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Sea Change: A Marine Knowledge, Research & Innovation Strategy for Ireland
Sea Change—A Marine Knowledge, Research & Innovation Strategy for Ireland 2007-2013—was launched in
early 2007 and was the outcome of extensive analysis and consultation with government departments, state
agencies, industry and the third-level sector.  It outlines a vision for the development of Ireland’s marine sector
and sets clear objectives aimed at achieving this vision, namely to:
1. Assist existing, and largely indigenous, marine sub-sectors to improve their overall competitiveness
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from research. 
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resource in a manner that ensures its sustainability and protects marine biodiversity and ecosystems. 
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Marine Institute Act 1991.
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EXECUTIVE SUMMARY 

The NutraMara – Marine Functional Foods Research Initiative was conceived by Sea Change - A 

Marine Knowledge, Research and Innovation Strategy for Ireland 2007-2013. The goal was to 

develop a collaborative funding mechanism that would create new research capacity and build 

the capabilities required to maximise the potential of Ireland’s extensive marine bioresources. 

By supporting a strong interdisciplinary research team, capable of exploring marine animals and 

plants as a sustainable source of materials for use as functional ingredients and foods, the vision 

for NutraMara was to position Ireland to the fore in use of marine bioresources as health 

beneficial ingredients.  

Commencing in 2008 and supported by funds of €5.2 million from the Marine Institute and the 

Department of Agriculture, Food and the Marine, the research programme was led by Teagasc 

as the head of a multi-institutional consortium. The NutraMara consortium comprises marine 

bioresources and bioscience expertise, with food science and technology expertise from 

University College Cork; University College Dublin; the National University of Ireland Galway; 

the University of Limerick and Ulster University. 

Research effort was directed towards exploring Ireland’s marine bioresources – including 

macro- and microalgae, finfish and shellfish from wild and cultured sources: and discards from 

processing fish as sources of novel ingredients with bioactive characteristics. This discovery 

activity involved the collection of over 600 samples from 39 species of algae and fish and the 

analysis of 5,800 extracts, which resulted in 3,000 positive “hits” for bioactivity.  

The NutraMara consortium has built a strong research capacity to identify, characterise and 

evaluate marine-origin bioactives for use as/in functional foods. It further built the capacity to 

develop model foods enhanced with these marine-origin functional ingredients; providing 

insights to the processing challenges associated with producing functional ingredients from 

marine organisms. 

The consortium was actively engaged in research activities designed to identify and assess 

bioactive compounds from available marine resources, including polyphenols, 

proteins/peptides, amino acids, polysaccharides, polyunsaturated fatty acids and materials with 

antioxidant, probiotic or prebiotic properties. 

A key component of NutraMara’s activities was the development of human capital. The 

recruitment of M.Sc. and PhD students and their integration within a dynamic research 

environment that has strong links to industry, provided lasting expertise and capabilities, which 

are relevant to the needs of Ireland’s food and marine sectors. NutraMara research led to the 

awarding of eighteen PhDs and recruitment of 21 post-doctoral researchers over the eight 

year research programme. In excess of 80 peer reviewed publications resulted from this 
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research and more publications are planned. A further 100 posters and conference 

presentations were also delivered by NutraMara researchers and Principal Investigators. 

The development and implementation of training and exchange programmes aimed at 

providing early stage researchers with inter-disciplinary skills that are critical to their 

development as researchers, enhanced the research capacity of institutions, the industry 

sectors and the country as a whole. 

Principal Investigators involved in leading the NutraMara research programme have secured 

additional research grants of almost €6 million from national and international sources and are 

engaged in extensive research collaboration involving marine and food research expertise; an 

activity which did not exist prior to NutraMara. 

The dissemination of knowledge and transfer of research results to industry were key activities 

in the research programme. The research outputs and visibility of NutraMara activity nationally 

resulted in 10 companies engaging in research and development activity with the consortium. 

Regular workshops and conferences organised by NutraMara attracted close to five hundred 

participants from Ireland and overseas. 

Members of the NutraMara core PI group have contributed to the formulation of new national 

foods and marine research policy and national research agenda, both during the national 

prioritisation exercise and in sectoral research strategies.  

This final project report describes the process by which research targets were identified, and 

the results of extensive screening and evaluation of compounds extracted from marine 

bioresources. It also highlights the development of new protocols designed to extract 

compounds in ways that are food friendly. Evaluating the functional properties, bioactivity and 

bioavailability of high potential marine compounds involved in vitro and in vivo testing. Pilot 

animal and human intervention studies yielded further insight to the potential and challenges in 

developing marine functional ingredients.  

As a result of work completed within the NutraMara consortium, Ireland is well positioned to 

continue to contribute to the development of ingredients derived from marine organisms and 

in doing so support the on-going development of Ireland’s food sector. 
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1. INTRODUCTION

1.1. Background to the project 

NutraMara was formally launched as a national Marine Functional Food Research Initiative 

(MFFRI) in 2008. A research consortium led by Teagasc involving University College Cork, the 

National University of Ireland Galway, the University of Limerick, University College Dublin 

and Ulster University, successfully bid for what was a co-funded research programme 

supported by the Marine Institute and the Department of Agriculture, Food and the Marine 

(DAFM).  

Ireland was recognised as having both the natural resources and the expertise to become a 

significant player in the new and expanding market for marine functional foods and food 

ingredients.  

NutraMara’s research activity was directed towards exploring the potential to use fish 

processing discards, the sustainable marine species, and products from aquaculture, as 

functional foods and ingredients. These areas were identified as research priorities at a 

workshop hosted by the Marine Institute and attended by food companies, food ingredient 

suppliers, seafood processors, biotechnology firms and researchers from industry and other 

institutions.  

This initiative was recognised as a key activity in developing the potential of marine functional 

foods, as identified through the consultation process around Sea Change - A Marine Knowledge, 

Research and Innovation Strategy for Ireland 2007-2013. The aim of the collaborative funding was 

to create new research capacity and build the capabilities required to maximise the potential of 

Ireland’s extensive marine bioresources, by supporting a strong interdisciplinary research 

team, capable of exploring marine animals and algae as a sustainable source of materials for use 

as functional ingredients and foods.  

1.2. Functional foods 

Functional foods deliver health benefits over and above meeting a basic nutritional need. The 

underlying concept of a functional food is that of a food, or food component(s), which can 

contribute beneficially to human body functions by improving the state of well-being and 

reducing the risk of disease. The contribution of functional foods are not confined to 

supporting human development, growth and body maintenance, and are recognised as helping 

in maintaining the quality of human life.  

In 1999, a European Community (EC) Concerted Action on Functional Foods Science in 

Europe (FUFOSE) tightened the definition of “functional food”. It declared a food as 

“functional” if – “it is satisfactorily demonstrated to affect beneficially one or more target 
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functions in the body, beyond adequate nutritional effects, in a way that is relevant to either an 

improved state of health and well-being and/or reduction in risk of disease”. Functional foods 

must remain foods; and they must demonstrate their effects from amounts that can normally 

be consumed in the diet. They are not pills or capsules, but part of a normal food pattern. 

Unlike dietary supplements, which are taken in pill or liquid form, functional foods also have to 

meet the taste requirements and preferences of consumers. 

Functional foods fill the space between conventional food and dietary supplements. Some 

common examples of functional foods include: light or low calorie products; food with low- 

salt levels; cholesterol-lowering spreads and beverages; foods that are specifically low-glycemic; 

and products that carry an antioxidant claim such as some teas and juices. Potentially 

exploiting a marine sourced material is a number of spreads, breads and beverages that contain 

Omega-3 fats. Conventional foods consumed in their natural state (e.g. fruit, vegetables, and 

grains) or novel foods that incorporate functional components to provide greater health 

benefits, also fit within the definition of functional foods.  

1.3. Summary of the project 

1.3.1. Introduction 

NutraMara was an all-Ireland, multidisciplinary research consortium designed to build new 

research capacity in an area that offers significant economic potential for Ireland’s marine 

foods and food ingredients sectors. The work of the consortium focused on scientific 

knowledge creation, establishing new capabilities and developing processes to assess and 

evaluate the potential of marine-origin bioactive compounds as components in functional foods 

and as food ingredients. NutraMara is a key national strategic research programme, which 

integrates Irish marine science and food science expertise and capabilities from 6 institutions 

throughout the island of Ireland. This partnership approach provided the capability to establish 

and develop a coordinated approach for the exploitation of Irish marine resources with 

potential food and health applications. 

The NutraMara consortium built a strong research capacity to identify, characterise and 

evaluate marine-origin bioactive compounds for use as/in functional foods. Additionally, it is 

building the capacity to develop model foods enhanced with these marine-origin functional 

ingredients and to provide insights into the processing challenges associated with producing 

functional ingredients from marine organisms. 

The consortium actively engaged in research activities designed to identify and assess bioactive 

compounds from available marine resources, including polyphenols, proteins/peptides, amino 

acids, polysaccharides, polyunsaturated fatty acids and materials with antioxidant, probiotic or 

prebiotic properties. 

A key component of NutraMara’s activities was the development of human capital. The 

recruitment of M.Sc. and PhD students and their integration within a dynamic research 
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environment that has strong links to industry provided lasting expertise and capabilities, which 

are relevant to the needs of Ireland’s food and marine sectors. The development and 

implementation of training and exchange programmes aimed at providing early stage 

researchers with inter-disciplinary skills that are critical to their development as researchers, 

enhances the research capacity of institutions, the industry sectors and the country as a whole. 

In recognising the importance of capturing and protecting research outputs, and making them 

available to industry, NutraMara developed and implemented Intellectual Property (IP) policies 

and procedures that are based upon national guidelines concerning the management of 

intellectual property. Allied to this, NutraMara has expanded its interaction with academic 

collaborators in complementary scientific fields, whilst also strengthening linkages and 

collaborations with industry partners.  

The NutraMara consortium was acutely aware the initial research grant was provided to 

develop and establish new capabilities, and that continuity was required to sustain the research 

activities. During the final stages of the initial grant, members of the NutraMara consortium 

targeted national and international competitive grant support. During 2013, Principal 

Investigators involved in NutraMara were successful in being awarded research funds from the 

Department of Agriculture, Food and the Marine (DAFM), Food Institutional Research 

Measure (FIRM) to the value of €2.8M, allowing 5 new research projects with strong links to 

NutraMara. And during 2014, NutraMara PIs were again successful in winning substantial 

research grants from Science Foundation Ireland, DAFM and the EU. Several NutraMara PIs 

were also awarded funds under the Teagasc Walsh Fellowships to co-supervise research 

students in co-operation with Teagasc researchers to work engage in research related to the 

NutraMara research programme.  

1.4. Overview of the work programme 

The foundation of the NutraMara research programme was a Feasibility Study designed to 

identify sustainable marine resources with bioactive potential (Work Package 1) and other 

factors affecting the access and use of marine resources. The potential of three target 

resources; micro and macroalgae, by-products of primary processing and aquaculture would be 

refined by the feasibility study. Also included within the Feasibility Study was an examination of 

issues such as legislation, consumer and market analysis, all of which would influence the 

direction of the research. Ultimately, a national repository of sustainable marine resources was 

developed with due consideration to issues such as seasonal variation, geographic location and 

sustainability, and within this repository there is now a database holding details of materials 

and bioactive compounds.  

Members of the consortium agreed upon a short list of marine species to allow to progress in 

Work Package 2 (Bioactive discovery and generation) whilst the feasibility study was being 

completed. The aim of Work Package 2 was to develop optimised technologies to extract and 
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purify bioactive compounds from targeted marine resources. The research programme 

targeted bioactive molecules from four categories, antioxidants and pigments, polysaccharides, 

peptides and amino acids and fatty acids. In addition, Work Package 2 sought to generate new 

compounds by mining marine based materials using chemical and enzymatic hydrolysis and 

fractionation techniques. High-throughput rapid screening for bioactivity was carried out to 

identify material with potential to be carried through to Work Package 3 (Bioactive profiling). 

Fractions, compounds and whole materials with bioactive potential were characterised in more 

detail, using techniques such as high performance liquid chromatography, quadrapole time of 

flight mass spectrometry and high-resolution nuclear magnetic resonance.  

Work Package 3 used a range of methods including model systems, cell cultures, 

transcriptomics, bio-informatics, computational biology and metabolomics to create a more 

detailed bioactive profile of candidate materials. These techniques were employed to examine 

the resources for bioactive potential under a number of defined biological activities i.e. anti-

microbial activity, anti-thrombiotic activity, anti-infective activity, anti-proliferative activity, anti-

hypertensive activity, immunomodulatory/anti-inflammatory activity and prebiotic/bifidogenic 

activity. Whilst the majority of bioassays used in this assessment were well proven, there were 

some instances where specific bioassays were developed.  

Work Package 4 (Product development) was designed to explore issues associated with 

incorporating bioactive compounds into food products. Where a particular compound 

demonstrated bioactivity, samples were added into a number of model foods, allowing issues 

such as shelf life, formulation, processing, quality and sensory properties to be examined.  

Finally, on the scientific work plan, Work Package 5 (Dietary intervention studies) was designed to 

examine the health effect of selected functional ingredients when consumed in food products. 

The NutraMara research programme was supported by two of the seven work packages; Work 

Package 6 (Management) supported the day to day coordination and reporting activity across 

the entire programme and was closely linked to the activities of Work Package 7 (Training, 

Dissemination and Outreach) which promoted researcher development opportunities, 

dissemination of research results and developed links between the project and industry.  

1.5. Project objectives 

Studies have shown that marine resources are unrivalled sources of bioactive compounds with 

the potential to maintain and improve health in humans and animals. Ireland’s territorial waters 

are known for the extent of their biodiversity. Traditionally, the waters around Ireland were 

targeted as a source of a large variety of marine foods. Despite this attention, there was only 

limited activity aimed at exploiting these resources as sources of functional foods or functional 

ingredients. The NutraMara initiative, in utilising national research funds, planned to develop 

what was a neglected research area – marine functional foods, into a thriving knowledge driven 
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network of researchers, comprising marine sciences and food sciences expertise; transforming 

Ireland into an internationally recognise research hub. 

The main objectives targeted by the NutraMara work programme and delivered by the 

consortium were to: 

• Create a strong, interdisciplinary research capability, capable of exploiting marine
biodiversity as a source of materials for use in functional foods. 

• Support the creation of new research capacity in areas that underpin research in
marine functional ingredients and foods. 

• Establish new research capabilities in marine functional foods-linking indigenous and
multi-national food and pharmaceutical industries with researchers at state and 
higher education research institutions. 

• Engage in priority research activities such as polyphenols, pigments, peptides,
polysaccharides, amino acids, polyunsaturated fatty acids, protein hydrolysates and 
materials with antioxidant, probiotic or prebiotic properties as identified by the 
marine functional foods workshop hosted by the Marine Institute. 

• To develop model foods enhanced with marine origin functional ingredients and to
develop capabilities to process marine-based materials for use by the functional 
ingredients sector. 

• Develop and implement training programmes aimed at providing people with inter-
disciplinary skills critical to the industry sector. 

• Secure research funds from national and international sources that will enable the
Consortium to expand its research in relevant areas to the advantage of Ireland’s 
food, food ingredients and pharmaceutical sectors. 

• To commence a research programme to explore and deliver new knowledge relating
to: 
 The identification, extraction and validation of bioactive compounds from marine 

origin material and the verification of the physiological effects of these 
compounds; and  

 Developing the required scientific knowledge, capabilities and processes 
necessary to assess and evaluate the potential of marine origin bioactive 
compounds for use as components in functional foods and as food ingredients. 

• Ensure that commercially valuable results of the research programme are
appropriately protected and made available to Irish industry for efficient and 
effective commercialisation. 

• Promote organisational connections and linkages, both within and beyond the
Programme partners, within and among campuses, industry, other research bodies 
and international collaborators. 

• Maintain the integrity of the research programme in terms of protecting the results of
the institutional research activities, and ring-fencing them from becoming obscured 
in non-programme related activities of the participants in terms of protection from 
other activities. 

