This technique presents advantages of low cost, reproducibility and rapidity and is a 93 

useful way to incorporate probiotics into dairy products (Gardiner et al., 2002). Numerous studies 94 

already reported the use of spray-drying to encapsulate probiotic cells, but the major 95 

disadvantage of this technology is the use of high air temperatures causing a decrease in bacterial 96 

survival. The ability to survive to process conditions also depends on the probiotic strain. For 97 

example, spray-dried Bifidobacterium breve and Lactobacillus acidophilus presented a survival 98 

rate of only 26 % and 76 %, respectively (Maciel et al., 2014; Picot and Lacroix, 2004) and for 99 

Lactobacillus reuteri, a decrease of two log of the bacterial population was reported after spray-100 

drying. (Ananta et al., 2005) demonstrated that the reduced viability of L. rhamnosus GG is 101 

linked to cellular membrane damage and the percentage of membrane damage increased with the 102 

outlet air temperature, showing that the outlet air temperature should be carefully selected for 103 

improving the encapsulation of living probiotic cells by spray-drying.   104 

In the present work, enzymatically-induced gelation properties of milk proteins were for the first 105 

time exploited to encapsulate L. rhamnosus GG by spray drying instead of an emulsification 106 

technique. The clotting reaction control was able to create matrices presenting new 107 

functionalities: water-insoluble upon reconstitution in hot water or water-soluble upon 108 

reconstitution in cold water. Concurrently, some spray-drying parameters were tested, in 109 

particular different outlet air temperatures were applied (55, 70 and 85 °C).  110 

 111 

2. Material and methods 112 

2.1 Material 113 
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Micellar casein powder (Promilk 872 B) and whey protein powder (Promilk 752 FB) were 114 

purchased from Ingredia IDI (Arras, France). Chymosin (Chymax Plus) was provided by CHR 115 

Hansen (Hørsholm, Denmark). 116 

 117 

2.2 Preparation of proteins and chymosin solutions 118 

Micellar casein and whey protein solutions were prepared separately by rehydrating powders in 119 

distilled water at 12.5 % (w/w) dry extract. Rehydration was with an overhead stirrer equipped 120 

with a spiral stirrer (IKA, Staufen, Germany) at a speed of 1000 rpm for 2 h at room temperature 121 

(20 °C), then overnight (4 °C). After rehydration, whey proteins were denatured by heating the 122 

solution at 78 °C during 10 min (Petit et al., 2011) and the solution was cooled at 4 °C. The 123 

chymosin solution was prepared by diluting ten times the initial solution (200 IMCU.mL-1) in 124 

distilled water. 125 

 126 

2.3 Preparation of bacterial suspension 127 

The strain used in this study was L. rhamnosus GG (ATCC 53103). The growth of 128 

L. rhamnosus GG was performed in a laboratory-scale reactor. Bacterial stocks used for the 129 

inoculation were stored at - 20 °C in MRS broth with 20 % (v/v) glycerol. A pre-culture was 130 

prepared by inoculating L. rhamnosus GG in 200 mL of MRS broth at 37 °C for 15 h. The 131 

bioreactor containing 1 L of fresh medium was inoculated with the whole pre-culture. Growth 132 

was performed at 37 °C under agitation at 300 rpm and pH was adjusted at 6.8 with the addition 133 

of 6 M NaOH. Cells concentration was determined by following the absorbance at 660 nm. 134 

Culture was stopped at the beginning of the stationary phase and bacterial cells were harvested 135 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 
 

from the broth by gentle centrifugation (3000 g, 10 min). The pellet was then lyophilized during 136 

72 h and stored at 4 °C before use. 137 

 138 

2.4 Production of microparticles by spray-drying 139 

The concentrate was prepared by mixing micellar caseins and denatured whey proteins solutions 140 

in a ratio of 90/10 (v/v), respectively. Before spray-drying, the chymosin solution was added to 141 

the concentrate at a final chymosin concentration of 12 IMCU.g-1 of proteins. The protein 142 

concentrate in presence of chymosin was left for 30 min at a temperature of 8 °C to allow 143 

caseinomacropeptide cleavage through the action of chymosin and to avoid casein coagulation 144 

