64 research outputs found

    A field deployable method for a rapid screening analysis of inorganic arsenic in seaweed

    Get PDF
    The authors thank the support for getting the seaweed samples from the projects funded under the Department of Agriculture, Food and the Marine’s Competitive research programmes in Ireland. Reference number 14 SF 860. The authors thank Corny Brombach for the graphical abstract.Peer reviewedPublisher PD

    Blue Carbon and Marine Carbon Sequestration in Irish Waters and Coastal Habitats

    Get PDF
    Atmospheric CO2 is rising globally. Opportunities for reducing this trend include energy sector adjustments and management of both land and ocean resources. Improved management of coastal and oceanic ecosystems is therefore poised to contribute to, and enhance, climate mitigation and adaptation. This report outlines the emergence of blue carbon as a concept for the integration of coastal carbon dynamics into policy and management frameworks and defines blue carbon ecosystems. It also emphasises the importance of marine carbon sequestration and highlights its potential role in climate adaptation. Ireland is estimated to store at least 9.2 Mt of carbon in its saltmarsh and seagrass habitats, which cover an estimated minimum area of 162 km2. Estimates of carbon stocks in potential blue carbon ecosystems such as macroalgae beds are hampered by lack of data on extent, productivity and actual contribution. Irish coastal blue carbon ecosystems and their carbon sequestration capacity are currently threatened by anthropogenic factors such as land reclamation and poor water quality. The possibility of including saltmarsh and seagrass habitats in Ireland’s National Inventory Report on GHG emissions to the United Nations Framework Convention on Climate Change (UNFCCC) and including Ireland’s potential blue carbon ecosystems in Ireland’s Nationally Determined Contributions is highlighted. The critical knowledge gaps and future research priorities are outlined, so that Ireland can advance the pace of scientific discovery whilst harnessing the climate change potential of its coastal and marine environment.Marine Institut

    Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: Inherent variations determine species-specific daily allowable consumption

    Get PDF
    This study represents a large-scale investigation into iodine contents in three commercially important and edible seaweed species from the North Atlantic: the brown algae Saccharina latissima and Alaria esculenta, and the red alga Palmaria palmata. Variability among and within species were explored in terms of temporal and spatial variations in addition to biomass source. Mean iodine concentration in bulk seaweed biomass was speciesspecific: Saccharina > Alaria > Palmaria. Iodine contents of Saccharina biomass were similar between years and seasons, but varied significantly between sampling locations and biomass sources. In Alaria and Palmaria, none of the independent variables examined contributed significantly to the small variations observed. Our data suggest that all three species are rich sources of iodine, and only 32, 283, or 2149 mg dry weight of unprocessed dry biomass of Saccharina, Alaria, or Palmaria, respectively, meets the recommended daily intake levels for most healthy humans.publishedVersio

    Arsenolipids are not uniformly distributed within two brown macroalgal species Saccharina latissima and Alaria esculenta

    Get PDF
    Open access via Springer Compact Agreement Acknowledgements Emeline Moreira is kindly thanked for her assistance with re-analysing a couple of samples for AsSugar measurement. Johannes Beere is thanked for the analysis on the Orbitrap for batch A. Urd Grandorf Bak is thanked for her helpful advice on seaweed. Funding information This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement no. 656596.Peer reviewedPublisher PD

    Coastal iodine emissions: part 2. Chamber experiments of particle formation from Laminaria digitata-derived and laboratory-generated I2

    Get PDF
    Laboratory studies into particle formation from Laminaria digitata macroalgae were undertaken to elucidate aerosol formation for a range of I2 (0.3−76 ppbv) and O3(<3−96 ppbv) mixing ratios and light levels (EPAR = 15, 100,and 235 ÎŒmol photons m−2 s−1). No clear pattern was observed for I2 or aerosol parameters as a function of light levels. Aerosol mass fluxes and particle number concentrations,were, however, correlated with I2 mixing ratios for low O3mixing ratios of <3 ppbv (R2 = 0.7 and 0.83, respectively for low light levels, and R2 = 0.95 and 0.98, respectively for medium lightlevels). Additional experiments into particle production as a function of laboratory-generated I2, over a mixing ratio range of 1−8ppbv, were conducted under moderate O3 mixing ratios (∌24 ppbv) where a clear, 100-fold or greater, increase in the aeroso lnumber concentrations and mass fluxes was observed compared to the low O3 experiments. A linear relationship between particle concentration and I2 was found, in reasonable agreement with previous studies. Scaling the laboratory relationship to aerosol concentrations typical of the coastal boundary layer suggests a I2 mixing ratio range of 6−93 pptv can account for the observed particle production events. Aerosol number concentration produced from I2 is more than a factor of 10 higher than thatproduced from CH2I2 for the same mixing ratios