• Disseminate the results of the research through publications, workshops, seminars and
conferences. 

1.6. Project deliverables 

The NutraMara consortium proposed an extensive range of project deliverables that together 

would become a national source of knowledge concerning the identification and processing of 

marine origin compounds into functional ingredients and foods. In developing scientific and 

technological knowledge relating to the sourcing and use of marine materials as functional 

ingredients, the NutraMara programme would establish both the capability and capacity 
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required to allow Ireland to become an internationally competitive research performer in using 

marine resources as functional ingredients. The work programme was designed to deliver the 

following outputs: 

• A comprehensive report detailing common and agreed protocols developed in
conjunction with the Beaufort Biodiscovery Project, addressing issues of species 
storage and management of referenced materials. In recognition that sources will be 
diverse, in terms of species, spatial and geographical distribution, seasonal variation 
and population differentials, the protocols will address: collection, identification, 
processing and storage details. This will ensure ease of access for all partners. 

• A detailed review of relevant national, EU and international legislation as applied to the
sourcing, refinement and application of (marine) compounds in animal and human 
health. 

• A literature study to identify gaps in current knowledge regarding the isolation,
identification and subsequent characterisation of marine components having 
functional food potential.  

• A database comprising
 Inventory of potentially exploitable material with signposts to known/suspected

compounds. 
 Identified and quantified primary products from three sectors (fisheries, culture 

and processing). 
 Analytical analysis of the presence and availability of target compounds on spatial 

and geographical basis. 
 A report providing a full listing of the nature, availability, character, formats and 

quantities of various species, extracts, materials and wastes generated /available 
from the wild and produced by farming and downstream processing from the 
Irish Marine environment. 

• Protocols and technologies for the quantitative and food friendly extraction of
polyphenols and carotenoids from marine micro- and macroalgae. 

• Detailed protocols for analytical and pilot scale purification and extraction of fatty
acids from marine sources. 

• A database of promising target proteins, peptides and amino acids.
• Prototype protocols for extraction of crude samples of proteins, peptides and amino

acids. 
• Literature review of methods for the extraction, purification and characterisation of

marine origin bio-actives. 
• Protocols and technologies for the quantitative and food friendly extraction and

purification of β-glucans from marine micro- and macroalgae. 
• Report on the effect of feeding chitin on intestinal health in porcine model systems.
• Prototypes of seaweed based fish feed.
• Cellular mechanisms of action for marine bioactives.
• Marine fractions with identifiable health promotional properties.
• Processes and protocols for the production of foods enhanced with health promoting

ingredients derived from marine sources. 
• Protocols for the optimal retention of marine bio-actives during processing.
• Information on the impact of marine origin bio-actives on quality, safety and shelf-life

of model foods. 
• Human intervention studies demonstrating the alteration of gut micro flora and

immune function in humans. 
• Early stage career scientists and their training and development plan needs with skills

and expertise in areas which underpin marine based functional food development. 
• Peer reviewed publication, newsletters, workshops and conferences, technical and

financial reports. 
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1.7. Project management 

The NutraMara programme was led by a Director, who together with support from a 

Programme Manager was jointly responsible for managing the entire programme. This included 

the provision of effective and frequent communication with the funding bodies (DAFM and the 

MI) through annual and interim reporting, monthly conference calls and Management Review

Board meetings. The main activities comprised managing the research grant and consortium

agreements, carrying out the overall scientific and administrative duties of the project including

the provision of annual and 6 monthly reports, and organising scientific council meetings,

management board meetings, IP meetings and external advisory board meetings in addition to

financial management of the project.

The day to day management of NutraMara was the responsibility of a full-time Programme

Manager based at Teagasc, Ashtown, which included coordinating and supervising work tasks,

and monitoring programme milestones and deliverables. The Programme Manager worked in

conjunction with the Director in directing NutraMara’s outreach and dissemination activity.

A management board comprising representatives of NutraMara consortium partners and the

two funding agencies - the Marine Institute and the Department of Agriculture Food and the

Marine; and a scientific advisory board of international experts in areas relevant to the

NutraMara research activities provided a strategic oversight function.

A schematic of the NutraMara management structure is given below in Figure 1.
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Figure 1 NutraMara management structure 

1.8. Distribution of work 

The NutraMara scientific work programme was developed within the consortium and built 

around expertise residing in Teagasc (Ashtown (A) and Moorepark (M)) Research Centres, 

National University of Ireland Galway, University of Limerick, University College Cork, 

University College Dublin and Ulster University. An overview of the role of partner 

institutions in each of the NutraMara work packages is given below along with insights to the 

nature of activity within each Work Package. 

1.8.1. WP1 - Marine Source Material 

 Work 

Package 1 

 Marine source material 

 Lead 

partner 

 National University of Ireland 

Galway 

 Other 

participants 

 UCC, UL, UCD, UU, Teagasc 

(A) & (B)

 Links to 

other WPs 

 WP 2, 3, 4, & 5 
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This Work Package was led by NUI Galway and included the sourcing, harvesting and 

provision of the raw materials necessary for the NutraMara research programme. Marine 

bioresource samples were harvested, cleaned and dried before being transferred to other 

NutraMara centres for extraction, characterisation and screening. In addition, research 

programmes in microalgae biomass production, and the production of macroalgal components 

through optimised cultivation and aquaculture, were completed. 

1.8.1.1. Research Activities in WP1 

1.8.1.1.1. The development of a Feasibility Study 

This provided support for planning further research and informed the development of future, 

near-market or commercial projects. The Feasibility Study both summarised and critically 

evaluated information in the broad marine functional foods area, for example, in identifying 

new marine-sourced bioactives with potential for functional foods, best practices for sampling 

marine-origin materials, legal and regulatory issues, new product development strategies and 

identified research gaps with commercialisation potential. 

1.8.1.1.2. Sampling of marine bioresources 

In addition to the collection and identification of bioresource samples for distribution to 

partner institutions, facilities to store material and track data were created by the 

development of a repository for reference materials collected/studied and a database to track 

samples and extracts throughout the Programme. In conjunction with the sampling, a detailed 

assessment of natural variability (seasonal and spatial) in bioactive compound from marine 

bioresources (macroalgae, microalgae, shellfish) was undertaken. 

1.8.1.1.3. Micro- and macroalgal biomass production 

In an attempt to create processes to stimulate the production of bioactive compounds within 

macro- and microalgal species, two novel research areas involved the optimisation of 

microalgae cultivation to target the specific production and composition of microalgal 

bioactives, and the production of macroalgae compounds through optimized cultivation. 

1.8.1.1.4. Aquaculture 

Reflecting the potential of aquaculture in marine functional foods research as more than a 

source of biomass, was the development of feedstock based on seaweeds to increase the 

functional food value of farmed salmon. 
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1.8.2. WP2 – Bioactive discovery and generation 

 Work 

Package 2 

 Bioactive discovery and 

generation 

 Lead 

partner 

 Teagasc Ashtown 

 Other 

participants 

 UL, UCC 

 Links to 

other WPs 

 WP 3 

Led by Teagasc Ashtown Food Research Centre, Work Package 2 sought to identify, extract 

and characterise targeted bioactive components. This was especially important in the context 

of drawing bioactives from marine bioresources, because in many cases, the precise chemical 

structures of bioactive molecules are not well defined.  

1.8.2.1. Research Activities in WP2 

1.8.2.1.1. The development of extraction methods 

This involved the development and optimisation of technologies and methodologies for the 

efficient extraction, purification and chemical characterisation of bioactive compounds from 

marine bioresources; including seaweeds, fish and discarded processing materials. 

1.8.2.2. Targeted compounds 

The principal compounds are those displaying antioxidants properties, pigments 

polysaccharides, proteins, peptides, protein hydrolysates, amino acids and lipids, including fatty 

acids.  Fractions and molecules displaying bioactive properties will be characterised using mass 

spectrometry and NMR. 

1.8.3. WP3 - Bioactive screening and profiling 

 Work 

Package 3 

 Bioactive screening and 

profiling 

 Lead 

partner 

 Teagasc - Moorepark 

 Other 

participants 

 UCC, UL, UCD, UU 

 Links to 

other WPs 

 WP 4 

Work Package 3 focused on the identification and characterisation of the bioactivities of 

marine origin compounds and fractions generated in Work Package 2. This work involved a 
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range of methodologies including in vitro screening assays, animal models systems, cell culture, 

transcriptomics, bioinformatics, computational biology and metabolomics to create a more 

detailed bioactive profile of candidate compounds and fractions.  

These techniques are used to examine the components for bioactive potential across a range 

of defined biological activities. These include: anti-oxidant, anti-diabetic, anti-proliferative, anti-

hypertensive, anti-inflammatory, anti-infective, anti-microbial as well as pre- and pro-biotic 

activities. 

1.8.3.1. Research Activities 

A wide range of research was undertaken in Work Package 3 to identify extracts and 

compounds with prebiotic and antimicrobial activity. Marine lipids from fish and algae were 

screened for bioactivity and evaluated to assess their potential as anti-diabetic, anti-obesity and 

anti-inflammatory functional foods and ingredients. Bioactive fractions with anti-adipogenic and 

anti-inflammatory activities were assessed in in vitro and in vivo models. Separately, bioactive 

fractions with anti-cancer (cell proliferation and anti-genotoxic) activities were identified and 

steps taken to elucidate and understand the molecular mode of action of these bioactives. 

Similarly, the anti-oxidant activities of algal extracts were investigated and modes of action 

explored.  

1.8.4. WP4 - Product development 

 Work 

Package 4 

 Product development 

 Lead 

partner 

 University College Cork 

 Other 

participants 

 Teagasc (A), Teagasc (M) 

 Links to 

other WPs 

 WP 3, 4, & 5 

The focus of Work Package 4 was the development and assessment of trial food products 

incorporating bioactive compounds generated in other work packages. Developing insights to 

the practicalities of using these compounds in the production of foods, coupled with 

knowledge about the consumption of foods containing marine origin compounds are required 

by the food sector.   

1.8.4.1. Research Activities 

In this UCC led work, the stability of the bioactive and bio-accessibility i.e. the degree of 

bioactivity available for absorption in the gut after digestion, along with the stability of extracts 

and purified marine-derived bioactives across a range of typical food-processing conditions was 

assessed. Additionally, quality and sensory analysis studies on dairy and meat products fortified 



12 

with seaweed extracts, and salmon fillets fed on a seaweed-based diet were carried out. New 

uses for macroalgal extracts as active packaging applications were also investigated, as were 

studies to assess food quality attributes such as shelf life. 

1.8.5.  WP5- Human intervention trials 

 Work 

Package 5 

 Human intervention 

trials 

 Lead 

partner 

 Ulster University 

 Other 

participants 

 UCC 

 Links to 

other WPs 

 WP 2 

The health benefits of foods containing marine-derived ingredients or bioactives, which 

demonstrated bioactivity in vitro were assessed in pilot-scale human dietary intervention 

studies. These human dietary intervention studies involved the incorporation of test 

ingredients into a food matrix and the subsequent assessment of the food’s effect in vivo.  

1.8.5.1. Research Activities 

The effect of consuming seaweed on markers of inflammation, cancer and anti-oxidant 

potential in humans and the effect of consuming pork derived from laminarin/fucoidan-fed pigs 

on markers of inflammation, immune function and anti-oxidant potential in humans formed the 

two main pilot intervention studies involving foods. A further study was undertaken to 

examine faecal water activity in individuals supplemented with extracts from species of 

laminaria. 
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2. FEASIBILITY STUDY

2.1. Introduction to the feasibility study 

The Marine Functional Foods Research Initiative, later to become known as NutraMara, was 

the first research programme dedicated to exploring the potential of Ireland’s marine biological 

resources as a source of functional ingredients. NutraMara’s research challenge was to identify 

a range of bioactive ingredients from species inhabiting Ireland’s marine territories and to 

assess their potential as materials that could be incorporated as functional ingredients in food 

products.  

The feasibility study was intended to provide the knowledge required to support the research 

effort and inform the development of near-market or commercial projects. Whilst there were 

pockets of scientific expertise able to provide scientific direction to the programme, there was 

a need to develop a solid knowledge base as a foundation for the planned research work. At 

the outset, insights from related international research in the food and marine science areas 

were required to support and accelerate the work, and to minimise any duplication of 

research conducted elsewhere.  

The programme faced many diverse challenges from its inception. To meet its overall research 

objectives, the NutraMara research team had to consider all elements of the ingredient supply 

chain, from harvesting or culture, to understand the various options for processing marine 

ingredients and the many ways of incorporating them into food products. Functional foods are 

designed to make positive contributions to a person’s health, therefore an understanding of 

the role of marine origin ingredients in maintaining or improving health status, and of the range 

of diseases that such ingredients could affect, was required. In addition to highlighting the 

scientific and technical challenges, an understanding of many regulatory, legal, ethical, market 

and processing issues associated with utilising marine origin compounds, was required. The 

feasibility study was a collaborative effort involving researchers from the marine, health and 

food science areas. Such an approach provided the means to identify knowledge and research 

gaps that could be worked on by the research programme.  

2.2. Market analysis of functional foods 

2.2.1. Market insights and situation analysis 

The market drivers for the growth of the functional foods category have a powerful influence 

more so than market inhibitors. There are many market drivers for functional foods including 

increased awareness among shoppers, aging population and requirements for short-term and 

long-term benefits. There are also another set of factors, from the perspective of consumers 

that are market inhibitors; these warrant consideration in developing functional food products 
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and include distrust, credibility and safety concerns. Table 1 provides a summary of these 

drivers.  

An aging population seeks to maintain good health and prevent disease through the use of 

functional foods. High healthcare costs are also driving the use of functional foods.  Consumers 

are using a more preventative approach to avoid ill health and subsequent health care costs.  

Convenience will also drive market success of functional foods; functional foods that are 

simple, convenient and easily integrated into everyday routines are product opportunities. 

Table 1 Drivers and inhibitors of functional food development 

Drivers Inhibitors 

Scientific progression Greater understanding of 

diet-disease link which 

impacts both industry and 

consumer 

Distrust Scepticism regarding health claims 

Aging Population Looking to off-set ill-

health and facilitate 

healthy aging  

Food safety 

concerns 

Consumer aversion to artificial ingredients 

Self -medicating 

consumers and 

discerning consumer 

Looking for nutritional 

benefits to increase 

quality of life and health 

Time and 

money 

Functional foods development is expensive 

and time consuming  as well as expensive for 

the consumer 

Rising health care 

costs 

Prevention better than 

cure. Seek out foods to 

improve own health status 

and prevent ill health and 

associated costs 

Taste Consumers think they are compromising on 

taste when purchasing these healthier 

products 

Time poverty & busy 

lifestyles 

Seek out convenient, 

healthy, quick alternatives 

Low 

awareness 

There is a low level of awareness of the 

health properties of certain ingredients 

Lack of 

credibility 

Lack of belief in benefits claimed 

Price 

sensitivity 

Consumer sensitivity to price due to falling 

incomes 

In a survey of GB adults in 2008, it was found that 46 percent believed functional foods were 

overpriced and 35 percent expressed a lack of credibility in that they felt ‘they must do 

something, but not everything that is claimed’ (Mintel Group, 2008). The consumer is sceptical 

in general towards the claims made by functional foods and in the current economic climate 

maybe less willing to pay the higher price. This further cements the need to clearly 

communicate with the consumer the real benefits of the functional ingredient to ensure 

understanding, belief and ultimately purchase. The health claims legislation process that is 

currently underway in the EU although perceived as inhibitory by some industries, may actually 

help to alleviate some of the consumer scepticism.   

The market value for functional foods in Europe, US and Japan is shown in Table 2. Growth 

has been good in these markets despite the recession, and it is predicted to continue to grow 
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at a compound annual rate of 5-7 percent. Although this is somewhat smaller than previous 

growth, it is an indication that the market is starting to somewhat mature and consumers are 

less willing to pay the price premium. 

