5,278 research outputs found

    Coastline Kriging: A Bayesian Approach

    Full text link
    Statistical interpolation of chemical concentrations at new locations is an important step in assessing a worker's exposure level. When measurements are available from coastlines, as is the case in coastal clean-up operations in oil spills, one may need a mechanism to carry out spatial interpolation at new locations along the coast. In this paper we present a simple model for analyzing spatial data that is observed over a coastline. We demonstrate four different models using two different representations of the coast using curves. The four models were demonstrated on simulated data and one of them was also demonstrated on a dataset from the GuLF STUDY. Our contribution here is to offer practicing hygienists and exposure assessors with a simple and easy method to implement Bayesian hierarchical models for analyzing and interpolating coastal chemical concentrations

    Microwave Scattering and Noise Emission from Afterglow Plasmas in a Magnetic Field

    Get PDF
    The microwave reflection and noise emission (extraordinary mode) from cylindrical rare‐gas (He, Ne, Ar) afterglow plasmas in an axial magnetic field is described. Reflection and noise emission are measured as a function of magnetic field near electron cyclotron resonance (ω ≈ ω_c) with electron density as a parameter (ω_p < ω). A broad peak, which shifts to lower values of ω_c/ω) as electron density increases, is observed for (ω_c/ω) ≤ 1. For all values of electron density a second sharp peak is found very close to cyclotron resonance in reflection measurements. This peak does not occur in the emission data. Calculations of reflection and emission using a theoretical model consisting of a one‐dimensional, cold plasma slab with nonuniform electron density yield results in qualitative agreement with the observations. Both the experimental and theoretical results suggest that the broad, density‐dependent peak involves resonance effects at the upper hybrid frequency ((ω_h)^2 = (ω_c)^2 + (ω_p)^2) of the plasma

    Road blocks on paleogenomes - polymerase extension profiling reveals the frequency of blocking lesions in ancient DNA

    Get PDF
    Although the last few years have seen great progress in DNA sequence retrieval from fossil specimens, some of the characteristics of ancient DNA remain poorly understood. This is particularly true for blocking lesions, i.e. chemical alterations that cannot be bypassed by DNA polymerases and thus prevent amplification and subsequent sequencing of affected molecules. Some studies have concluded that the vast majority of ancient DNA molecules carry blocking lesions, suggesting that the removal, repair or bypass of blocking lesions might dramatically increase both the time depth and geographical range of specimens available for ancient DNA analysis. However, previous studies used very indirect detection methods that did not provide conclusive estimates on the frequency of blocking lesions in endogenous ancient DNA. We developed a new method, polymerase extension profiling (PEP), that directly reveals occurrences of polymerase stalling on DNA templates. By sequencing thousands of single primer extension products using PEP methodology, we have for the first time directly identified blocking lesions in ancient DNA on a single molecule level. Although we found clear evidence for blocking lesions in three out of four ancient samples, no more than 40% of the molecules were affected in any of the samples, indicating that such modifications are far less frequent in ancient DNA than previously thought

    Separation of lymphocytes by electrophoresis under terrestrial conditions and at zero gravity, phase 3

    Get PDF
    Electrophoretic mobilities (EPM) of peripheral lymphocytes were studied from normal subjects, chronic hemodialysis patients and kidney transplant recipients. A technique to separate B lymphocytes and null cells from non-T lymphocyte preparation was developed. The experiments were designed to determine which subpopulation of the non-T lymphocytes is primarily affected and shows a decreased EPM in chronic hemodialysis patients and kidney transplant recipients