    Coastal iodine emissions. 1. Release of I2 by Laminaria digitata in chamber experiments

    Get PDF
    Tidally exposed macroalgae emit large amounts of I2 and iodocarbons that produce hotspots of iodine chemistry and intense particle nucleation events in the coastal marine boundary layer. Current emission rates are poorly characterized, however,with reported emission rates varying by 3 orders of magnitude. In this study, I2 emissions from 25 Laminaria digitata samples were investigated in a simulation chamber using incoherent broadbandcavity-enhanced absorption spectroscopy (IBBCEAS). The chamber design allowed gradual extraction of seawater to simulate tidal emersion of algae. Samples were exposed to air with or without O3 and to varying irradiances. Emission of I2 occurred in four distinct stages: (1) moderate emissions from partially submerged samples;(2) a strong release by fully emerged samples; (3) slowing or stopping of I2 release; and (4) later pulses of I2 evident in some samples. Emission rates were highly variable and ranged from 7to 616 pmol min−1 gFW−1 in ozone-free air, with a median value of 55 pmol min−1 gFW−1 for 20 samples

    The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages

    Get PDF
    Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, ÎČ-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p < 0.05) and IL-8 (p < 0.05) while that of P. lutheri inhibited IL-6 (p < 0.01) production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1) by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ÎșB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases

    Nutramara - Marine Functional Foods Research Initiative (MFFRI/07/01)

    Get PDF
    Final report of projectThe NutraMara – Marine Functional Foods Research Initiative was conceived by Sea Change - A Marine Knowledge, Research and Innovation Strategy for Ireland 2007-2013. The goal was to develop a collaborative funding mechanism that would create new research capacity and build the capabilities required to maximise the potential of Ireland’s extensive marine bioresources. By supporting a strong interdisciplinary research team, capable of exploring marine animals and plants as a sustainable source of materials for use as functional ingredients and foods, the vision for NutraMara was to position Ireland to the fore in use of marine bioresources as health beneficial ingredients. Commencing in 2008 and supported by funds of €5.2 million from the Marine Institute and the Department of Agriculture, Food and the Marine, the research programme was led by Teagasc as the head of a multi-institutional consortium. The NutraMara consortium comprises marine bioresources and bioscience expertise, with food science and technology expertise from University College Cork; University College Dublin; the National University of Ireland Galway; the University of Limerick and Ulster University. Research effort was directed towards exploring Ireland’s marine bioresources – including macro- and microalgae, finfish and shellfish from wild and cultured sources: and discards from processing fish as sources of novel ingredients with bioactive characteristics. This discovery activity involved the collection of over 600 samples from 39 species of algae and fish and the analysis of 5,800 extracts, which resulted in 3,000 positive “hits” for bioactivity. The NutraMara consortium has built a strong research capacity to identify, characterise and evaluate marine-origin bioactives for use as/in functional foods. It further built the capacity to develop model foods enhanced with these marine-origin functional ingredients; providing insights to the processing challenges associated with producing functional ingredients from marine organisms. The consortium was actively engaged in research activities designed to identify and assess bioactive compounds from available marine resources, including polyphenols, proteins/peptides, amino acids, polysaccharides, polyunsaturated fatty acids and materials with antioxidant, probiotic or prebiotic properties. A key component of NutraMara’s activities was the development of human capital. The recruitment of M.Sc. and PhD students and their integration within a dynamic research environment that has strong links to industry, provided lasting expertise and capabilities, which are relevant to the needs of Ireland’s food and marine sectors. NutraMara research led to the awarding of eighteen PhDs and recruitment of 21 post-doctoral researchers over the eight year research programme. In excess of 80 peer reviewed publications resulted from this research and more publications are planned. A further 100 posters and conference presentations were also delivered by NutraMara researchers and Principal Investigators. The development and implementation of training and exchange programmes aimed at providing early stage researchers with inter-disciplinary skills that are critical to their development as researchers, enhanced the research capacity of institutions, the industry sectors and the country as a whole. Principal Investigators involved in leading the NutraMara research programme have secured additional research grants of almost €6 million from national and international sources and are engaged in extensive research collaboration involving marine and food research expertise; an activity which did not exist prior to NutraMara. The dissemination of knowledge and transfer of research results to industry were key activities in the research programme. The research outputs and visibility of NutraMara activity nationally resulted in 10 companies engaging in research and development activity with the consortium. Regular workshops and conferences organised by NutraMara attracted close to five hundred participants from Ireland and overseas. Members of the NutraMara core PI group have contributed to the formulation of new national foods and marine research policy and national research agenda, both during the national prioritisation exercise and in sectoral research strategies. This final project report describes the process by which research targets were identified, and the results of extensive screening and evaluation of compounds extracted from marine bioresources. It also highlights the development of new protocols designed to extract compounds in ways that are food friendly. Evaluating the functional properties, bioactivity and bioavailability of high potential marine compounds involved in vitro and in vivo testing. Pilot animal and human intervention studies yielded further insight to the potential and challenges in developing marine functional ingredients. As a result of work completed within the NutraMara consortium, Ireland is well positioned to continue to contribute to the development of ingredients derived from marine organisms and in doing so support the on-going development of Ireland’s food sector.Marine Institut