Table 2 International market value – functional food and drink (US$ million) 

Country/region 2007 2012 CAGR % 

France 808 980 

Germany 1,983 2,525 

Italy 1,128 1,525 

Netherlands 286 346 

Spain 641 814 

Sweden 251 318 

UK 2,103 2,533 

Total Europe 8,477 10,667 4.7 

Japan 16,377 21,808 5.9 

USA 31,000 43,000 6.8 

Source: (Heller, 2009) 

The reported size and value of the market for functional foods will vary greatly and depend on 

the functional food definition used. The market for functional foods in Japan is highly 

important, which comes as no surprise. In the ten years from 1988 to 1999 more than 1700 

functional foods were launched. This is the same period when FOSHU was introduced by the 

Japanese ministry, indicating that regulation had a beneficial effect.  In the US, the functional 

foods market was reported to be approximately $31 billion in 2008. A slowdown in the 

market has been noted which may reflect recessionary pressures on consumer spending. 

From 2003 to 2008 the compound growth rate was 8 percent and it is predicted that the US 

market will be worth approximately $43 billion by 2013 (Heller, 2009).  The European market 

share for functional foods is much lower than the US or Japan and is still below 1% of the EU 

food and drink market. Germany and the UK are the most important markets in Europe. Large 

differences in acceptance across the EU also exists where acceptance is higher in Northern 

Europe whereas the Mediterranean countries favour natural and freshness (Siro et al., 2008). 

In terms of developing functional foods, current consumer priorities are weight loss and heart 

health as well as an aging population with requirement for foods designed for healthy aging. 

The functional foods industry should be aware that consumers have a natural dislike for too 

much science and are more predisposed to more natural ingredients.  Given that 80 percent of 

functional foods fail within the first 18 months of product launches, it is important to learn 

from the mistakes of these failures. A report (Mellentin J, 2009) identified rules for success 

based on the failed products. Three of the top four rules revolve around the consumers. 

These three rules include: 

• offer a relevant benefit and credible brand
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• aim for a benefit the consumer can feel
• ingredient is not a point of difference because consumer acceptance of unfamiliar

ingredients is a very slow process 
It is imperative that the consumer is at the start, middle and end of the entire functional foods 

development process, with a clear and credible communication and marketing strategy. 

2.3. Consumer attitudes 

Generalisations about the typical consumer do not give information about what foods might 

appeal to different people, with knowledge and attitude often considered better predictors of 

functional food acceptance than variables such as age and gender. Some studies sought to 

understand the role demographics have in influencing consumer acceptance of functional foods 

(Verbeke, 2005); with younger consumers reported as more interested in the health benefits 

of foods rather than the disease reduction potential, whilst the opposite is true for some older 

consumers (Vassallo et al., 2009).   

A number of studies report cultural differences as factors in the acceptance or consumption of 

functional foods. French students were found to be more sceptical than North Americans with 

respect to information on functional foods (Kolodinsky et al., 2008). French students also had a 

lower view of the benefits of functional foods and declared a lower intention to purchase in 

comparison to North Americans. Similar cultural effects were identified in different 

consumption levels of fortified margarines between Flemish-speaking compared to French-

speaking military men (Mullie et al., 2009). Saba et al., (2010) found differences between 

Finland, Germany, the UK and Italy in the way in which health claims influence buying 

intentions. The message from this work being that some sort of health claim generally had a 

positive influence on northern European consumers, while Italians preferred foods without a 

health claim.  

2.3.1. The NutraMara focus group study 

An integral component of the NutraMara feasibility study was to develop insights to, and 

deepen the understanding of general consumer attitudes to functional foods and, in particular, 

to expand on the concept of marine-derived bioactive compounds in functional foods. 

Informed by insights from international studies, a focus group was the chosen approach, 

comprising seven different groups.   

The composition of the groups, summarised in Table 3 below reflects key consumer segments 

with ranging demographics and at varying stages of life.   
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Table 3 Composition of focus groups 

Group 

No 
Age Gender 

Social 

Class 
Children in home Location 

Consumer 

Segment 

1 60-70 Female ABC1 None Dublin Medically Conscious 

2 60-70 Male C1C2DE None Cork Medically Conscious 

3 40-55 Female ABC1 Teens/ Young adults Dublin Family Nurturers 

4 40-55 Female BC1F Teens/ Young adults Sligo Family Nurturers 

5 30-40 Female BC1C2 Primary/Secondary Cork Hectic Mums 

6 30-40 Female C2DE Primary/Secondary Athlone Hectic Mums 

7 18-24 Male ABC1 Singles Dublin Fitness Fanatics 

Key findings from the focus group study 
A definition of functional foods was given at the group sessions and few participants had ever 

given much thought to this concept, prior to its prompting during the sessions.  

Consumers were adept at identifying particular health benefits associated with consuming 

certain foods. Most notably, fish and seafood featured as one benefit identified – with heart 

health and weight management associated with the consumption of oily and white fish, 

respectively. Labelling emerged as a concern, though this was not felt to be a barrier to 

functional foods per se, rather the benefits of functional foods should be clearly labelled and 

specific ingredients detailed as clearly as possible. On balance, most consumers were perfectly 

comfortable with the concept of functional foods incorporating marine origin compounds. 

The groups discussed seaweed, and chitin (derived from shellfish) marine-derived functional 

ingredients, in addition to the use of marine-derived ingredients in animal feed to naturally 

enhance muscle content of the meat. Attitude formation and acceptance of marine ingredients 

were a function of the health benefit, the source of ingredient, vocabulary used and complexity 

of use of the ingredient.  

The concept of seaweed bread and/or yoghurts was perfectly acceptable to the vast majority 

of consumers as a potential marine-derived functional food. Some respondents identified 

seaweed as a proven source of healthy ingredients and an awareness of the use of dulse, 

carrageen and kelp for medicinal purposes in Ireland for generations.  

The idea of feeding marine ingredients to animals to modify its inherent meat composition 

represented a step too far for many participants and evoked associations of Creutzfeldt–Jakob 

disease (CJD), although some consumers also realised that this was somehow different as 

illustrated in the following quote: “But the mad cow, that was cannibalism really with cows, 

that was dangerous, this is not though”.  

The concept of extracting an ingredient from shell material was intriguing for many consumers. 

Whilst there was no familiarity with the term ‘chitin’, the scientific ring prompted some 
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respondents’ interest regarding its precise health benefits. The key perceived consumer 

benefits related to the anti-obesity properties and identified it as important in the fight against 

childhood obesity, and for obesity in adults. Perceived need is important in acceptance; and 

clearly a societal need exists for such products in the minds of consumers. Similarly, 

consumers were positive regarding the potential heart-health benefits associated with chitin.   

The use of chitin in preventing food spoilage as in “long life” was rejected by the mothers in 

the groups, where such bread was synonymous with being “high in preservatives”. This finding 

demonstrates that acceptance of chitin is very much a function of the perceived need for the 

purported benefit. Consumers clearly identify a tangible need in terms of reducing obesity, but 

not necessarily a need to increase the shelf life of foods such as bread. Appetite suppression 

benefits are likely to meet a consumer need in some segments. 

Countering the positive perceptions of marine functional foods is a series of potential barriers 

to acceptance. The greatest concern is trust or lack thereof in the acceptance and use of 

functional foods. Others include views that functional foods in general are likely to be over-

priced, something of a food manufacturer ‘gimmick’ and not necessarily required when a 

balanced diet is consumed; potential allergic reactions to marine based ingredients (e.g. 

shellfish); and the source of marine origin ingredients.  

Conclusions 
• Marine products are universally accepted as ultimately healthy.  

• Terminology around the use of functional food ingredients as ‘additives’ can suggest to 
the consumer the addition of a potentially unnatural/unhealthy substance to the 
carrier food, while the term ‘functional’ can actually suggest an uninspiring, bland 
foodstuff of no discernible health benefit. 

• The source of marine resource ingredients will be as important to the consumer as 
their claimed health benefits. 

• Price is not necessarily a barrier to purchase assuming, the price differential is no 
greater than circa 20% and consumers are convinced that they are likely to deliver 
upon the claimed health benefits. 

• Older rural females, believed the secret to a healthy disposition lies in maintaining a 
balanced lifestyle, including a healthy diet. 

• Few consumers are familiar with what micro algae, or indeed aquaculture actually refer 
to.  

• The language used to communicate the likely benefits of marine and general functional 
foods to the consumer is absolutely vital, particularly in light of the lack of 
understanding as to the benefits of functional foods versus a balanced/wholesome 
diet.  

2.4. Diet related health issues 

The rate increase in global population over the past 50 years was greater than ever 

experienced before. From a level of 2.5 billion in 1950, the world population reached 6.5 

billion in 2005. Estimates of projected increases point to a world population of more than 9 
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billion 2050 (United Nations, 2009). Ireland’s population showed an increase of 8.1 percent 

between 2006 and 2011 to 5.58 million; with increases resulting from immigration and natural 

growth (Central Statistics Office, 2011). 

Diet related health issues are increasing and affect populations in the developing and the 

developed world. The World Health Organisation report a consistent relationship existing 

between diet (an unhealthy diet) and the emergence of chronic non-infectious diseases (World 

Health Organisation, 2002). The risk of developing a chronic disease is not only confined to 

lifestyle and diet choices by adults; diet and nutrition from birth are also shown to affect health 

outcomes in later life (Institute of Public Health in Ireland, 2012). Coronary heart disease, 

cerebrovascular disease, various cancers, diabetes mellitus, dental caries, and various bone and 

joint diseases are shown to be related to diet (World Health Organisation, 1990). Many people 

living in Ireland develop chronic diseases related to poor diet, smoking, and alcohol abuse 

(Balanda et al., 2010). Physical inactivity is also identified as a factor in the incidence of these 

diseases. Good health status is unevenly distributed across society; socio-economic status, 

levels of education, employment and housing are all linked to the prevalence of these chronic 

diseases (Balanda et al., 2010).  

A significant proportion of premature deaths in Ireland occur as a result of chronic diet related 

conditions. There is an increased prevalence of some of these conditions with advancing years, 

particularly hypertension, coronary heart disease, stroke and type-2 diabetes, and they tend to 

be more common amongst males and within lower socio- economic groups (Balanda et al., 

2010).  

After cardiovascular disease, cancer is the second major cause of death in Ireland with an 

average of 30,000 new cases being reported each year; double the numbers reported during 

the 1990s. Other diet related diseases on the increase in Ireland are chronic obstructive 

pulmonary disease, hypertension, diabetes and coronary heart disease. Health authority 

estimates point to an increase of 40 percent in the number of adults with chronic diseases by 

2020 (Institute of Public Health in Ireland, 2012; 2012a; 2012b).  

Personal choices, psychological outlook, food availability and socio economic factors influence 

how much a person eats. Obesity is becoming a major public health concern in most OECD 

countries as the number of obese people continues to rise. If the present rate of increase 

continues, 2 out of 3 people in some countries will become obese by 2020 (Sassi, 2010).  

Ireland is one of the OECD countries which is experiencing an increase in levels of obesity 

within its population. Obesity affects all levels of society and all age groups; in Ireland 61 

percent of adults and 25 percent of children age 3 or under is classed as overweight or obese 

(Department of Health, 2013). The link between obesity and the onset of other chronic 

disease is well established, particularly the role of obesity in type 2 diabetes (Bray and 

Bellanger, 2006).  
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2.5. Chronic diet related disease 

Dietary needs are known to change from birth to old age and unhealthy diets can contribute 

to ill health at all stages of life. Faced with aging populations and the negative health impact of 

some lifestyles, scope exists to change the way society relates to food, and to alter food 

preference in ways that reduce the incidence of diet related disease. There are strong 

indications of the existence of markets for foods that support dietary needs and help to 

promote good health. 

The key findings of the World Health Organisation/FAO Expert Consultation on Diet, 

Nutrition and the Prevention of Chronic Diseases (World Health Organisation, 2002) 

identified the major diet related chronic diseases and gave insights to the relationship between 

diet, exercise and health. These major diet related diseases offer researchers involved in the 

development of marine functional ingredients targets for their work and include the following 

diseases. 

• Obesity: This results from the imbalance between energy intake and the level of
physical activity. Physical inactivity, coupled with a high energy diet where there is an 
excess of calories from sugar, starches or fat is the major factor in the epidemic of 
obesity 

• Diabetes: Type 2 diabetes is a chronic metabolic disorder that affects the way the
body metabolises glucose. It is linked to obesity and increases the risk of heart 
disease, kidney disease, stroke and infections. 

• Cardiovascular diseases: These largely result from unbalanced diets and insufficient
physical activity. Reducing the risk of the main forms of CVD – heart disease and 
stroke - can be achieved with diets that include sufficient amounts of (n-3 and n-6) 
polyunsaturated fats, fruits and vegetables; reducing salt intake and by taking steps to 
control weight.  

• Cancer: Whilst smoking remains the main cause of cancer, dietary factors are found
to contribute significantly to some types of cancer. Cancer risks, particularly cancers 
of oesophagus, colorectum, breast, endometrium and kidney, can be reduced by 
ensuring an adequate intake of fruit and vegetables and keeping a healthy weight. 

• Osteoporosis and bone fractures: In some populations older people can suffer
from osteoporosis, leading to brittle bones and increase risk of fractures. Ensuring 
an adequate consumption of calcium and vitamin D is known to help to reduce 
fracture risk. 

• Dental disease: The erosion of teeth by dietary acids and sugars can be prevented by
limiting the frequency and amount of consumption of sugars; dietary acids in 
beverages or other acidic foods may contribute to tooth destruction. 

The human gut microflora is increasingly recognised as playing a central role in human health 

and disease (Tuohy et al., 2003). From the standpoint of the host, these microflora can have 

both beneficial and detrimental outcomes, in terms of nutrition, infections, atopic disease, 

ulcerative colitis, xenobiotic metabolism, and cancer (Rowland and Gangolli, 1999). Research 

performed over the past 30 years provided new insights into the role of the human gut biota in 

chronic disease. Indeed, the number of diseases shown as being linked to changes in gut 

microbiota has grown. Much of this work focused on the possible link between gut microbiota 
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and chronic gastro-intestinal diseases such as irritable bowel syndrome. However, there is 

emerging evidence of possible links between gut microbiota and diabetes, obesity and the 

onset of colorectal cancer (Guinane and Cotter, 2013). 

2.6. The impact of marine origin compounds on health 

Marine biological resources have been exploited throughout history, with the focus largely on 

catching fish and collecting seaweeds for food. Some marine animals were traditionally caught 

to provide materials other than food. Whales and seals were once the source of oils and fats 

used in candle and soap making, as lubricants and as lamp oil; their bones were used in the 

garment industry and meat unsuitable for food, used as animal feed (Roth and Mer, 1997). 

The gelling properties of some seaweeds were known in the 17th century in Japan, where agar 

was extracted as a thickening and gelling agent from species of red seaweed. During the 1930’s 

extracts of brown seaweeds, containing both sodium alginate and potassium alginate, were 

produced commercially and sold for use in applications where their gelling and emulsifying 

properties were required; including for use in the manufacture of paper and textiles, drinks, 

paint and cosmetics (McHugh, 2003). 

Research conducted over the past 30 years has brought attention to the use natural products 

extracted from marine animals and algae in human health.  Though a large number of marine 

origin bioactive substances have been identified, it is only in relatively recent times that the 

first drugs based on compounds found in marine species were approved (Imhoff et al., 2011). 

Largely resulting from successes as these, interest in exploiting marine species as a source of 

natural bioactive compounds has increased. There are now clear opportunities to use such 

compounds in functional foods, nutraceuticals, cosmetics and in bioprocessing applications. 

This section gives an overview of the potential contribution of marine derived natural products 

to helping to maintain human health. The scale of the NutraMara research programme was 

such that its work focused on the major diet related diseases as opposed to all other health 

challenges and life-threatening illnesses.  

2.6.1. Cardiovascular disease  

The Japanese population, in particular those people living on the island of Okinawa, reputedly 

enjoy the longest life expectancy in the world. This longevity, is strongly linked to their 

traditional dietary intake of fish, soya and seaweed, which is claimed to account for a low 

mortality rate from cardiovascular disease (CVD) and all cancers (Yamori et al., 2006). 