(Burgain et al., 2013). After the enzymatic cleavage step, lyophilized L. rhamnosus GG was 145 

mixed with the concentrate at approximatively 8.0 log10 CFU.g-1 before spray-drying. After 146 

incubation, the solution containing L. rhamnosus GG was spray-dried using a pilot-scale spray 147 

drier MicraSpray 150 (Anhydro, Soeborg, Danemark). A peristaltic pump was used to deliver the 148 

liquid through the bi-fluid nozzle into the spray-drying chamber with a feed flow-rate of 149 

87 mL.min-1 and a nozzle pressure of 1 bar. In this study, different theoretical outlet air 150 

temperatures were tested: 85, 70 and 55 °C. The real (measured) inlet and outlet temperatures 151 

were collected in Table S1. The spray-dried microparticles were stored in plastic vessel at 4 °C 152 

before use. Two independent productions were realized. A thermo-humidity sensor was placed at 153 

the output of the cyclone to measure the relative humidity and the temperature of the humid air 154 

(Table S1). 155 

 156 

2.5 Survival of L. rhamnosus GG after spray-drying 157 
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To evaluate the survival of L. rhamnosus GG during encapsulation, cell counts were determined 158 

before and after spray-drying. Cell counts were obtained by determining the number of CFU in 159 

1 mL concentrate before spray-drying and in 1 g spray-dried powder. For this purpose, 1 mL 160 

(concentrate) or 1 g (powder) sample was introduced in 9 mL of tryptone salt broth and the 161 

solution was mixed during 2 min using a vortex homogenizer. Sample was serially diluted in 162 

tryptone salt broth and plated on MRS agar. After 48 h incubation at 37 °C, cell counts were 163 

determined and expressed as CFU.g-1. The concentrate density was measured to be able to 164 

translate the 1 ml of concentrate in grams. For this, a known volume of concentrate was weighed. 165 

The experiment was realized in triplicate for each formulation. 166 

 167 

2.6 Shear effect of the bi-fluid nozzle on L. rhamnosus GG viability and cellular 168 

organization 169 

During spray-drying, bacterial cells were exposed to high shear stresses when passing through the 170 

bi-fluid nozzle. Shear stress may impact cellular organization and viability. Here, the protein 171 

concentrate previously incubate with chymosin or not and containing bacteria cells was sprayed 172 

through the nozzle at 1 bar air pressure, 87 mL.min-1 feed rate and ambient temperature (18 °C) 173 

to mimic the spraying conditions of the spray-drying experiments. The solution was collected at a 174 

distance of about 50 cm of the nozzle exit, thus avoiding altering the formation of droplets in the 175 

spray while maximizing the recovery of atomized concentrate. Cells counts were determined 176 

before and after spraying as described in section 2.5. A shear stress factor was determined as 177 

follow: 178 

Eq. (1)           �ℎ���	������		�
��� = 	

���������� ��⁄ �	���� 	!" �#$%�


���������� ��⁄ �	&��� �	!" �#$%�
 179 
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Cellular organization before and after spraying was observed by Gram staining. For this, a drop 180 

of the concentrate containing L. rhamnosus GG before and after spraying was fixed on a slide. 181 

The fixed concentrate was gently flooded with crystal violet and let stand for 1 min. The slide 182 

was rinsed with water and the same procedure was repeated with iodine solution. After 183 

discoloration of the concentrate with 90 % ethanol, a new coloration with fuchsin solution for 1 184 

min was performed. Once rinsed with water, the concentrate was observed by using a light-185 

microscope under oil-immersion. 186 

 187 

2.7 Determination of powder moisture content and particle size distribution 188 

The water content was determined by weight loss after drying 2 g powder at 103 °C for 3 h as 189 

described by the International Dairy Federation standard (IDF, 2004). Three repetitions per 190 

sample were carried out. 191 

The particle size distribution was determined using a laser granulometer (Mastersizer 3000, 192 