    IL-1α and TNF-α Down-Regulate CRH Receptor-2 mRNA Expression in the Mouse Heart

    Get PDF
    Two receptors (CRH receptor type 1 and CRH receptor type 2) have been identified for the stress-induced neuropeptide, CRH and related peptides, urocortin, and urocortin II. We previously found marked down-regulation of cardiac CRH receptor type 2 expression following administration of bacterial endotoxin, lipopolysaccharide, a model of systemic immune activation, and inflammation. We postulated that inflammatory cytokines may regulate CRH receptor type 2. We show that systemic IL-1α administration significantly down-regulates CRH receptor type 2 mRNA in mouse heart. In addition, TNFα treatment also reduces CRH receptor type 2 mRNA expression, although the effect was not as marked as with IL-1α. However, CRH receptor type 2 mRNA expression is not altered in adult mouse ventricular cardiomyocytes stimulated in vitro with TNFα or IL-1α. Thus, cytokine regulation may be indirect. Exogenous administration of corticosterone in vivo or acute restraint stress also reduces cardiac CRH receptor type 2 mRNA expression, but like cytokines, in vitro corticosterone treatment does not modulate expression in cardiomyocytes. Interestingly, treatment with urocortin significantly decreases CRH receptor type 2 mRNA in cultured cardiomyocytes. We speculate that in vivo, inflammatory mediators such as lipopolysaccharide and/or cytokines may increase urocortin, which in turn down-regulates CRH receptor type 2 expression in the heart. Because CRH and urocortin increase cardiac contractility and coronary blood flow, impaired CRH receptor type 2 function during systemic inflammation may ultimately diminish the adaptive cardiac response to adverse conditions

    Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering

    Full text link
    We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of gg-factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength %(ratio of exchange constant JJ and mean level %spacing \spacing 0.3\simeq 0.3) significantly increases gg-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and leads to the possibility to observe gg-factors larger than two.Comment: RevTex, 2 figures inserte

    Prospects for probing the gluon density in protons using heavy quarkonium hadroproduction

    Get PDF
    We examine carefully bottomonia hadroproduction in proton colliders, especially focusing on the LHC, as a way of probing the gluon density in protons. To this end we develop some previous work, getting quantitative predictions and concluding that our proposal can be useful to perform consistency checks of the parameterization sets of different parton distribution functions.Comment: LaTeX, 14 pages, 6 EPS figure

    Studies of Thermophysical Properties of Metals and Semiconductors by Containerless Processing Under Microgravity

    Get PDF
    Electromagnetic levitation under microgravity provides unique opportunities for the investigation of liquid metals, alloys and semiconductors, both above and below their melting temperatures, with minimized disturbances of the sample under investigation. The opportunity to perform such experiments will soon be available on the ISS with the EML payload which is currently being integrated. With its high-performance diagnostics systems EML allows to measure various physical properties such as heat capacity, enthalpy of fusion, viscosity, surface tension, thermal expansion coefficient, and electrical conductivity. In studies of nucleation and solidification phenomena the nucleation kinetics, phase selection, and solidification velocity can be determined. Advanced measurement capabilities currently being studied include the measurement and control of the residual oxygen content of the process atmosphere and a complementary inductive technique to measure thermophysical properties

    On the uncertainty relations and squeezed states for the quantum mechanics on a circle

    Get PDF
    The uncertainty relations for the position and momentum of a quantum particle on a circle are identified minimized by the corresponding coherent states. The sqeezed states in the case of the circular motion are introduced and discussed in the context of the uncertainty relations.Comment: 4 figure

    The photon‐induced reactions of chemisorbed CH<sub>3</sub>Br on Pt{111}

    Get PDF
    The photochemistry of chemisorbed CH3Br on Pt{111} has been investigated using high resolution electron energy loss spectroscopy (HREELS) and thermal desorption. The primary photon‐induced reaction involves the cleavage of the C–Br bond, giving rise to chemisorbed CH3 and Br, both of which can be identified in HREELS. From the angular dependence of the loss peaks, the symmetry of the CH3 surface complex is shown to be C3v. HBr can also be identified in subsequent thermal desorption. Experiments performed directly with HBr on Pt{111} indicate that molecular HBr adsorbs dissociatively on this surface. This result, in combination with observations of the C–H vibrational mode as a function of temperature, shows that the production of HBr arises from a secondary surface reaction between Br and CHx fragments. Based on the wavelength dependence of the fragmentation cross section and the photoemission spectrum of adsorbed CH3Br the primary photon‐induced reaction to a charge transfer excitation is ascribed
    corecore