Evidence from further studies in Japan and one involving people with a Japanese ancestry living 

in Brazil pointed to a seaweed rich diet as offering protection against CVD (Iso and Kubota, 

2007) and reducing cholesterol levels (Yamori et al., 2001).   

Alginates extracted from brown seaweeds were shown to lower CVD risk factors and pose no 

toxic effect to humans (Hennequart, 2007). Clinical studies of alginate drug applications and 
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supplements have reported anti-obesity and anti-diabetic effects respectively (Torsdottir et al., 

1991). 

The red seaweed Chondrus crispus, more generally known as Carrageen or Irish Moss, has a 

long standing role in historical medicine as a cure for coughs and the common cold (Morrissey 

et al., 2001) and research using in vitro and animals models have suggested anti-coagulant and 

platelet aggregation inhibition properties of carrageen (Sen, 1994), albeit no well-designed 

dietary intervention study has yet been carried out to investigate these properties.  

Fucoidan extracted from brown seaweeds including Laminaria sp. and Ascophyllum sp. have 

shown anti-coagulant properties conferring health promoting properties in the prevention of 

CVD (Berteau and Mulloy, 2003). Along with fucoidan, laminarin also isolated from Laminaria 

and Ascophyllum has excellent anti-oxidant (Xue et al., 2004), anti-inflammatory (Ostergaard et 

al., 2000) and anti-coagulant (Miao et al., 1999) properties which make these two compounds 

excellent candidates as potential mediators in the prevention of heart disease.  

Metabolic syndrome is the name for a group of risk factors that raises the risk of heart disease 

and other health problems, such as stroke and diabetes. Research in Korea involving 7,081 

men aged 30 years and older has suggested a role for algae in the treatment and prevention of 

the metabolic syndrome (Shin et al., 2009). A dietary intervention study carried out in Quito 

Ecuador, on individuals with at least one symptom of the metabolic syndrome, reported that 

intervention with 4-6g/d of the brown seaweed Undaria pinnatifida reduced blood pressure and 

waist circumference in comparison to the placebo group (Teas et al., 2009).  

Algal oils (from macro- and microalgae), similar to other marine derived oils, have both co-

protective and therapeutic properties in CVD due to being good sources of the long chain 

polyunsaturated fatty acids (LC-PUFAs) eicosapentaenoic acid (EPA) and docoshexaenoic acid 

(DHA) (Cohen et al., 1995; Manerba et al., 2010). Supplements and functional foods containing 

LC-PUFAs extracted from fish are in widespread use and recognised as a highly successful 

contribution to human nutrition. The health benefits associated with the consumption of long-

chain n-3 PUFA are many, and include roles in the treatment of CVD, hypertension, diabetes, 

some cancers and arthritis (Barrow and Shahidi, 2008).   

The freshwater blue-green microalgae Spirulina platensis, is a rich source of the anti-oxidants 

phycocyanin and carotenoids, which are reported to have benefits in lowering cholesterol in 

animal trials (Cheong et al., 2010), (Nagaoka et al., 2005), (Riss et al., 2007) and in inhibiting 

oxidative stress and apoptosis in cardiac muscle cells (Khan et al., 2006).  

Astaxanthin, a natural carotenoid present in the microalgae Haematococcus pluvialis and other 

species has an antioxidant power that is 3 times that of vitamin E or beta-carotene (Kurashige 

et al., 1990). Following the demonstration of this effect in animal trials, the anti-oxidative effect 

of astaxanthin together with its role in immune modulation and as an anti-inflammatory 

bioactive was demonstrated in a small study on healthy females (n=14) supplemented with 2g/d 

(Haematococcus pluvialis) for 8 weeks (Park et al., 2010). This study provides the first human 
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data to suggest that astaxanthin may be a bioactive natural carotenoid important to human 

health.  

2.6.2. Weight management 

For overweight and obese individuals the best approach to reduce these risks is through 

negative energy balance, where energy expenditure is greater than energy intake.  For most 

individuals this will involve dietary modification.  Several studies have shown that an increase in 

dietary fibre can aid weight loss through several suggested mechanisms, including a prolonged 

gastric emptying rate and enhanced satiety from increased fibre-induced gastric stretch, leading 

to a reduction of food intake and eventually weight loss.  However, it has also been suggested 

that different types of fibre may play a role in improving blood lipid profiles and decreasing the 

absorption of glucose leading to weight loss.   

Alginate is a source of fibre obtained from various species of brown algae. An intervention 

study involving a total of 68 individuals with a BMI range from 18.5 to 32.81 kg/m2, but 

otherwise healthy, reported that daily consumption of a strong-gelling sodium alginate drink 

before either breakfast or dinner for 7 days resulted in a significant (p = 0.019) reduction of 

7% in daily energy intake compared to a fibre-rich control drink.  Although the authors suggest 

that this reduction may be meaningful in terms of weight loss, the study was too short to 

measure changes in weight after treatment (Paxman et al., 2008a). Further, a study by the same 

group demonstrated a significant (p = 0.026) positive correlation between percentage body fat 

and area under the curve cholesterolemia after a nutritionally calculated meal, indicating 

subjects with increasing body fat had a greater increase in cholesterol uptake, which was 

attenuated after alginate consumption pre-prandial (Paxman et al., 2008b).   

An association between alginate and decreased postprandial blood glucose levels is supported 

by two separate studies in healthy volunteers with BMI of 20 – 30 kg/m2, one using a guar 

gum/alginate crispy bar (n = 48) (Williams et al., 2004) and the other an alginate supplemented 

beverage (n = 30) (Wolf et al., 2002). The alginate supplemented drink reduced glucose uptake 

significantly at 60 minutes postprandial, and similarly the crispy bar was shown to significantly 

reduce blood glucose levels at 15, 30, 45 and 120 minutes postprandial. In both cases blood 

glucose level were diminished in response to alginate supplementation. 

Collectively these studies have investigated the short-term effects of alginate supplementation 

on energy intake, glucose and lipid blood profiles and various measurements of satiety in a 

range of normal weight to obese, but otherwise healthy individuals.  Each study has suggested 

that alginate may serve as an aid to weight loss, however, in order to investigate this a longer 

term human intervention is required to determine weight loss and changes in blood profiles 

over the study period, and only then can major conclusions about alginate and weight 

management be drawn.   
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2.6.3. Diabetes 

Alginates from seaweed have demonstrated effects that may assist weight loss. A short study 

by (Torsdottir et al., 1991), in seven diabetic men who consumed a one-off alginate 

supplemented drink reported significantly reduced postprandial blood glucose levels (p < 0.02), 

serum insulin (p < 0.02) and plasma C-peptide (p < 0.05) of 31 %, 42 % and 35 % respectively, 

compared to a control drink (Torsdottir et al., 1991). The study also demonstrated slower 

gastric emptying after alginate supplementation, which may have contributed to the decreased 

absorption rate of glucose. Other studies of seaweed supplementation on diabetic individuals 

used a food frequency questionnaire (FFQ) to assess efficacy on weight management, glucose 

response and lipid profile. A Korean cross-sectional observational study used a FFQ and 

measured parameters including, fasting bloods, BMI, lipid profile and blood pressure for 3405 

individuals (Lee et al., 2010). The findings indicated that there was a marginally significant 

inverse relationship between seaweed consumption and diabetes incidence in males. However, 

the authors pointed out the cross-sectional nature of the study limited the ability to make a 

causal relationship between seaweed consumption, since the methodology of the FFQ did not 

account for variety of species, quantity nor preparation method, or diabetes risk. 

Agar is a polysaccharide gel that can be extracted from various species of red seaweed. A 12 

week intervention study in individuals (n = 76) with diabetes or impaired glucose tolerance on 

an agar supplemented conventional diet and moderate exercise (three times a week) resulted 

in significant reductions in body weight (p = 0.008), BMI (p = 0.009) and total cholesterol (p = 

0.036) compared to the conventional diet and moderate exercise group alone (Maeda et al., 

2005). A further seaweed supplemented and nutrient controlled diet with dried Saccharina 

japonica and Undaria pinnatifida pills containing 1:1 of each species in diabetic individuals (n = 

20) with BMI < 35 kg/m2 significantly altered the blood lipid profile and decreased fasting and

postprandial blood glucose levels (Kim et al., 2008). The reduction in glucose absorption, which

may be a result of increased fibre in the control group (2.5 times higher than the control

group), appeared to be a lasting effect with reduced fasting blood glucose levels as well as

postprandial levels.

2.6.4. Gut health

In health terms, the gut microflora establishes an efficient barrier to the invasion and

colonisation of the gut by pathogenic bacteria, and produces a range of metabolites that are

utilised by the host (e.g. vitamins and short chain fatty acids). Although little is known about

the individual species of bacteria responsible for these beneficial activities it is generally

accepted that the bifidobacteria and lactobacilli constitute important components of the

beneficial gut microflora. Probiotics and prebiotics have been developed as management tools

and refined to stimulate numbers and/or activities of the bifidobacteria and lactobacilli within

the gut microflora. Prebiotic polysaccharides may mediate anticancer activity, reduce

cholesterol, regulate glucose absorption and promote immunomodulatory effects and enhance
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mineral absorption, however many of these health benefits remain to be substantiated fully 

(Hoyles and Vulevic, 2008).  

There is evidence to show that some seaweed derived fibre can have positive effects on gut 

health (Vaugelade et al., 2000, Deville et al., 2004) and a number of studies have looked for 

potential prebiotic activity (Deville et al., 2007). Little is known about the chemical, 

physiochemical and fermentation characteristics of seaweed fibre in the human gut or the 

individual species of bacteria that are responsible for these beneficial activities, but seaweed 

carbohydrates do appear to have chemical, physicochemical and fermentation characteristics 

that differ from higher plant carbohydrates (Deville et al., 2007).   

Marine sources are emerging as novel sources of prebiotic carbohydrates, which may alter gut 

health directly or indirectly. For example alginates, laminarin, agar, and structural components 

of macroalgae are highlighted as possible prebiotic candidates (O’Sullivan et al., 2010) with 

potential for inclusion in human dietary intervention studies to investigate their efficacy. Marine 

compounds may offer benefits to existing probiotic research as possible delivery systems. 

Alginate, xanthan gum, and carrageenan gum have been shown to increase probiotic survival, 

however alginate based encapsulation would appear to be the option of choice; a combination 

of alginate with chitosan is also identified as an effective option (Islam et al., 2010; Chávarri et 

al., 2010). 

2.6.5. Bone health 

Osteoporosis is a degenerative disease that progresses over long periods of time and despite 

available therapeutic options for sufferer’s (many with unwanted side effects), the key to 

approaching this disease is through preventative measures. Calcium and vitamin D intake have 

an established role to play in bone mineral density (BMD) (Tang et al., 2007). An optimal bone 

development in infants and growing children can be strongly influenced by dietary intake. 

Calcium and vitamin D are the two most important micronutrients for bone health; however 

other dietary factors such as non-digestible prebiotic carbohydrates are emerging as possible 

contributors, for their ability to enhance calcium absorption and bioavailability (Cashman, 

2007; Scholz-Ahrens et al., 2007). Marine sources rich in minerals (in particular calcium) could 

be targeted for a natural product on the osteoporosis market. Seaweeds can be rich sources 

of several nutrients that impact positively on bone health (McArtain et al., 2007). Nondigestible 

oligosaccharides from marine sources may present as innovative candidates for the 

enhancement of calcium absorption.   

A marine product that has progressed to human intervention trials is active absorbable algal 

calcium (AAA Ca). AAA Ca is obtained from oyster shell powder heated to a high 

temperature (800°C), with an additional heated brown seaweed (Cystophyllum fusiforme) 

component. Fujix Corporation have carried out several interventions to investigate the 

influence of AAA Ca compared to AA Ca (same as AAA Ca but no heated algae component), 

CaCO3 and other preparations that have been used in Japan to increase BMD and reduce the 
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risk of osteoporosis. AAA Ca has been shown to be more effective than AA Ca (heated oyster 

powder), and CaCO3, indicating that the heated seaweed component has an influential role to 

play in the bioavailability of oyster shell derived minerals. 

The calcified red alga Lithothamnion calcareum is rich in calcium carbonate.  An Irish company 

Marigot Ltd incorporate this material in a mineralised supplement known as Aquamin®. 

Containing up to 34% calcium and other important nutrients including magnesium (2.4%), 

Aquamin® is targeted at the alleviation of the symptoms of osteoarthritis. Results from 

randomised, double blind, parallel placebo controlled clinical trial showed Aquamin®, and 

Aquamin® combined with glucosamine sulphate, each contributed to improved walking 

performance in subjects with osteoarthritis (Frestedt et al., 2009). There are also reports that 

Marigot Ltd is investigating the potential role of Aquamin® alone and in the presence of short 

chain fructooligosaccharide on the bone mineral density of post-menopausal women (normal 

and osteopenic only) in a randomised double blind parallel intervention trial over a 2 year 

period (http://www.controlled-trials.com/ISRCTN63118444).  

Marinova is an Australian firm that is focused on using fucoidans, sulphated polysaccharides 

derived from brown macroalgae for health applications. In a small scale trial (n=12), dietary 

supplementation with extracts from several species of brown seaweeds Fucus vesiculosis (85% 

w/w), Macrocystis pyrifera (10% w/w) and Saccharina japonica (5% w/w) plus vitamin B6, zinc and 

manganese, reduced osteoarthritic symptoms and showed an apparent dose dependent effect 

(Myers et al., 2010).  

Altered thyroid production has been associated with an increased risk of osteoporosis. 

Several studies have shown that high consumption of iodine containing seaweeds can interfere 

with normal thyroid function. Several studies have described hyperthyroidism in individuals 

consuming iodine rich kelp supplements (Shilo and Hirsch, 1986; Hartman, 1990; de Smet et al., 

1990; Eliason, 1998; Henzen et al., 1999; Müssig et al., 2006).  This evidence would indicate the 

possible negative impact of iodine in seaweed products on thyroid health.  

2.6.6. Cancer 

There is a strong view that dietary seaweed consumption confers protection against cancer 

(Teas, 1981), a theory largely based on observations that cancer incidence is much lower 

among populations that consume a seaweed-rich diet, such as in Asia, in comparison to those 

who consume a Western style diet (Ferlay et al., 2010). In support of this theory a wealth of 

studies have demonstrated clear anti-cancer properties of seaweed and seaweed components 

using in vitro and in vivo models. However, despite this, very few studies have specifically 

investigated the effect of seaweed consumption on cancer in humans. 

A case-control study that included 362 Korean women with histologically confirmed breast 

cancer and controls matched according to age and menopausal status (Yang et al., 2010), 

reported that intake of gim, a Korean style edible seaweed in the genus Porphyra, was 

inversely associated with breast cancer risk in premenopausal women (OR 0.44, 95% CI: 0.24-
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0.80, p=0.007, 5th v. 1st quintile). Similar effects were observed in postmenopausal women, 

though they did not reach statistical significance possibly due to the smaller number of 

postmenopausal (35%) versus premenopausal women included in the study.  

Previous in vitro and in vivo studies have attributed the anti-cancer effects of Porphyra sp. to the 

polysaccharide porphyran (Kwon et al., 2006), protein (Hwang et al., 2008), total polyphenol 

contents, carotenoids and chlorophyll (Okai et al., 1996). The anti-cancer properties of gim 

may also be due to the iodine content of this seaweed which provides a major source of iodine 

in the Korean diet (Yang, 2010). Miyeok (Undaria pinnatifida; “wakame”) consumption was not 

significantly associated with breast cancer in Yang’s study in contrast to a previous report that 

miyeok suppressed mammary tumour growth in rats (Funahashi et al., 1999). 