Malvern Instruments, UK) with Aero S dry powder dispersion unit. To obtain a correct 193 

obscuration, all samples were dispersed at 1 bar air pressure, 30% feed rate and 3 mm hopper 194 

length. Five measurements were conducted for each sample. The particle size distribution was 195 

calculated from Mie theory. The particle size estimator was the d(50), which means that 50 % of 196 

particles have a lower diameter. 197 

 198 

2.8 Wettability, dispersibility and solubility 199 

All experiments were performed in water at 20 °C. Wettability of a powder is the time necessary 200 

for the whole amount of powder to be wetted by water. The dispersibility is the proportion of 201 
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powder dry matter that can be dispersed in water (Niro Atomizer, 1978). These two properties 202 

were determined as described by the International Dairy Federation standards (IDF, 1979) with 203 

some modifications due to powder amount restrictions. Only 2.5 g powder was poured into 25 g 204 

distilled water. The solubility is the ability of a powder to be dissolved in water (Niro Atomizer, 205 

1978), expressed in percentage, and was determined as described by the International Dairy 206 

Federation standards (IDF, 2005).   207 

Powder solubility according to reconstitution water temperature 208 

For solubility results presented in Table 3, the protocol was modified to highlight solubility 209 

differences with temperature. For this purpose, the rehydration time before measuring the 210 

solubility was longer (30 minutes) instead of 30 seconds. Indeed, the powder was rehydrated for 211 

30 min in water at 8 °C, 15 °C, 20 °C, 30 °C and 40 °C before measuring the solubility. 212 

 213 

2.9 Microparticles behavior depending on water temperature 214 

Scanning Electron Microscopy 215 

A high-resolution field-emission scanning electron microscope (SEM) type JEOL JSM-7100F 216 

supplied with a hot (Schottky) electron gun (JEOL Ltd., Tokyo, Japan) and having a resolution 217 

around 1 nm at 30 kV was used to investigate the microparticles in dry and rehydrated states. The 218 

equipment was operated at 5 kV.  219 

For dry microparticles, samples were mounted onto SEM stubs by sputtering them on a carbon 220 

double-sided adhesive tape. Coating was done with iridium (Q150T Turbo-Pumped Sputter 221 

Coater, ProSciTech Pty Ltd, Queensland, Australia) for 2 min in three sides (around 10 nm 222 

thickness per side). 223 
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For particles in hydrated conditions, the study was conducted according to (Mimouni et al., 2010) 224 

with small modifications. The suspension of powder particles under rehydration was deposited on 225 

a silicon chip wafer (ProSciTech, Kirwan, Australia) that has previously been coated with poly-226 

L-Lys (Sigma, Castle Hill, Australia). The suspension was kept in contact with the wafer for 5 227 

min, then the wafer was drained and rinsed with 100 mM phosphate buffer at pH = 7. Chemical 228 

fixation of proteins was achieved by immersing the wafer in a solution composed of 2.5 % 229 

glutaraldehyde in 100 mM phosphate buffer at pH = 7 for 15 min. After that, the samples were 230 

gently washed in 100 mM phosphate buffer at pH = 7 and dehydrated using the following graded 231 

ethanol baths series: 50 %, 60 %, 70 %, 80 %, 90 % (once) and 100 % (three times). The elapsed 232 

time per solution was 3 min (Dalgleish et al., 2004). Samples were then dried by using CO2 in a 233 

Supercritical Autosamdri-815B critical point dryer (Tousimis, Rockville, MD, USA). The silicon 234 

wafer was then mounted onto SEM stubs thanks to a carbon double-sided adhesive tape. Finally, 235 

samples were coated with iridium for 2 min (until reaching about 10 nm coating thickness).  236 

Turbiscan measurements 237 

Powder rehydration (0.1 %, w/w) was performed in water at 8 or 40 °C during 120 min and the 238 

dispersion was poured into a glass cell. Sample stability after rehydration was followed using a 239 

Turbiscan Classic (Formulaction, France). This technology used the principle of multiple light 240 

scattering that consists in illuminating a liquid sample with a pulsed near infrared light source (λ 241 

= 800 nm). After multiple scattering, photons emerge from the sample and are detected by two 242 

detectors: a transmission detector that receives the light transmitted through the sample (in the 243 

same direction as the light source) and a backscattering detector that receives the light reflected 244 

by the sample (at 135 ° of the light source direction). Transmitted and backscattered are 245 

informative for translucent and opaque samples, respectively. The detection head scanned the 246 
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entire height of the sample cell, acquiring transmission and backscattering data by 40 µm steps. 247 