    Impacts of Increased Atmospheric CO2 on Ocean Chemistry and Ecosystems

    Get PDF
    Lead Partner: National University of Ireland Galway. Project Partner: Marine InstituteOcean pH is a function of the seawater carbonate system, which is a function of both the influx of CO2 from the atmosphere and the resulting concentration of CO2 in the water (i.e. pCO2). Uptake of anthropogenic carbon dioxide from the atmosphere is reducing ocean pH; a phenomenon referred to as ocean acidification. It is estimated that there has been a decrease of 0.1 pH units in the surface waters of the world’s oceans since the start of the industrial revolution with a reduction of 0.3 – 0.5 forecast by 2100. There is growing concern over the potential consequences of ocean acidification for marine ecosystems and the services they provide for mankind. This project was aimed at enabling the capability and developing the expertise within Ireland to measure and quantify the flux of CO2 into (or out of) the ocean; to monitor seasonal trends in pCO2 and CO2 fluxes; to determine the current baseline state and variability of the carbonate system; and to evaluate the potential impact of future changes on ecosystems with the ultimate aim of contributing to more informed policy development.This project (Grant-Aid Agreement No. SS/CC/07/001(01)) was carried out under the Sea Change strategy with the support of the Marine Institute and the Marine Research Sub-Programme of the National Development Plan 2007–2013. Support was also provided by NUI Galway College Fellowship and by the EPA Fellowship 2006-PhD-AQ-2.Funder: Marine Institut

    Developing a Sustainable and Circular Bio-Based Economy in EU:By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment &amp; Biodiversity, and People &amp; Business

    Get PDF
    This paper gives an overview of development of the EU-bioeconomy, 2014-2020. The Vision of the new Circular Bio-based Economy, CBE is presented: Unlocking the full potential of all types of sustainably sourced biomass, crop residues, industrial side-streams, and wastes by transforming it into value-added products. The resulting product portfolio consists of a wide spectrum of value-added products, addressing societal and consumer needs. Food and feed, bio-based chemicals, materials, healthpromoting products; and bio-based fuels. The pillars of CBE are described, including biotechnology, microbial production, enzyme technology, green chemistry, integrated physical/chemical processing, policies, conducive framework conditions and public private partnerships. Drivers of CBE are analyzed: Biomass supply, biorefineries, value chain clusters, rural development, farmers, foresters and mariners; urgent need for climate change mitigation and adaptation, and stopping biodiversity loss. Improved framework conditions can be drivers but also obstacles if not updated to the era of circularity. Key figures, across the entire BBI-JU project portfolio (20142020) are provided, including expansion into biomass feedstocks, terrestrial and aquatic, and an impressive broadening of bio-based product portfolio, including higher-value, healthpromoting products for man, animal, plants and soil. Parallel to this, diversification of industrial segments and types of funding instruments developed, reflecting industrial needs and academic research involvement. Impact assessment is highlighted. A number of specific recommendations are given; e.g., including international win/win CBEcollaborations, as e.g., expanding African EU collaboration into CBE. In contrast to fossil resources biological resources are found worldwide. In its outset, circular biobased economy, can be implemented all over, in a just manner, not the least stimulating rural developmentThis study received funding only for covering the production costs (carried by the public BBI-JU secretariat).info:eu-repo/semantics/publishedVersio
    • 

    corecore