Iodine-rich seaweed has long been used as a breast cancer treatment in traditional eastern 

Asian medicine to “soften” tumours and “reduce” nodulation (cited in Cann et al., 2000 and 

Aceves et al., 2005). In addition to Korean diets, seaweed consumption is also a major source 

of iodine in the Japanese diet with the iodine content of the most commonly consumed 

seaweeds, Porphyra (nori), Undaria (wakame) and Laminaria (kombu), ranging from 80 – 2500 

mg/g (Cann et al., 2000) and being present in several chemical forms (i.e. I-, I2 and IO3-) 

(Aceves et al., 2005; Nitschke & Stengel 2014, 2016). The Japanese consume >12 mg of iodine 

per day (Miller, 2002), a much greater amount compared to the quantities consumed in the 

west e.g. 166 mg/day in the UK (Lee et al., 1994) and 240 mg/day in the US (Miller, 2002).  

Iodine intake is thought to be protective against breast cancer (Cann et al., 2000), though to 

date, few epidemiological studies have investigated this association. Serra and colleagues (1988) 

reported that low iodine intake was associated with an increased risk of breast cancer 

mortality in a correlation study conducted in northeast Spain.  

Clinical trials with iodine supplementation have been shown to significantly reduce the 

symptoms of fibrocystic breast disease in up to 70% of patients (Ghent et al., 1993; Flechas, 

2005). High-grade fibrocystic breast disease is considered a precursor to ductal carcinoma 

(Cann et al., 2000).  

In the study of Ghent and colleagues (1993), sodium iodide was associated with a high rate of 

side effects whereas molecular iodine, which is nonthyrotropic, was the most beneficial. 

Seaweeds and iodine supplements contain oxidized iodine, the form believed to be responsible 

for iodine’s tumour suppressive effects and it has been proposed that I2 supplementation 

should be trialled as a breast cancer treatment (Aceves et al., 2005). Other seaweeds which 

may offer protection against breast cancer development via their effects on oestrogen 

metabolism include Alaria esculenta (Teas et al., 2009) and Fucus vesiculosus (Skibola, 2004).   

In the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC), seaweed intake was 

associated with lower mortality from lung cancer for men and women and for pancreatic 

cancer for men (Iso and Kubota, 2007). Seaweed consumption was also reported as protective 
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against stomach cancer (Hoshiyama and Sasaba, 1992) and Bryopsis (a green seaweed) was 

patented for use in the treatment of human lung cancer (Scheuer et al., 2000).  

The blue-green microalga Spirulina demonstrated chemopreventive effects in an oral cancer 

trial involving subjects with oral leukoplakia (Mathew et al., 1995).  

Despite the positive findings concerning the impact of extracts from various seaweeds on 

cancers, adverse findings are also reported. No significant associations were found between 

seaweed consumption and prostate cancer in the JACC study (Allen et al., 2004) and the 

consumption of seaweeds (nori, kobu and other seaweeds) was associated with an increased 

risk of prostate cancer (RR 1.74, CI: 1.05-2.90, highest v. lowest tertile, p=0.017) (Sevserson et 

al., 1989).  

A wealth of literature highlights the anti-cancer properties of algal origin bioactives using in 

vitro and in vivo cancer models. However, there remains a lack of epidemiological studies that 

specifically investigated the effects of micro- and macroalgae and their components on cancer 

in humans.  

2.6.7. Viral infections 

The rise in resistant viral strains and the need for less aggressive anti-viral therapies indicates a 

role for alternative therapeutic routes such as that demonstrated by algae which has a low 

toxicity to the host (Cooper, 2002; Wang et al., 2008; Ramjee et al., 2010).  

Sulphated polysaccharides extracted from various seaweeds appear to have antiviral 

properties. Both in vitro and in vivo animal research identified carageenans, fuciodans and 

sulphated thamnogalactans, to have substantial antiviral activity against enveloped viruses such 

as herpes and HIV. Fucoidan, was shown to inhibit the growth of a variety of viruses (Soeda et 

al., 1994; Aisa et al., 2005; Trinchero et al., 2009). The Australia marine bioactives company 

Marinova describe their Maritech® product as having potential anti-viral properties against the 

H1N1 swine flu virus. Carrageenan has also shown antiviral activity against Herpes simplex 

virus type 1 and type 2, HIV-1 and human rhinovirus (HRV) (Grassauer et al., 2008) and has 

been studied as a potential vaginal microbiocide (Zeitlin and Whaley, 2002; Spieler, 2002).  

The antiviral potential of a sulfated polysaccharide, galactofucan (GFS), extracted from 

Tasmanian Undaria pinnatifida was investigated in a small study (n=21) of patients with active 

and latent Herpetic infections (HSV-1, 2, EBV and Zoster). Ingestion of GFS was associated 

with lessoning and disappearance of infections in those with active infections, and those with 

latent infections remained infection free whilst taking the supplement (Cooper et al. 2002). 

2.7. International health studies 

A summary of previous international studies, conducted to identify associations between 

marine bioactives on human health outcomes is included in Appendix 1. The range of studies, 

some of which were conducted over 25 years, whilst others were considerably shorter (< 1 
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week) included research to identify links between marine bioactives and CVD, weight 

management, diabetes, bone health, cancer and viral infections.   

2.8. Regulatory systems for functional foods and ingredients 

The concept of functional foods originated in Japan in the 1980s and Japan remains the only 

nation to have legally defined functional foods. An approval system, enshrined within Japanese 

law was designed to help promote the manufacture of foods with the potential to address diet 

related health concerns, such as inadequate fibre and calcium consumption. Japans approval 

system for functional foods was designed to curb misleading claims. To obtain approval for a 

functional food product in Japan requires manufacturers to provide evidence which 

demonstrates: the effectiveness on the human body is clearly proven; the absence of any safety 

issues associated with the food; the use of nutritionally appropriate ingredients; compatibility 

with the product specification and the operation of quality control methods.  

The European approach to functional foods differs greatly from the Japanese model, and whilst 

functional food is a rapidly emerging food category, it remains a “virtual category” in terms of 

food law, with no legal definition of a “functional food” in Irish or European law. Instead, 

functional foods are regulated through existing food legislation.  

2.9. National and EU legislation 

Manufactures and others involved in developing functional foods or ingredients may have to 

comply with national and European regulations before marketing the product. European 

regulations relevant to marine functional ingredients and foods date back to 1997 and the 

introduction of the Novel Food Regulation (EC No. 258/97). This regulation defines novel food 

as “foods and food ingredients which have not hitherto been used for human consumption to a 

significant degree within the Community”. This includes new or intentionally modified 

molecular structures, compounds isolated from microorganisms, plants, fungi or algae and 

foods that result from any novel processing or treatment that significantly alters their 

composition.  

A food or ingredient with a significant history of consumption in any Member State prior to 

15th May 1997, does not fall within the scope of the regulation.  However, even though there 

may be a history of use, there remains a responsibility to comply with novel food regulations. 

This requires a food or ingredient to be authorised through one of two routes, a full novel 

food application procedure or submission under substantial equivalence as outlined – 

otherwise known as the “simplified procedure – notification”.  Approvals will only be granted 

for novel foods if they do not present a risk to public health, are not nutritionally 

disadvantageous, and do not mislead the consumer. The submission routes for both 

procedures are outlined below.  
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The full novel food procedure requires the applicant to prepare and submit a dossier of 

scientific safety data on the product to a Member State competent authority in the country 

where the food will be first marketed. In Ireland, the competent authority is the Food Safety 

Authority of Ireland. On receipt by the competent authority, the company submits a summary 

of the dossier to the European Commission. The competent authority undertakes an initial 

assessment of the dossier and forwards this, together with the summary dossier, to the 

European Commission for distribution amongst member states for comment and review. 

Where the initial assessment is favourable and no objections are received from Member States 

the product may be marketed. The applicant receives a formal authorisation decision that 

defines the scope of the authorization, specifies how the product may be used, defines the 

product as a food or ingredient, its specification and any labelling requirements. 

The simplified procedure is also known as the “substantially equivalent process”. The 

applicant can follow this procedure if the new product or ingredient is substantially equivalent 

to a similar product already on the EU market. In this case, the applicant is required to submit 

supporting scientific evidence directly to the European Commission or seek the opinion of a 

competent authority in a Member State. The onus is on the applicant to provide scientific 

evidence that the products are substantially equivalent with respect to composition, nutritional 

value, metabolism, intended use and the level of undesirable substances contained therein. 

Equivalence is determined on the basis of generally recognised and available scientific evidence 

acceptable to the Commission or by the opinion of a Member State competent authority.   

2.10. Other food related legislation/regulations relevant to 

marine ingredients 

Food is defined in Article 2 of Regulation (EC) No. 178/2002 as any substance or product, 

whether processed or not, that is ingested by humans. This definition of food includes 

beverages and water incorporated into food. Even though medicines may be ingested, they are 

not included in the definition and are covered by specific medicines legislation.  

Ingredients obtained from the marine for consumption by humans, except when formulated in 

medicines, are foods. Food and food ingredients fall within categories defined by criteria such 

as: source, the method of pre-harvest production, history of use, intended use, or 

production/processing treatment. Food supplements, additives and foodstuffs intended for 

particular nutritional uses (PARNUTS) each fall within the intended use category of a 

food/ingredient and as such are relevant when considering applications for marine origin 

ingredients.  

2.10.1. Food supplements 

Legislation covering food supplements require that the supplements for sale in European 

markets comply with Directive 2002/46/EC, and in Ireland that they comply with Statutory 
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Instrument S.I. No. 506 of 2007. These regulations define food supplements as “foodstuffs the 

purpose of which is to supplement the normal diet and which are concentrated sources of 

nutrients or other substances with a nutritional or physiological effect, alone or in 

combination, marketed in dose form, namely forms such as capsules, pastilles, tablets, pills and 

other similar forms, sachets of powder, ampoules of liquids, drop dispensing bottles, and other 

similar forms of liquids and powders designed to be taken in measured small unit quantities”.  

Only specified vitamins and minerals, as listed in the legislation can be used in food 

supplements; the maximum limits of which require to be based on scientific risk assessment 

and data on vitamin and minerals intake from other foods, while also taking due account of 

what is considered an adequate vitamin and mineral intake for an average person. 

Irish legislation requires food supplements are manufactured in accordance with S.I. No. 506 of 

2007 and that persons placing a food supplement on the Irish market notify the Food Safety 

Authority of Ireland that they have done so. Food supplements are limited to vitamins and 

minerals listed in the annex of the relevant legislation.  

2.10.2. Foodstuffs intended for particular nutritional uses (PARNUTS) 

Directive 2009/39/EC and Commission Regulation (EC) No 953/2009 concerned foodstuffs for 

particular nutritional uses and the substances which may be added to meet a specific 

nutritional requirement of the consumer. Foodstuffs for particular nutritional uses are more 

generally referred to as PARNUTS. This category of food and the regulations surrounding it 

changed in July 2016 when the legislation was replaced by Regulation (EU) No 609/2013 of 12 

June 2013, which establishes regulations for food intended for infants and young children, food 

for special medical purposes, and total diet replacement for weight control. 

The directive 2009/39/EC and associated regulations define PARNUTS as foodstuffs which, 

“owing to their special composition or manufacturing process, are clearly distinguishable from 

foodstuffs for normal consumption, which are suitable for their claimed nutritional purposes 

and which are marketed in such a way as to indicate such suitability.” 

Products as these are intended to meet specific nutritional requirements for persons with 

disturbed digestive processes or metabolism; have a special physiological condition and so able 

to benefit from controlled consumption of certain substances; and infants or young children in 

good health.  

The new regulations, are far more specific with regard to the category of foodstuffs, by 

establishing compositional and information requirements for infant formula and follow-on 

formula; processed cereal-based food and baby food; food for special medical purposes; and 

total diet replacement for weight control. Only defined substances identified in the regulation 

and falling within specific categories of vitamins; minerals; amino acids; carnitine and taurine; 

nucleotides; choline and inositol may be used in these products.  

https://www.fsai.ie/uploadedFiles/Dir2009_39.pdf
https://www.fsai.ie/uploadedFiles/Reg609_2013.pdf


32 

2.10.3. Food additives 

The use of food additives in foods in the European Union is harmonised by Regulation (EC) No 

1333/2008; only food additives meeting this regulation can be used and the EU is responsible 

for approval of all additives.   

Regulation 1333/2008 defines a food additive as “any substance not normally consumed as a 

food in itself and not normally used as a characteristic ingredient of food, whether or not it has 

nutritive value, the intentional addition of which to food for a technological purpose in the 

manufacture, processing, preparation, treatment, packaging, transport or storage of such food 

results, or may be reasonably expected to result, in it or its by-products becoming directly or 

indirectly a component of such foods”. The food additives regulation identifies categories of 

food additives and lists the name of the additive and its associated “E” number.  

The regulation (No 1333/2008) requires that additives must be safe when used; used to meet a 

technological need; must not mislead the consumer and must be of benefit to the consumer.  

2.10.4. Product claims associated with marine ingredients  

Health and nutrition claims attached to food are subject to regulation within the EU by 

Regulation 1924/2006 which applies to “all nutrition and health claims made in commercial 

communications, including, inter alia, generic advertising of food and promotional campaigns, 

such as those supported in whole or in part by public authorities.” In addition, the Regulation 

applies “to trademarks and other brand names which may be construed as nutrition or health 

claims.”  

It is not uncommon to encounter a food product which is described as offering some form of 

health or nutritional benefit to the consumer.  The inclusion or inference of such an effect is a 

“claim” and as such can only be attached to a food product following a rigorous scientific 

evaluation by the European Food Standards Authority and “shall be based on and substantiated 

by generally accepted scientific data”.  The only allowed claims on food products are nutrition 

claims and health claims. A nutrition claim states or suggests that a food has beneficial 

nutritional properties, such as “low fat”, “no added sugar” and “high in fibre”. A health claim is 

any statement on labels, advertising or other marketing products that health benefits can result 

from consuming a given food, for instance that a food can help reinforce the body’s natural 

defences or enhance learning ability. 

The generalised characteristics of a successful claim, include being able to substantiate a 

clinically relevant effect at concentrations likely to be consumed; the absence of any adverse 

effect, and the existence of a dose-response relationship and a complete understanding of the 

mechanism of action. Typically, providing these data require drawing from the results of human 

trials. Only nutrition claims which are listed in the annex of Regulation No 1924/2006 and 

amendments are permitted. Examples of permitted nutrition claims included in the Regulation 

and potentially relevant to marine origin compounds are listed in Table 4. 
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Table 4 Examples of Permitted Nutritional Claims 

Permitted claim Description of claim 

Source of fibre A claim that a food is a source of fibre, and any claim likely to have the same meaning for the 

consumer, may only be made where the product contains at least 3 g of fibre per 100 g or at 

least 1.5 g of fibre per 100 kcal. 

High fibre A claim that a food is high in fibre, and any claim likely to have the same meaning for the 

consumer, may only be made where the product contains at least 6 g of fibre per 100 g or at 

least 3 g of fibre per 100 kcal. 

Source of protein A claim that a food is a source of protein, and any claim likely to have the same meaning for 

the consumer, may only be made where at least 12% of the energy value of the food is 

provided by protein. 

High protein A claim that a food is high in protein, and any claim likely to have the same meaning for the 

consumer, may only be made where at least 20% of the energy value of the food is provided 

by protein. 

Source of omega-3 fatty 

acids 

A claim that a food is a source of omega-3 fatty acids, and any claim likely to have the same 

meaning for the consumer, may only be made where the product contains at least 0,3 g 

alpha-linolenic acid per 100g and per 100kcal, or at least 40mg of the sum of 

eicosapentaenoic acid and docosahexaenoic acid per 100g and per 100kcal. 

High omega-3 fatty acid A claim that a food is high in omega-3 fatty acids, and any claim likely to have the same 

meaning for the consumer, may only be made where the product contains at least 0,6 g 

alpha-linolenic acid per 100 g and per 100 kcal, or at least 80 mg of the sum of 

eicosapentaenoic acid and docosahexaenoic acid per 100 g and per 100 kcal. 