Sample was scanned every minute for 30 min.  248 

 249 

2.10 Statistical analysis 250 

All measurements presented in this paper were performed on two independent spray-drying 251 

experiences. Reported data were analyzed by ANOVA using KyPlot software version 2.0 in order 252 

to determine the presence of significant differences between samples. Data were then analyzed 253 

using Tukey’s pair-wise comparison, at 5 % level of significance, to determine what samples are 254 

significantly different.  255 

 256 

3. Results and discussion 257 

3.1. Identification of the best matrix formulation and process conditions 258 

L. rhamnosus GG was encapsulated by spray-drying using dairy matrices composed of casein and 259 

denatured whey proteins being previously or not incubated with chymosin. Regarding process 260 

conditions, different outlet air temperatures were tested (85, 70 and 55 °C) for each matrix 261 

formulation (Table S1). Overall six powders were produced per batch. It appears that theoretical 262 

and measured outlet temperatures were very close. A good reproducibility between the two 263 

batches were observed. 264 

 265 

3.1.1. Survival of L. rhamnosus GG after spray-drying 266 
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The counts of viable cells before and after spray-drying in produced microparticles are shown in 267 

Table 1. Bacterial cell concentrations in powders were systematically comprised between 7.8 and 268 

8.9 log10CFU/g (Table 1). To provide health benefits, a concentration of 106 CFU/mL in the 269 

product at the time of consumption or a daily intake of 108 - 109 probiotics is often recommended 270 

(Tripathi and Giri, 2014). Taking into account these reference values, the concentration level find 271 

in our study was satisfying. Surprisingly, bacterial concentration in most of fresh powders (after 272 

drying) was found higher than the concentration in the feed solution (before drying). These 273 

results were associated with bacterial chain fragmentation outcome, which was already described 274 

when encapsulating the same bacteria by extrusion, another process causing high shear stress to 275 

the feed solution (Doherty et al., 2010). When spraying the concentrate, the passage through the 276 

small orifices of the bi-fluid nozzle and the subsequent nebulization mechanism (leading to 277 

conversion of the liquid jet into droplets) are known to apply high shear stresses to the feed 278 

solution. The survival and the colony organization were investigated before and after spraying 279 

(Figure 1). Light-microscope images on bacteria colored by Gram staining revealed significant 280 

modifications in bacterial cell organization. Before spraying, rod-shaped L. rhamnosus GG was 281 

organized in small linear chains whereas this organization was modified by spraying: individual 282 

cells were recovered in sprayed solution. Because both a bacterial chain and a single isolated cell 283 

lead to one colony on a petri dish, the shear stress due to spraying, which is responsible for 284 

breaking bacterial chains, caused an increase in bacterial cells concentration. In concentrate not 285 

incubated with the chymosin, bacterial cells concentration was of 6.8 and 7.4 log10CFU/g before 286 

and after spraying respectively. With previous enzymatic step in the concentrate, bacteria cells 287 

concentration was of 7.3 and 7.8 log10CFU/g before and after spraying, respectively. In 288 

concentrate not incubated or incubated with chymosin, the shear stress was responsible for an 289 

increase of 3.3 and 2.7 times more cells counted after spraying compared to cells counted before 290 
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spraying. Petit et al., (2015) showed that the formation of droplets by shear effect during spraying 291 

in bi-fluid nozzles was essentially controlled by air pressure and liquid viscosity. Thus, the outlet 292 

air temperature in the feed solution was not expected to influence the increase factor measured 293 

during spraying only, and the same increase factor was considered for the calculations related to 294 

spray-drying experiments. Finally, using corrected values, a log reduction of the cell counts can 295 

be measured providing information of the probiotic cells ability to survive to spray-drying 296 

conditions. In every cases, a decrease of less than 0.5 log was observed and confirmed the 297 

excellent survival of the bacteria during encapsulation by spray-drying (Table 1). 298 

 299 

3.1.2. Powder physicochemical properties 300 

Powder moisture content. Powder moisture content was determined for microparticles that were 301 

produced after incubation or not with the chymosin for each drying temperature. Regarding 302 

powders obtained from a concentrate that was not incubated with the chymosin, moisture 303 

contents of about 6.3, 7.9 and 11.6 % were observed for air outlet temperatures of 85, 70 and 55 304 

°C, respectively (Table 2). Similar values were obtained for the formulations incubated with 305 

chymosin: moisture contents were equal to circa 5.8, 8.0 and 12.0 % for outlet air temperatures of 306 

85, 70 and 55 °C respectively. For a given evaporation capacity, the decrease in the outlet air 307 

temperature in spray-drying is linked to an increase in its relative humidity. This results in an 308 

significant increase in the powder moisture content, as its water activity tends to equilibrate with 309 

air relative humidity (Schuck et al., 2012). Incubation of the protein concentrate with the 310 

chymosin did not significantly influence the moisture content values as shown in Table 2. 311 

Powder moisture content strongly influence the product stability and can also influence the 312 

probiotic viability during storage which is one of the quality parameter to take into account for 313 
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powders containing cells (Ying et al., 2010). A moisture content between 4 and 7 % is usually 314 

recommended for a good storage (Ananta et al., 2005). This condition was only achieved for the 315 

highest outlet air temperature used in the present study (i.e. 85 °C). 316 

Particle size. Particle size and more precisely the mean diameter (d50), was not significantly 317 

influenced by the outlet air temperature and by the incubation of the feed solution with chymosin 318 

(Table 2). All produced powders presented a mean size below 18 µm, well below 100 µm. This 319 

particle size range is advantageous to avoid negative sensorial impact when added to food 320 

(Hansen et al., 2002). 321 

Powder morphology. SEM images of powders did not permit to evidence any significant shape 322 

modification due to outlet air temperature or previous incubation with chymosin (Figure 2). All 323 

particles were smooth and non-spherical. Sadek et al. (2014) demonstrated that particle structure 324 

was governed by the composition of milk matrix. For example, whey proteins are known to form 325 

smooth, spherical and open hollow powders. On the contrary, the presence of caseins in the 326 

matrix is responsible of more wrinkled, non-spherical and dense powder structures (Gaiani et al., 327 

2007; Sadek et al., 2014). Here, the matrix was a 90:10 mixture of caseins and denatured whey 328 

proteins. As expected, particle morphology presented in Figure 2 was characteristic of high 329 

casein content powders. No bacteria were observed on the microparticles surface, even though 330 

more than one hundred microparticles were examined at elevated magnifications. The same 331 

phenomenon was already observed previously (Khem et al., 2016; Liu et al., 2015). It may be 332 

suggested that bacterial cells were totally embedded inside the microparticles and it will be check 333 

later in the paper. 334 

 335 
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3.1.3. Importance of chymosin incubation for powder reconstitution properties 336 

Powder rehydration properties are strongly linked to the following measures: wettability, 337 

dispersibility and solubility. These properties were measured for each formulation and spray-338 

drying conditions (Table 2).  339 

Powders wettability was not found significantly affected by the drying temperature. Only the 340 

powder produced without chymosin incubation at 55 °C presented a better wetting time 341 

compared to powder obtained at other outlet air temperatures (Table 2). This powder presented a 342 

high moisture content and was expected to have a stickier surface, making them prone to 343 

agglomeration and thus improving their wetting time by increasing their size (Ji et al., 2016). For 344 

powders coming from concentrate previously incubated with chymosin, their wettability was 345 

slightly improved. The wetting time of a milk powder is known to be strongly dependent on its 346 

composition (Fitzpatrick et al., 2016). For example, for a similar particle size, casein powders are 347 

known to present better wetting times than whey protein powders (Gaiani et al., 2011). All 348 

studied powders were not wetted in less than 5 min. The high wetting time observed here was 349 

surely the consequence of the low mean particle size of all samples (d50 < 18 µm), as fine 350 

particles present high difficulties to overcome water surface tension.  351 

Powders dispersibility produced with or without chymosin incubation was not found significantly 352 

affected by the drying temperature. Only powders produced after chymosin incubation at 55 °C 353 

presented significant differences (Table 2). Indeed, the elevated moisture content may induced 354 

powder agglomeration. Thus, an increase in particle size due to agglomerate can improve the 355 

dispersibility (Sharma et al., 2012). Generally, powders mainly composed of whey proteins 356 

present a good dispersibility, above 80 %, whereas for casein powders, the dispersibility can 357 
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decreases to only 10 % (Sadek et al., 2014). In the current study, the dispersibility results were 358 