Source of [name of 

vitamin/s] and/or [name 

of mineral/s] 

A claim that a food is a source of vitamins and/or minerals, and any claim likely to have the 

same meaning for the consumer, may only be made where the product contains at least a 

significant amount as defined in the Annex to Directive 90/496/EEC or an amount provided 

for by derogations granted according to Article 6 of Regulation (EC) No 1925/2006 of the 

European Parliament and of the Council of 20 December 2006 on the addition of vitamins 

and minerals and of certain other substances to foods. 

High [name of vitamin/s] 

and/or [name of 

mineral/s] 

A claim that a food is high in vitamins and/or minerals, and any claim likely to have the same 

meaning for the consumer, may only be made where the product contains at least twice the 

value of ‘source of [NAME OF VITAMIN/S] and/or [NAME OF MINERAL/S]’. 

Contains [name of the 

nutrient or other 

substance] 

A claim that a food contains a nutrient or another substance, for which specific conditions 

are not laid down in this Regulation, or any claim likely to have the same meaning for the 

consumer, may only be made where the product complies with all the applicable provisions 

of this Regulation, and in particular Article 5. For vitamins and minerals the conditions of the 

claim 'source of' shall apply. 

Increased [name of the 

nutrient] 

 

A claim stating that the content in one or more nutrients, other than vitamins and minerals, 

has been increased, and any claim likely to have the same meaning for the consumer, may 

only be made where the product meets the conditions for the claim ‘source of’ and the 

increase in content is at least 30% compared to a similar product. 

SOURCE: Regulation (EC) No 1924/2006 on nutrition and health claims made on foods  

 

Examples of approved health claims in Regulation 1924/2006 where there may be a connection 

to a marine origin compound are given in Table 5. 
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Table 5 Examples of approved health claims 

Claim 

type 

Nutrient/substanc

e, 
Claim 

Art.14(1)(b) Iodine Iodine contributes to the normal growth of children 

Art.14(1)(b) Calcium and vitamin D 
Calcium and vitamin D are needed for normal growth and 

development of bone in children 

Art.14(1)(b) Calcium 
Calcium is needed for normal growth and development of bone in 

children. 

Art.14(1)(b) 
Docosahexaenoic acid 

(DHA) 

Docosahexaenoic acid (DHA) intake contributes to the normal visual 

development of infants up to 12 months of age 

Art.14(1)(b) 
Docosahexaenoic acid 

(DHA) 

Docosahexaenoic acid (DHA) maternal intake contributes to the 

normal brain development of the foetus and breastfed infants 

Art.14(1)(b) 
Docosahexaenoic acid 

(DHA) 

Docosahexaenoic acid (DHA) maternal intake contributes to the 

normal development of the eye of the foetus and breastfed infants 

Art.14(1)(b) Protein 
Protein is needed for normal growth and development of bone in 

children. 

Art.13(5) Carbohydrates 

Carbohydrates contribute to the recovery of normal muscle function 

(contraction) after highly intensive and/or long-lasting physical exercise 

leading to muscle fatigue and the depletion of glycogen stores in 

skeletal muscle 

Art.13(1) Vitamin D Vitamin D contributes to the maintenance of normal bones 

Art.13(1) Protein Protein contributes to the maintenance of muscle mass 

Art.13(1) Iodine 
Iodine contributes to the normal production of thyroid hormones and 

normal thyroid function 

Art.13(1) 
Docosahexaenoic acid 

(DHA) 

DHA contributes to the maintenance of normal blood triglyceride 

levels 

Art.13(1) 

Docosahexaenoic acid 

and Eicosapentaenoic 

acid (DHA/EPA) 

DHA and EPA contribute to the maintenance of normal blood 

pressure 

Art.13(1) Chitosan 
Chitosan contributes to the maintenance of normal blood cholesterol 

levels 

Art.13(1) Calcium Calcium is needed for the maintenance of normal bones 

Art.13(1) Carbohydrates Carbohydrates contribute to the maintenance of normal brain function 

Source: EU Register on nutrition and health claims (http://ec.europa.eu/nuhclaims/?event=search) 

2.11. Regulation in the use of marine materials 

The NutraMara research objectives included targeting marine materials from known and 

available sources and assessing their potential as a source of functional ingredients. Initial 

research identified wild and cultured species of fish and algae, in addition to materials obtained 

from fish processing streams as prime source from which to extract these ingredients. 

Prospecting for marine species on the high seas was not within the scope of the research 

programme. 
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Different national and European legislation and regulations exist concerning the collection and 

use of these materials. Of particular relevance to the NutraMara programme was the extent to 

which these regulatory systems were barriers to the collection or harvesting of wild or culture 

species, or limited the use of marine materials as functional ingredients.  

2.12. Collection of materials from the shore 

The removal of any material or development activity on the shore is subject to conditions 

within the Irish Foreshore Act (1933). This act defines the foreshore as “the bed and shore, 

below the line of high water of ordinary or medium tides, of the sea and every tidal river and 

tidal estuary and of every channel, creek and bay of the sea or of any such river or estuary and 

extends outwards to 12 nautical miles (approx. 22.24 km), the seaward limit of Ireland’s 

territorial seas.” Under the Act, the relevant minister may issue licences to individuals or 

companies seeking to use the resources of the foreshore. Of relevance to NutraMara is that 

the majority of Ireland’s seaweed stock is on the foreshore, hence persons seeking to harvest 

seaweed may be required to apply for permission before collecting materials. All applications 

for licences should be made to the Department of Environment, Community and Local 

Government. Establishing an aquaculture activity on the foreshore, whether for fish or 

seaweed, also requires a licence. Licensing responsibility for all aquaculture activities rests with 

the Department of Agriculture, Food and the Marine. 

A raft of other legislation is relevant to the granting of licenses to collect materials from the 

foreshore, in particular legislation associated with environmental conservation. The Wildlife 

Act 1976, the Wildlife (Amendment) Act, 2000 and the European Union (Natural Habitats) 

Regulations, SI 94/1997, subsequently consolidated within European Communities (Birds and 

Natural Habitats) Regulations 2011, establish Special Areas of Conservation (SACs). Together 

with areas defined as special Protection Areas (SPAs), SACs form a European network of sites 

known as Natura 2000, the focal point of EU policy concerning EU nature and biodiversity.  

Where there are pre-existing harvesting activities within an SAC, such as harvesting seaweed, 

additional consent is generally not needed. However, an application to expand harvesting or to 

begin harvesting within an SAC (or in areas that may affect an SAC) may need further approval 

or be subject to an appropriate assessment.1   

In the context of NutraMara, seaweeds are the most likely material to be harvested from the 

foreshore. Many of the wider ecosystem roles of macroalgae, and the distribution and biomass 

of algal species, are yet to be fully characterised. In light of the need for an appropriate 

assessment if harvesting sites are located in Natura 2000 designated areas, knowledge gaps as 

these could influence the extent to which wild stock of seaweeds may be a major source of 

functional materials.  

1 An assessment to determine if a development will be damaging to a Natura 2000 site 

http://www.irishstatutebook.ie/2000/en/act/pub/0038/index.html
http://www.irishstatutebook.ie/1997/en/si/0094.html
http://www.irishstatutebook.ie/1997/en/si/0094.html
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2.13. Sourcing material from seafood processing 

Different regulations apply to the use of materials obtained from fish processing. Depending 

how these materials are identified and treated within the processing cycle, determines which 

regulations apply. Materials provided from within a food processing stream, require that they 

are identified as a food during processing, and treated as if for direct consumption. In essence 

this requires full compliance on the part of the processer with food hygiene law. Two 

regulations are relevant. Regulation 852/2004/EC defines the requirements for food hygiene, 

including premises, temperature control, HACCP, equipment, transport, waste, personal 

hygiene and training. And since fish is a food of animal origin, specific additional hygiene 

regulations as defined in Regulation 853/2004/EC also apply.  These rules apply in the case of 

wild catch and cultured species.  

The use of materials from food processing waste defined as unfit for human consumption is 

defined in regulations concerning the use of animal by-products (ABPs). The principal 

legislation relating to ABPs is Regulation (EC) No. 1069/2009 and the national statutory 

instrument European Union (Animal By-Products) Regulations 2014 (SI No 187 of 2014). The 

Sea Fisheries Protection Authority (SFPA) is responsible for marine origin animal by-products 

in Ireland.   

Different risk categories apply to ABPs, defined by the risk of the materials to animals, the 

public or to the environment, which also determine how materials in each risk category are to 

be disposed. There is a ban on material re-entering the food chain where animals may be fed 

material derived from the same species, for example as intra-specific fish meal. Otherwise fish 

processing waste is likely to be considered as category 3 (low risk) waste, provided it comes 

from disease-free or otherwise uncontaminated sources. It is possible for low risk waste to 

undergo ‘technical transformation’ into a product that may be consumed by humans.  Examples 

of category 3 materials from marine sources are 

• Material which has previously been fit for human consumption, including catering
waste, raw fish and skins 

• Parts of slaughtered animals which are fit for human consumption but which are not
intended for human consumption for commercial reasons 

• Animal by-products derived from the processing of products intended for human
consumption, e.g. fish bones 

The conversion of mussel or prawn shells into chitin or chitosan is an example of such a 

transformation. The mixing of materials as might occur in processing waste from wild and 

cultured species in the same facility places additional processing complexities on companies as 

a result of cross contamination (Pfeiffer 2003). 

https://www.fsai.ie/uploadedFiles/Consol_Reg852_2004.pdf
https://www.fsai.ie/uploadedFiles/Consol_Reg853_2004(1).pdf
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2.14. Sourcing materials from aquaculture 

Aquaculture is an expanding sector with the potential to fill the gap between fish supply and 

demand in ways that reduce pressure on wild fisheries. The culture of seaweeds is an 

aquaculture activity that continues to attract interest in Ireland (Werner and Dring, 2011). 

The use of material obtained from aquaculture activity is subject to the same regulations 

relating to food processing, and the use of waste or animal by-products, as described for 

materials sourced from the processing of seafood. 

2.15. Sustainability 

The terms ‘sustainability’ and ‘sustainable development’ are increasingly visible “on the radar” 

of many industries, including the marine. The concept of sustainability was defined as the 

“social and economic advance to assure human beings a healthy and productive life, but one 

that did not compromise the ability of future generations to meet their own needs” (Oxford, 

1987). The implication of sustainability within the food sector is that products should be:  

• based on raw materials that can be produced on an on-going basis without undue
environmental, social or economic harm; 

• not be reliant, in the long-term, on finite energy sources; and
• food products should not adversely affect human health.

The marine sector faces numerous challenges in coping with the rapidly changing global 

economic and environmental conditions. Therefore, new ways of meeting the needs of the 

present without comprising future viability have to be embraced by the food industry. The 

achievement of rational use; sufficient production of marine resources for food use; avoiding 

needless marine processing waste; the valorisation of marine processing by-products; and the 

appropriate management of environmental impacts, all underpin the wellbeing, health, and 

longevity of human populations and the world’s environment.  

The challenge of sustainability in the harvesting and exploitation of marine bioresources, 

equally applies to the processes used in the production of marine derived food and other 

products. Creating value from marine biomass typically involves some level of extraction of 

materials from marine organisms. Though a number of platform extraction technologies exist, 

many of these processes involve the use of corrosive or toxic chemicals and thus present 

challenges concerning their sustainability. Alternatives to the use of these processes are 

required. 

Attention is drawn to the potential offered to the food sector to enhance its competitiveness 

by maximising the use of marine species described as underutilised. Europe’s ambitions for 

“blue growth” coupled with its strategy for smart, sustainable and inclusive growth, highlight 

the need to generate novel and innovative solutions to enable sustainable exploitation of 

marine resources. Whilst many EU regulations reflect concerns regarding sustainability, greater 
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effort is required to bring about the development of methodologies, which can ensure the 

future sustainability of commercially exploited marine resources.  

2.16. Functional compounds from marine organisms 

Marine organisms provide an array of proteins, fatty acids, carbohydrates and pigments that 

offer potential as functional ingredients. Considerable scope exists to fully explore these 

classes for bioactive molecules that are relevant to functional foods. Some marine origin 

compounds e.g. omega 3 PUFAs are already used as functional ingredients in baked products 

and in enriched juices and milk products (Cosgrove, 2008; Patch, 2005).  This section provides 

insights to some of the widely diverse compounds known to exist in various species of algae 

and fish and considered as relevant to the aims of the food sector in expanding the range of 

ingredients used in functional foods.   

2.17. Algal sources of bioactive compounds 

Many sources highlight the potential of algae as a source of novel compounds for food and 

health use. The interest in macro- and microalgal sources appears to stem from their reported 

extensive diversity, high productivity, and because of the discovery of compounds with wide-

ranging bioactives in many species. Allied to these findings, technological developments in 

cultivation, which offer the potential to fine tune biochemical composition to specific 

applications, make them an interesting research target for commercial use (Stengel et al., 

2011). 

There remains uncertainty concerning the number of different species of algae. Britain’s 

Natural History Museum estimates range from 27,000 to 36,000 species, with less than one 

third found in marine or brackish waters (Natural History Museum, 2015). There is no 

complete Irish checklist of algal species, and of the 53 classes of algae described, 

comprehensive details of just 12, mostly marine species, exist (National Biodiversity Data 

Centre, 2015). The Irish Biodiversity Centre (2015) reports 1,079 known species of algae from 

an estimated 3,000 to 5,000 likely to be in Irish waters.  

Pigments are amongst the main characteristics use to distinguish between the fifteen phyla of 

algae. The application of molecular techniques to algae, reveals species of algae as being far 

more diverse and complex than originally believed; of which most are phylogenetically 

unrelated. 

2.18. Macroalgal (seaweed) sources of bioactive compounds 

The main macroalgal species are classified within three phyla; Rhodophyta (red algae) 

Phaeophyta (brown algae) and Chlorophyta (green algae). Though species of seaweed from 

each of these divisions are to be found in Irish waters, there remains a death of data regarding 
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the distribution, volume and biochemical profile of most. Irish industry identified the following 

nine species as priorities regarding opportunities to yield bioactive materials, Ascophyllum 

nodosum; Laminaria digitata; Laminaria hyperborean; Palmaria palmate; Chondrus crispus; 

Himanthalia elongate; Fucus serratus; Lithothamnion corallioides; and Ulva lactuca (per.comm 

Stengel D, NUI Galway). Macroalgae are generally known as sources of proteins, fatty acids, 

carbohydrates and compounds which demonstrate antioxidant properties. However, the 

structure and biological properties of algal proteins remains relatively poorly documented.  

2.18.1. Proteins 

Red algae generally have the highest protein content, with approximately 20-30 % of dry 

weight as protein, up to a maximum of 47 % in some species such as Palmaria palmate and 

Porphyra tenera (Fleurence, 2004). Green algae generally comprise 9-26 % protein. Although 

brown algae is reported as having the lowest protein content, at between 3-15 % (Fleurence, 

2004), there are reports of protein content of up to 44 % in Fucus serratus and up to 40 % in 

Undaria pinnatifida (Marsham et al., 2007). Seasonal variation in protein concentrations is 

common, with the lower values often, but not exclusively, in summer and autumn (Galland-

Irmouli et al., 1999, Rouxel, et al., 2001, Martínez and Rico, 2002, Hagen Rodde et al., 2004, 

Abdel-Fattha and Sary, 1987, Marinho-Soriano et al., 2006). Furthermore, reports have shown 

that different types of proteins are present in macroalgal cells at different times of the year 

(Galland-Irmouli et al., 1999, Yuan, 2008, Hung et al., 2009).  

The most promising families of proteins from algae in terms of their bioactivities, are lectins 

and phycobiliproteins. Lectins are carbohydrate binding proteins typically involved in cell 

communication, including recognition of foreign or cancerous cells (Ziólkowska and 

Wlodawer, 2006, Calvete et al., 2000). Little is known regarding the biological and chemical 

properties of algal lectins, with some isolates showing no similarity to other known plant 

lectins. Investigations of algal lectins from the Asian red algae Eucheuma serra have shown 

evidence of activity against cancers and fish disease bacteria (Kawakubo et al., 1997, Kawakubo 

et al., 1999, Sugahara et al., 2001, Hori et al., 2007, Liao et al., 2003). Other lectins isolated 

from red algae were shown to have painkilling effects, anti-inflammatory properties, activities 

against HIV-1 and inhibition of human platelet aggregation and dental plaque bacteria (Hori et 

al., 1988, Neves et al., 2007 Viana et al., 2002, Bitencourt et al., 2008, Mori et al., 2005, 

Matsubara et al., 1996, Teixeira et al., 2007).  