characteristic of powders containing high casein content (Table 2). 359 

From a general point of view, small difference were observed in both wettability and 360 

dispersibility for all the powders. On the contrary, for solubility, strong differences are measured 361 

between powders coming from concentrate previously incubated or not with chymosin. The 362 

powders solubility was systematically lower when the feed solution was incubated with chymosin 363 

prior to spray-drying (Table 2). However, the solubility was not affected by the drying 364 

temperature. A recent work shown that whey protein and micellar casein powders present a 365 

solubility of 100 or 55 %, respectively (Sadek et al., 2014). In the current study, the solubility 366 

results for powders that were not incubated with chymosin were characteristic of high casein 367 

content powders and around 80 % (Table 2). On the other hand, for powders obtained after the 368 

chymosin incubation step, a significant lower solubility was measured around 30 % due to the 369 

production of water-insoluble microparticles. The exact phenomena occurring here will be 370 

detailed in the section 3.2. 371 

 372 

3.1.4 Selection of the best combination of matrix formulation and spray-drying temperature 373 

for bacterial encapsulation 374 

This first part of the study permitted to identify the best matrix formulation and the best spray-375 

drying conditions to encapsulate L. rhamnosus GG. Since all experiments permitted a high 376 

bacterial survival rate, the selection of the optimal powder was performed on the basis of 377 

physicochemical properties. In our study, the moisture content allowing a suitable storage and a 378 

good functional stability of the powder was only achieved for the highest outlet air temperature 379 
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(i.e. about 6 % moisture content for powders produced at 85 °C). The main functional advantage 380 

of the chymosin action before spray-drying resided in the production of powder with low 381 

solubility when reconstituted in water. The low solubility may be interesting in the food industry 382 

for the production of water-insoluble microparticles. For example, these structures may be able to 383 

vehicle and protect probiotic bacteria in high moisture content food by avoiding the bacteria 384 

dispersion in the product.  385 

Consequently, the best combinations for formulation (i) and spray-drying (ii) conditions to 386 

encapsulate L. rhamnosus GG were to use an initial incubation step with chymosin (i) followed 387 

by a spray-drying at 85 °C (ii). The end of the study will be focused on this particular powder. 388 

 389 

3.2. In-depth characterization of optimal powder: proteins previously incubated with 390 
chymosin and spray-dried at 85 °C 391 

SEM was used to characterize the powder behavior when reconstituted in water at 8 or 40 °C. 392 

When added to cold water (8 °C), the powder was partially rehydrated, allowing probiotics 393 

release in the medium (Figures 3A and 3B). Probiotic bacteria visualization in the partially 394 

rehydrated powder confirmed that bacteria were totally embedded inside the microparticles 395 

before reconstitution in water. On the contrary, after 30 min reconstitution in warm water (40 396 

°C), powder microparticles were dispersed but not rehydrated. Indeed, microparticles at 40 °C 397 

were totally intact on SEM images, which allowed bacteria retention into microparticles structure 398 

(Figure 3D and 3E). Some of them were still visible in cracks at the microparticles surface. This 399 

temperature-sensitive reconstitution behavior likely resulted from the action of chymosin in the 400 

feed solution prior to the spray-drying process. Chymosin is an enzyme used for milk clotting, 401 

which involves the enzymatic hydrolysis of κ-casein followed by the non-enzymatic interaction 402 
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between destabilized casein micelles leading to gel formation (Carlson et al., 1987). This gel 403 

formation is irreversible. In the developed microparticles production process, the enzymatic 404 

reaction took place before the spray-drying process but the formation of casein micelle network 405 

was avoided by maintaining feed solution temperature at 4 °C, as gel formation starts to be 406 

significant over 10 °C. The non-enzymatic reaction occurs only when powder was reconstituted 407 

above 10 °C, explaining the discrepancy in reconstitution behavior demonstrated at 8 and 40 °C 408 

(Figure 4). Indeed, at such high temperature, casein micelles react together by creating a compact 409 

network that prevents their rehydration, leading to a suspension of microparticles entrapping 410 

bacteria (Figure 3F). At 8 °C, repulsion forces between casein micelles kept them distant from 411 

each other and the matrix structure was more porous, permitting the rehydration of microparticles 412 