Most seaweeds are considered to contain all the essential amino acids and often a more 

balanced amino acid profile that found in terrestrial plants (Fleurence, 2004, Galland-Irmouli et 

al., 1999). Red algae are a potential source of taurine, a conditionally essential non-protein 

amino acid (Dawczynski et al., 2007). Taurine is associated with a large number of functions 

including blood pressure and blood cholesterol lowering and antioxidant properties (Lourenco 

and Camilo, 2002; Militante and Lombardini, 2002; Zhang et al., 2004; Houston, 2005). 
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Furthermore, in a recent study taurine was shown to have a significant protective effect in 

women with high cholesterol (Wójcik et al., 2012).  

Other algal sourced amino acids of note are laminine and kainoids. Laminine extracted from 

algae was reported to depress muscle contraction and to have a transitory hypotensive effect 

(Bhakuni and Rawat, 2005). The kainoids, including domoic acid, are found in many algal 

species and are of interest due to insecticidal, antihelminthic and neuroexcitory properties 

(Parsons, 1996).  

Mycosporine-like amino acids are associated with UV absorption and antioxidant functions and 

can be extracted from Porphyra umbilicalis (Oren and Gunde-Cimerman, 2007, Cardozo et al., 

2007). This group is relevant as a source of derivatives for natural skin protection ingredients 

and industrial applications where materials need to be photostable (Cardozo et al., 2007).  

A number of endogenous peptides with potentially useful activities have been identified from 

macroalgae. These include peptides with antioxidant activities and analogues of human 

molecules that may have therapeutic uses (Arasaki and Arasaki, 1983; Shiu and Lee, 2005; 

Brown, 1981; Morse, 1991; Aneiros and Garateix, 2004).  

A survey of ten dipeptides extracted using hot water from Undaria pinnatifida showed evidence 

of angiotensin converting enzyme (ACE) inhibitory activity, with a smaller sub set causing 

reduction of blood pressure in spontaneously hypertensive rats (Suetsuna et al., 2004).  

Enzymatic hydrolysis of algal proteins with commercially available food-grade proteolytic 

enzyme preparations has the capability to release an array of peptides with potential 

biofunctional properties (Arihara, 2006). Macroalgal protein hydrolysates have been shown to 

have ACE inhibitory, antihypertensive, anti-mutagenic, calcium precipitation inhibition, 

antioxidant, antitumor, anticoagulant, antityrosinase (enzyme implicated in Parkinson’s and 

similar diseases) and blood sugar or cholesterol lowering activities.  

The ACE inhibitory and antihypertensive peptides identified to date have been purified from 

protein hydrolysates generated from three species of macroalgae (Hizika fusiformis, Porphyra 

yezoensis and Undaria pinnatifida). The seaweed sources worked on to date are biased towards 

Pacific origin flora.  

2.18.2. Polyunsaturated fatty acids 

The fatty acid content of seaweeds can approach that of fish: Undaria pinnatifida may have EPA 

concentrations of up to 0.14 g per 100 g dry weight of thallus). The PUFA content of U. 

pinnatifa varies between locations, within the algal frond and was generally higher later in the 

Asian harvesting season (Khan et al., 2007). More research is warranted to examine the fatty 

acid content of other species of seaweed as a potential source of n-3PUFAs, in particular EPA 

and DHA.  

2.18.3. Carbohydrates 

Carbohydrates are among the most abundant chemical compounds in nature and they play 

numerous functional and structural roles in living organisms. Complex polysaccharides from 
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the brown, red and green seaweeds are recognised as having a broad spectrum of properties 

with therapeutic potential (Patel, 2012). The carbohydrates identified in macro-algae include a 

number of different types of polysaccharides, e.g. sulphated galactans such as agar and 

carrageenans. These molecules, often termed phycocolloids, hydrocolloids or gums, are 

already widely used in the food industry (Renn, 1997; Bixler and Porse, 2010).  

Sulfated fucans, frequently referred to simply as fucans, constitute a class of polysaccharides 

also known as fucoidans, fucosan, and fucanusulphate found in species of brown algae. Marine 

algae generally contain these polysaccharides in complex heterogeneous structures, with 

structural details varying between species, populations and seasons (Zhao et al., 2008). 

Fucoidans are known for their anticoagulant activity (Smit et al., 2004), related to their sulphate 

content (Nishino et al., 1994). This activity has been investigated as an alternative to the anti-

coagulant heparin, which is extracted from meat carcasses. A number of different brown algal 

fucoidans have been shown to have anticoagulant and antithrombotic activity, with sources 

including species of Laminaria, Eklonia and Pelvetia. Fucoidans from Ascophyllum nodosum and 

Fucus vesiculosus have been patented as anticoagulants.  

Fucoidan attach to the cell walls of algae, this mechanism offers scope for the use of these 

sulphated polysaccharides in health applications. Fucoidans have been proposed as anti-

inflammatory compounds, possibly altering the attachment of white blood cells, with 

applications in reducing reperfusion injury when circulation is restored after traumas such as 

heart attacks. Similarly, fucoidan may have a potential role in inhibiting graft rejection or 

anaphylactic shock. Fucoidan-chitosan gels can promote skin growth and contraction of 

wounds, making such mixtures suitable for treating dermal burns (Sezer et al., 2008). 

The potential antiviral activity of fucoidans was demonstrated in culture against a range of 

infections, such as poliovirus, herpes and HIV (Luescher-Mattli, 2003). By interfering with the 

attachment of viruses to cells, fucoidans can act as antivirals and have low toxicity in 

comparison to other antiviral drugs used in medicine.  There are suggestions that consumption 

of brown algae may have a prophylactic effect against prion diseases (Doh-ura et al., 2007). 

Anti-tumour and anticancer effects of fucoidans have also been found; both through 

stimulation of the immune response and through direct toxic effects on cancer cells (Aisa et al., 

2005).  

The sulphated galactans have a similar activity profile to that of fucoidans, but found in red 

algae, typically Chondrus crispus. Carrageenan is the most well-known example of this group and 

there is evidence that they offer both anticoagulant and antiviral activity. Concerns that 

carrageenan, particularly in a degraded form, may produce an inflammatory reaction and 

ulceration of the colon, led the European Commission to recommend a limit < 5% on the 

amount of small molecular weight carrageenan in any food use.  

Agar is another polysaccharide also extracted from red algae, mostly Gelidium amansii and 

whilst not generally considered a likely candidate source of bioactive molecules, an agar-
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supplemented diet has been shown to improve short-term weight loss and lower cholesterol 

levels in obese subjects (Maeda et al., 2005).  

Alginates are polysaccharides mostly found in brown algae, with a history of use in food and 

related industries. They are derived from the kelps, principally Macrocystis pyrifera, Laminaria 

spp. and the intertidal alga Ascophyllum nodosum. Alginates have been shown to have effects on 

blood lipids, decreasing the total blood cholesterol content and causing weight loss. Sodium-

calcium alginate and PUFAs have been suggested as a treatment for childhood blood lipid 

imbalances (dyslipidemia). As with other large polysaccharides, alginates have been shown to 

act as prebiotics, increasing the levels of bifidobacteria. Alginates are also used in over-the-

counter medication for heartburn and acid reflux. These preparations contain weak alkaline 

salts (in the products for adults) and the alginate helps to form a gel that protects the 

oesophagus from stomach acid.   

Other brown algal polysaccharides, laminaran (alternatively laminarin) may demonstrate 

biological activities.  Laminaran extract has shown promise as an antibacterial agent in pig diets, 

while fucoidan has shown prebiotic properties in pig diets (Lynch et al., 2010). Derivatives of 

laminarin may slow tumour growth and have anticoagulant activity (Adams and Thorpe 1957; 

Hoffman et al., 1996).  

Ulvan is a sulfated polysaccharide extracted from green algae. Species from the genus Ulva are 

widely eaten and have a history of medicinal uses including the use of boiled extracts against 

intestinal parasites and direct application of fronds to wounds (Scagel et al., 1957). Experiments 

with ulvans have shown effects on tumour cell proliferation and hypolipidaemic activity 

(Kaeffer et al., 1999; Sathivel et al., 2008). 

2.18.4. Compounds with antioxidant properties 

Potential antioxidant phytochemicals from marine sources include carotenoids, phenolic 

compounds and organosulphur compounds. Alkaloids may also have potential as antioxidants, 

but little is known about marine sources of these compounds. The carotenoids, e.g., α- and β- 

carotene and fucoxanthin, are a widespread and diverse group of pigments, most of which have 

been shown to have antioxidant properties (and have other potential uses such as in food 

colouring). Carotenoids are found in marine algae and include pigments such as astaxanthin.  

Bromophenol is a phenolic found at high levels in red seaweeds such as Polysiphonia urceolata. 

An important class of phenolic are phlorotannins (phloroglucinol, eckol). This group of 

compounds have been extensively studied in brown algae, where they are thought to have 

roles in UV damage protection and grazer deterrence (Abdala-Diaz et al., 2006). Phlorotannins 

have potential in a number of functional food contexts, including as antioxidants (Wang et al., 

2010), in chelating metals and proteins out of solution (Parys et al., 2007), as antimicrobials 

(Wang et al., 2009) and antivirals (Ahn et al., 2004) and as compounds with potential medical 

applications (Moon et al., 2008). The organosulphur compounds include sulphur containing 

antioxidant amino acids; cysteine and methionine. Other sources of antioxidant compounds in 
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seaweeds include ascorbic acid, catechins (catechin, epigallocatechin, epigallocatechin gallate) 

and tocopherols (α-, γ-, δ-tocopherols) (Zubia et al., 2009).  As organic compounds containing 

sulphur, many of the seaweed polysaccharides have antioxidant potential (Barahona et al., 

2011; Ye et al., 2008).   

A comparison of extracts from Fucus vesiculosus has shown generally greater antioxidant 

activity in this seaweed than in a number of commercially available supplements. Other 

seaweed extracts, generally from species not growing in Irish waters, have shown antioxidant 

activity. The antioxidant content of seaweeds has been shown to vary seasonally and with 

shore height (Connan et al., 2004). This is not surprising and is predictable in general terms on 

the basis of factors such as herbivory, nutrient availability and light or heat stress. Upper shore 

Porhyra umbilicalis has been found to have the highest antioxidant activity when compared to 

material from lower on the shore. A similar association with more stressful conditions has 

been observed in Ulva lactuca, where bromophenol content increases towards the end of 

summer, but declines through the rest of the year. 

Several studies have indicated the potential of powdered seaweeds (López-López et al., 2009a) 

from Himanthalia elongata, Undaria pinnatifida and Porphyra umbilicalis on the antioxidant 

capacity (determined using FRAP and TEAC (trolox equivalent antioxidant capacity) assays) of 

meat emulsion model systems.  It was concluded that the polyphenolic compounds contained 

in seaweeds increased the antioxidant capacity of the meat model systems (Cofrades et al., 

(2008); López- López et al., (2009b). The inclusion of powdered (Himanthalia elongata) in 

poultry steaks did not affect the sensory properties of the meat.  

The addition of phlorotannins from Sargassum kjellmanianum was found to act as a novel 

antioxidant in fish oil. Yan et al., (1996) and Wang et al., (2010) reported antioxidant activity of 

oligomeric phlorotannins isolated from Fucus vesiculosus in cod fish muscle.  

2.19. Microalgal sources of bioactive compounds 

The terms ‘algae’ and subsequently ‘microalgae’ are scientifically misleading terms which refer 

to a large diversity of diverse taxonomic entities with different phylogenetic backgrounds 

comprising both prokaryotic and eukaryotic organisms, which are as little related to each 

other as toadstools are to humans (and thus have little in common other than that they are 

mostly photosynthetic organisms living in damp environments). The estimated number of 

species algae is in excess of 30,000, though this is likely to be an underestimate (Falkowski and 

Raven, 2007).  There are continuous new discoveries being made in both taxonomic entities 

(e.g. Stern et al., 2010) and new genetic strains within different algal species, multiplying the 

chemical composition of ‘microalgae’ (e.g. Colla et al., 2005; Plaza et al., 2009). 

Few microalgal species are currently exploited commercially, while the diversity of compounds 

with either nutritional or health-promoting activities, including multiple antioxidant functions, is 

promising (Raja et al., 2008; Plaza et al., 2009)  Several recent studies have specifically reviewed 
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the potential of microalgae as food ingredients (Gouveia et al., 2009; Plaza et al., 2009; Chacón-

Lee and Gonzales-Mariño, 2010). Microalgae also act as a food additive in animal feeds, 

functioning either as colourant (e.g. the freshwater genera Haematococcus, Dunaliella or 

Chlorella, (Borowitzka et al. 1991)) or as a nutritional enrichment of human and animal diets 

due to their fatty acid, vitamin, mineral and protein contents.  

Traditional food uses of microalgae were based on collection from natural freshwater bloom 

populations in China, Chad and Mexico and the most commonly species used were the 

prokaryotic Spirulina and Nostoc (Pulz and Gross, 2004; Chisti, 2006). Despite their immense 

diversity even today only a few species are commercially grown and utilised in foods, including: 

the freshwater species Haematococcus; the halophyte Dunaliella; several entities of Chlorella 

(some of these falsely identified as Chlorella); and several Spirulina species (mainly S. maxima). It 

should be noted that even today most microalgal production is based on freshwater species. 

2.19.1. Proteins 

Early investigations of microalgae as food focused on their use as Single Cell Protein (SCP) for 

undernourished human populations, which was considered as a solution to world hunger in the 

first half of the 20th century (Jassby, 1988a). Some microalgal species contain high levels of 

proteins (e.g. Spirulina, Anabaena, Scenedesmus) (Becker, 2004) and with some exceptions, 

there did not appear to be any detrimental effects arising from feeding microalgal protein at 

high concentrations to undernourished people (extensively reviewed by Jassby, 1988a,b). The 

current focus of research is on the selective addition of microalgal compounds as 

nutraceuticals (Plaza et al., 2009; Chacón-Lee and Gonzales-Mariño, 2010). Different types of 

the proteinaceous phycocyanin are commercially produced from Spirulina which has 

applications in foods and health foods and as dyes but also have antioxidant and pharmaceutical 

properties (Eriksen, 2008). 

2.19.2. Polyunsaturated fatty acids 

Several species from most of the major categories of microalgae (Chlorophyta, Cyanophyta, 

Rhodophyta, Bacillariophyceae) produce fatty acids of value to human nutrition such as EPA 

and DHA (Radwan, 1991; Meiser et al., 2004). Fatty acid levels in microalgae, whilst specific to 

different groups, can be enhanced and composition modified by different culture conditions 

(e.g. Meiser et al., 2004). Groups of species that have shown particular potential and are under 

investigation for potential commercial exploitation include diatoms (Otero et al. 1997; 

Guihéneuf et al., 2010), cyanobacteria (Colla et al., 2004), as well as red (Durmaz et al.,2007) 

and green microalgae (Petkov and Garcia, 2007). 

A breakthrough in the genetic optimisation of algae could expand the supply of omega-3 fatty 

acids according to published research from UC Berkeley and Aurora Algae (Kilian et al., 2011).  

A non-transgenic strain of the unicellular alga, Nannochloropsis, has been developed with an 

altered lipid profile having a higher proportion of EPA.  The authors believe this new strain will 
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be extremely valuable in expanding the supply of omega-3 fatty acids for the global 

pharmaceutical, food and dietary supplement industries. 