(Figure 3C). The decoupling of the enzymatic and non-enzymatic steps of the milk clotting 413 

mechanism was previously developed to encapsulate probiotic bacteria, unfortunately resulting in 414 

humid microparticles needing an expensive drying step to confer them a good storage stability 415 

(Burgain et al., 2013; Heidebach et al., 2009). Here, the good storage stability was obtained in 416 

one process step only and at a low cost by using spray-drying.  417 

This tremendous influence of chymosin on the different reconstitution behavior of microparticles 418 

at 8 and 40 °C was confirmed by measuring powder solubility after 30 minutes rehydration at 419 

different temperature ranging from 8 to 40 °C (Table 3). In this part, the time of powder 420 

rehydration before measuring solubility was increased to 30 minutes to accentuate solubility 421 

differences between the samples. First, powders produced without the chymosin incubation step 422 

were considered as control samples for the role of chymosin incubation and their solubility was 423 

determined. At 8 °C, probiotics were released in the medium (Figure 3) but some insoluble 424 

material remained in solution and was responsible for the incomplete solubility (79.6 %). Powder 425 
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solubility followed an increasing trend when reconstitution temperature was increased from 8 to 426 

40 °C, in agreement with Schuck et al. (1994). A totally different behavior was observed for 427 

microparticles produced after incubation with chymosin (Table 3) : at 8 °C, powder solubility 428 

fell to 35.7 %, and increasing the reconstitution temperature lowered even more powder 429 

solubility. The low powder solubility at 8 °C may be explained by the formation of insoluble 430 

materials during spray-drying process, likely owing to the triggering of casein gel formation 431 

when the temperature of the feed solution droplets increased in the course of the spray-drying 432 

process (i.e. after spraying but before the droplets reached the solid state). Insoluble material can 433 

be seen on SEM images obtained for microparticles reconstituted at 8 °C (Figure 3B).  434 

The stability of reconstituted powders after addition to water at 8 and 40 °C was followed by 435 

Turbiscan analysis with a view to confirm the temperature dependence of powder reconstitution 436 

behavior. At 8 °C, a small increase in transmitted light at the top of the tube was observed, 437 

corresponding to the thinning out of the medium. At the bottom of the tube, the sedimentation of 438 

only few particles only was detectable (Figure 5A). At 40 °C, the same phenomena were 439 

observed but in a well more marked extent (Figure 5B). These measurements confirmed that 440 

microparticles were mostly rehydrated at 8 °C and insoluble and dispersed at 40 °C. The slight 441 

sedimentation observed at 8 °C may result from the few insoluble material produced during 442 

spray-drying.  443 

 444 

Conclusion 445 

A combination of matrix composition and process condition able to encapsulate L. rhamnosus 446 

GG by spray-drying and presenting new temperature-dependent reconstitution behaviors was 447 
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successfully developed. These new functionalities were the result of chymosin action before 448 

spray-drying, which was decoupled from gel formation (Figure 6). This new process may be 449 

interesting for industry as: 450 

- Powder form provides many advantages for storage and transportation purposes (i), 451 

- Irreversible production of water-insoluble microparticles when dispersed in warm water 452 

presents interests for bacteria vectorization in high moisture content food products (such as milk, 453 

fermented drink, juice, yogurts, etc.) (ii), 454 

- Powder ability to almost fully rehydrate in cold water may be interesting for ferment 455 

production, as the release of encapsulated bacteria can be easily achieved by a judicious choice of 456 

reconstitution temperature (iii). 457 
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Table 1: L. rhamnosus GG concentration before and after drying with associated the Log 

reduction. A shear stress factor was used to correct values before drying to take into account 

the shear effect of the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample  

Theoretical 
outlet air 

temperature 
(°C) 

Shear stress 
factor 

Bacteria cells concentration (log10 CFU/g) 
Log  

reduction Before 
drying 

Before drying with 
correcting factor 

After drying 

without 
chymosin 
incubation 

85 

3.3 

7.5 ± 0.2 8.1 ± 0.2 7.8 ± 0.1 0.2 

70 7.9 ± 0.2 8.4 ± 0.2 8.3 ± 0.2 0.1 

55 7.6 ± 0.1 8.1 ± 0.1 7.8 ± 0.1 0.3 

with 
chymosin 
incubation 

85 

2.7 

8.6 ± 0.6 9.0 ± 0.6 8.7 ± 0.1 0.3 

70 9.0 ± 0.8 9.4 ± 0.8 8.9 ± 0.3 0.5 

55 9.0 ± 1.1 9.4 ± 1.1 8.9 ± 0.9 0.5 
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Table 2: Physicochemical properties of microparticles depending on spray-drying conditions 

and matrix composition (moisture content, mean particle size d50 and rehydration properties). 

 

 

Sample  

Theoretical 
outlet air 

temperature 
(°C) 

Moisture 
content  

(%) 

Mean particle 
size  
(µm) 

Rehydration properties 

Wettability 
(s) 

Dispersibility 
(%) 

Solubility 
(%) 

without 
chymosin 
incubation 

85 6.3 ± 0.1a 17.7 ± 0.4a 2048 ± 43a 16.3 ± 1.2a 76.6 ± 1.9a 

70 7.9 ± 0.2b 13.8 ± 0.4ab 217 ± 25a 15.1 ± 0.2a 87.1 ± 1.1b 

55 11.6 ± 0.1c 10.6 ± 0.9ab 1734 ± 284b 15.1 ± 0.4a 83.9 ± 1.3ab 

with 
chymosin 
incubation 

85 5.8 ± 0.2a 14.7 ± 2.8ab 1661 ± 64b 18.5 ± 1.3ab  30.5 ± 2.5c 

70 8.0 ± 0.1b 13.1 ± 0.5ab 1539 ± 70b 18.3 ± 1.7ab  31.7 ± 0.7c 

55 12.0 ± 0.1c 9.7 ± 1.0b 1606 ± 82b 22.2 ± 0.9b  32.9 ± 1.6c 

Values followed by a different superscript letter in the same column are significantly different 
at P < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

Table 3: Powder solubility (for formulations spray-dried at 85 °C) according to reconstitution 
temperature (°C). 

 

 

Reconstitution 
temperatures (°C) 

Solubility (%) 

Microparticles without 
chymosin incubation 

Microparticles with 
chymosin incubation 

8 79.6 ± 1.2a 35.7 ± 0.4a 

15 74.5 ± 1.8a 31.2 ± 0.4a 

20 87.5 ± 0.3b 26.8 ± 0.9ab 

30 86.3 ± 1.9bc 25.6 ± 0.1bc 

40 93.8 ± 0.3bc 14.6 ± 0.1d 

Values followed by a different superscript letter in the same column are significantly different 
at P < 0.05. 
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Figure 1: Effect of spraying-induced shear stress on cellular organization.  
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Figure 2: Scanning electron microscopy of microparticles (x 3000 magnification). L. rhamnosus GG was encapsulated in milk matrices without 

(1, 2 and 3) or with (1’, 2’ and 3’) chymosin incubation before spray-drying. Different outlet air temperatures were used during spray-drying: 85 

°C (1 and 1’), 70 °C (2 and 2’) and 55 °C (3 and 3’).  
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Figure 3: Scanning electron microscopy of microparticles after reconstitution at 8 °C (A, B and C) and 40 °C (D, E and F). Microparticles were 

reconstituted in water during 2 h under stirring (500 rpm). Magnifications: × 2000 (A, D), × 10000 (B, E), × 50000 (C, F). 
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Figure 4: Influence of chymosin action prior to spray-drying on microparticles reconstitution behavior at 8 and 40 °C. CMP: 

caseinomacropeptide 
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Figure 5: Evolution of backscattered and the transmitted light after reconstitution of microparticles in water at 8 (A) or 40 °C (B). Arrows 

indicate the direction of evolution from the beginning to the end (20 minutes) of the measure. Backscattering and transmission were used to 

follow microparticles sedimentation at the bottom of the tube and clarification of the sample at the top of the tube respectively. 
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Figure 6: Production of microparticles containing LGG by spray drying: general process. 
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Highlights 
 

• Good survival of L. rhamnosus GG after spray-drying in milk protein matrices 

• Clotting reaction control during process to produce matrices with new functionalities 

• Water-insoluble matrices when microparticles are reconstituted in hot water 

• Microparticles rehydration and probiotic release upon reconstitution in cold water 

 