2.19.3. Carbohydrates 

Whilst most algal polysaccharides (agars, carrageenans, alginates and their derivates, and 

fucoidans and laminarin) used in the food industries are derived from macroalgae, the 

production of sulphated exopolysaccharides from the red alga Porphyridum cruentum (Wang et 

al., 2007; Keidan et al., 2009), a Cryptophyte (Chroomonas) (Bermudez et al., 2004) and Spirulina 

(Nie et al., 2002) have shown potential for commercial exploitation. Besides the obvious gelling 

and binding characteristics of sulphated galactans more commonly extracted from macroalgae 

(e.g. Tuvikene et al., 2010), these compounds also have several high bioactivities and thus could 

present value food ingredients.  

2.19.4. Compounds showing antioxidant properties 

Pigments are of value to the food industry as colorants, because of the antioxidant activity of 

most pigments (in particular carotenoids) and their multiple functions as health promoting 

agents, the potential of which is only emerging (Prasanna et al, 2007, 2010). Reported health 

benefits from microalgal pigments include anticancer, anti-inflammatory, neuro-protective and 

hepatoprotective properties (Eriksen, 2008; Prasanna et al., 2010).  

Microalgal pigments fall into two major categories: carotenoids are produced by all algal groups 

but commercially available pigments currently used in the food industry are mainly: ß-carotene 

and astaxanthin (from Dunaliella and Haematococcus, respectively) and to a lesser extent lutein; 

various other xanthophylls (such as zeaxanthin); and lycopene and bixine (Gouveia et al., 2009) 

from other algal groups including Chlorophyta and Cyanobacteria.  

Whilst most microalgal groups contain α- or more commonly, ß -carotene (Falkowski and 

Raven, 2007), carotenoid composition is specific to different algal groups with over 600 

different types reported to occur in nature (Faure et al., 1999). Total levels of carotenoids 

within algal cells, and the relative abundances of different types, are determined by growth 

conditions (e.g. light, nutrient and salinity stress) and thus vary naturally, though they can also 

be optimised in relevant culture conditions (Raja et al., 2007). Similarly, phycobilin production 

is specific to cyanobacteria (such as Spirulina) and the few microalgal representatives of red 

algae (e.g. Porphyridum), and its production has been optimised in certain strains (e.g. Eriksen, 

2008; Gupta and Sainis, 2010).  

2.19.5. Vitamins and minerals 

Whilst most microalgal species examined contain a range of essential vitamins and minerals 

valuable to human nutrition (Becker, 2004; Pulz and Gross, 2004), some groups contain 

particularly high levels (e.g. certain species of Spirulina), but similar to other chemical 

constituents of interest, vitamin and mineral levels vary significantly with growth conditions 

(Gouveia et al., 2009). This again illustrates the potential to optimise the levels and 

composition of constituents that are desirable. Most research has been conducted on 
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freshwater species such as Haematococcus and Spirulina but the same principle can be applied 

to other groups. Approaches to producing algae that are rich in several compounds of interest 

should be investigated, but potential interactive physiological effects of different additions (with 

potentially antagonistic effects due to competition for chemical bindings sites), as well as 

possible impacts of these ‘stresses’ on biomass production needs to be evaluated. 

2.20. Fish sources of bioactive compounds 

Fish are recognised as being inherently functional foods; possessing compounds such as PUFAS, 

minerals and proteins that are beneficial in maintaining human health, in addition to 

contributing to nutritional intake.  Fish, inclusive of shell fish, whether they are harvested from 

the wild or aquaculture farms, and fish by-products (rest raw materials or co-products) are 

recognised as an excellent source of nutraceuticals and bioactives (Shahidi, 2003; Alasalvar and 

Taylor, 2002).  

2.20.1. Proteins 

Proteins from fish, molluscs and crustaceans can be divided into three main groups: the water 

or low salt buffer soluble fraction (sarcoplasmic), the structural proteins that make up the bulk 

of muscle mass (myofibrillar) and the connective tissue or stroma proteins. The overall protein 

content of fish is between 11 and 22 %, with a greater range of variability across molluscs and 

crustaceans (Murray and Burt, 2001; Venugopal, 2009a).  

The most familiar and most common connective tissue protein is collagen, widely used as 

gelling agents in the food industry (Venugopal, 2009a). Collagen is prevalent in fish bones and 

skin and therefore processing waste is potentially a good source for this protein (Kim et al., 

2008). The prevalence of non-polar amino acids may make collagen a potential source of ACE 

inhibitory and antioxidant peptides (Kim and Mendis, 2006). 

A review of the literature shows ACE inhibitory, antioxidant, calcium binding, antihypertensive 

and anticoagulant activities across a range of peptides isolated from different fish and fish waste 

sources. Mollusc and crustacean derived protein hydrolysates also appear to be useful sources 

of bioactive peptides with antioxidant, appetite suppressant, antihypertensive, ACE inhibitory 

and HIV protease inhibitory activities reported.  

Proteins and peptides with biological activity are present in fish and shellfish. For example, 

antimicrobial peptides may have potential as food preservation additives.  Reported sources of 

such antibacterial peptides include skin secretions, mucus and fish milt. Protamines from fish 

milt contain high concentrations of arginine and have been used in medical applications to 

inject insulin and to reverse the effects of the anticoagulant heparin (Kamal and Motohiro, 

1986; Uyttendaele and Debevere, 1994; Islam et al., 1984; Gill et al., 2006; Chan and Li-Chan, 

2006). Patents have originated in Japan for the use of protamines as food preservatives, and as 

additives for the prevention of dental caries (Gill et al., 2006). Equivalent antibacterial activities 

were demonstrated in peptides isolated from shrimp, crab and molluscs. For example, a 6.5 
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kDa proline-rich peptide from blood cells (haemocytes) of the shore crab Carcinus maenas 

displayed antimicrobial activity against both gram negative and gram positive bacteria (Schnapp 

et al., 1996). 

Beyond antibacterial activity, there are further activities in fish and shellfish peptides, 

particularly where a molecule acts as a mimic for a human protein. For example, calcitonin is a 

hormone involved in bone-calcium absorption (Venugopal, 2009; Kanis, 2002). Salmon 

calcitonin is 30 times more active than the human hormone and is used in the treatment of 

osteoporosis (Venugopal, 2009). This compound can have a painkilling effect and may have a 

role in treating pain in bone-related syndromes (Lyritis and Trovas, 2002). 

2.20.2. Polyunsaturated fatty acids 

Growing public awareness of the benefits and limited dietary sources of PUFAs has created a 

substantial interest in the production of PUFA concentrate (Sahena et al., 2010a). The 

polyunsaturated fatty acids (PUFAs) are essential fatty acids, which must be obtained from the 

diet, since humans cannot synthesize these fatty acids. These are alternatively known as 

omega-3 and omega-6 fatty acids.  

PUFAs are integral to cell membranes, influencing the physical properties of the membrane and 

the function of membrane-bound enzymes and receptors. Wider roles for PUFAs in the body 

include potential roles in blood pressure regulation, blood clotting and the development and 

functioning of the brain. Eicosanoids derived from PUFAs are signalling molecules involved in 

the regulation of inflammatory responses. The role of PUFAs in inflammatory processes is 

linked to eicosanoids primarily derived from 20-carbon PUFAs: arachidonic acid (n-6) and 

eicosapentaenoic acid (EPA, n−3). EPA  and a related fatty acid docosahexaenoic acid (D H A , n-

3) have been show to lower the expression of genes involved in inflammatory reactions (Wall

et al., 2010).

A human dietary intake of 4:1 n-6:n-3 ratio is generally recommended, but western diets

typically exceed 16:1 ratios. This dietary imbalance has been associated with increased

prevalence of diseases characterized by inflammatory processes, including cardiovascular,

psychiatric and inflammatory diseases.

Currently, PUFA concentrates are used commercially in pharmaceutical products, food

additives, and in health supplements.  Production of omega-3 concentrates may be carried out

to offer a pure fatty acid, such as EPA or DHA or a mixture of omega-3 PUFAs (Shahidi, 2005).

Typically, EPA and DHA are contained in oily fish such as salmon, lake trout, tuna and herring.

Oily fish such as herring typically have the highest content of EPA + DPA (2.01 g per 100 g

fish). Concentrations are lower in white fish such as cod and haddock (0.24-0.28 g per 100 g

fish) and variations occur between areas, with the fat content of individual fish, over time and

with different processing methods before consumption.

The greatest evidence for the health benefits of diets relatively rich in n-3 fatty acids are the

various epidemiological studies linking fish-rich diets in Greenland and Japan to lower coronary
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artery disease incidence. Other more specific studies include trials showing reduced relapse 

incidence in patients with Crohn’s disease (an inflammatory disease of the intestine). DHA is a 

major fatty acid in the brain and dietary supplementation is under investigation as a potential 

therapy for the prevention and treatment of neurological disorders such as Alzheimer’s 

disease. More recently, studies reported on the beneficial effects of omega-3 fatty acids on 

mental health, including schizophrenia and bipolar disorders.  A study by Chiu et al., (2012) 

indicated that higher omega-3 levels in membranes of erythrocytes were associated with 

improved cognitive function and immediate recall in older people with previous depression.  

The European Food Safety Authority (EFSA) and the American Food and Drug Administration 

(FDA) each announced qualified health claims for dietary supplements containing EPA and 

DHA omega-3 fatty acids, pointing to the role of PUFAs in reducing the risk of Cardiovascular 

Health Disease (CHD) and beneficial in the maintenance of normal blood pressure. 

Potential sources of omega-3 rich material in Ireland include the fatty, pelagic fish mackerel, 

herring and tuna. The fat content of these species varies, including seasonal variations (Jaobsen 

et al., 2009). Cod and Halibut livers are also good oil sources. Catches tend to be seasonal, 

with the large pelagic slander in winter and spring. One of the factors that can affect the quality 

of fish oil is the geographic region of catching as it can influence contaminants (metals, 

lipophillic pollutants) building up in the food and this needs a case by case assessment. 

2.20.3. Carbohydrates 

In addition to many polysaccharides found in macroalgae, other major sources of potential 

bioactive carbohydrates are chitins obtained from the shells of crabs, lobsters, prawns, shrimp 

and krill. Commercial chitin is extracted from crustacean waste generated by the seafood 

processing industry. Crustacean shells are constituted mainly of a matrix made of chitin and 

protein, hardened by mineral salts. The amount of each component can vary widely among 

species and also in an intra-specific way as a function of season, age, gender and other 

environmental conditions (Beaney et al., 2005). Chitin is insoluble in water, but can be treated 

chemically/enzymatically to produce chitosan, which, depending on molecular weight, is soluble 

in weakly acidic solutions. 

There are suggestions that chitosan can alter bacterial cell permeability or interfere with 

bacterial RNA and protein synthesis (Liu et al., 2004; Chung and Chen, 2008), albeit the exact 

mechanisms of antibacterial action are not fully established. The effectiveness of chitosan as an 

antibacterial agent depends on concentration and molecular weight of the chitosan molecules 

used.  

Health benefits associated with chitosan include a lowering of blood cholesterol (Xu et al., 

2007), which is linked to beneficial effects on coronary heart disease and weight loss. As high 

molecular weight chitosan molecules are not easily digested or absorbed in the acidic 

environment of the small intestine, chitosan forms a gel in the intestine. This binds with dietary 

fats and prevents their absorption in the gut and enhances natural excretion of the fats (Gades 
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and Stern, 2003; Zeng et al., 2008). Gades and Stern, (2003), however, point out that the fat 

trapping effect in their study was ‘clinically negligible’.  

Chitosan has been found to have anti-tumour effects in laboratory animals that are mediated 

through enhancing the host’s immune system (Shahidi et al., 1999). Immunomodulatory effects 

of chitin and chitosan are also observed in wound healing (Mori, 2005). At the cellular level, 

chitosan-mediated immune response reportedly occurs through various signalling molecules 

and cytokines such as tumour necrosis factor. 

A number of in vitro studies have demonstrated that chitosan can bind fats and bile acids 

(recently reviewed by Egras et al., 2010). It is hypothesised that once chitosan forms a complex 

with dietary fat, released after digestion of a meal, the absorption of the fat by the intestinal 

cells is prevented. Several in vivo studies in human and animals also demonstrate a significant 

reduction in body weight gain and reduction in the plasma lipid content due to feeding of 

chitosan. Chitosan as an effective weight loss supplement in humans was demonstrated by 

Schiller et al. (2001) and Kaats et al. (2006).  

Chitosan is being used as a functional food in many Asian countries including Japan, Korea and 

China (Aranaz et al., 2009). However, it is not yet enlisted in the General Standard for Food 

Additives although chitin and chitosan were considered by the Codex Alimentarius 

Commission in 2003 (Aranaz et al., 2009). In the EU, chitosan is not yet approved as a food 

ingredient although several studies have demonstrated that chitosan is not toxic in general and 

has been included in the list of generally regarded as safe (GRAS) compounds (Chandy and 

Sharma, 1990; Thanou et al., 2001). 

Assays of polysaccharides from abalone have revealed relatively strong antioxidant properties 

in comparison to vitamin C and E controls (Zhu et al. 2010). A separate study of water-soluble 

sulphated polysaccharide extracted from abalone viscera showed evidence for tumour 

suppression and stimulation of the immune system in mice (Sun et al., 2010).  

2.20.4. Compounds showing antioxidant properties 

Antioxidants can be extracted or isolated from fish and fish waste by different processing 

methods. Antioxidant activity was identified in protein hydolysates of fish waste, from Alaskan 

pollack, tuna, eel and parasitised hake. Hydrolysates are treated with various combinations of 

filtration and chromatography to produce extracts of different structures and molecular 

weights for assay. Carotenoids have been extracted from shrimp by fermentation with 

enzymatic cleaving of the carotenoids from a protein matrix. Astaxanthin is the most common 

and stable pigment to be extracted from crustacean sources, but other carotenoids have also 

been extracted. A screening of crustacean–derived chitosan derivatives has identified 

sulfanilamide chitosan derivatives to have the highest antioxidant activity compared to chitosan 

sulphate or chitosan alone. Fermentation has also been used to generate antioxidant peptides 

from mussels. 
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2.21. Future outlook for marine origin functional ingredients 

The development of functional foods is largely driven by concerns about rising levels of diet 

related health issues amongst the population. This is a global concern, and an issue constantly 

highlighted in Irish health policy. With an established food ingredients industry, and a solid 

background in food and marine science research, Ireland is well positioned to attempt to 

improve economic and health performance by directing research towards marine functional 

foods opportunities.   

A major feature of the functional food area is the diversity of potential products. The literature 

contains a large number of examples of bioactivity for proteins, carbohydrates and pigments. 

Despite significant worldwide research into the composition of marine organisms, many 

species (particularly seaweed species) found in Irish waters remain to be fully characterised. 

Compounds extracted from marine sources have been shown to have many different activities 

including anti-tumour, antihypertensive and as prebiotics.  

This consideration of bioactive compounds from marine organisms highlighted a number of 

areas of opportunity for functional food innovations relating to proteins from algal and fish 

sources, polyunsaturated fatty acids, carbohydrates and for compounds with antioxidant 

properties. These are summarised below. 

• Marine algal proteins can make up a significant proportion of algal dry mass and are
potential sources of bioactive proteins, peptides and amino acids or amino acid-like 
molecules. There is scope for defining new bioactive molecules either in extracted 
protein or protein derivatives.  

• Given the diversity of potential products, opportunities exist for value creation by
identifying and characterising functions of proteins. There is abundant evidence that 
fish and shellfish material can be the source of potentially valuable bioactive proteins 
and protein-derived compounds.  

• The global omega-3 ingredient market is diverse, and indicated as continuing to
expand. There are opportunities for product innovation and in defining new 
functionalities for particular molecular fractions extracted from fish and algal 
sourced omega-3. 

• Marine-derived carbohydrates are already widely used in nutraceutical, functional food
and pharmaceutical markets. There is good reason to expect further development of 
products from these marine sources. Based on successes of the traditional marine 
polysaccharides such as products of alginate, carrageenan, agar and chitin, areas of 
opportunity exist for chitosan, ulvan, laminaran and fucoidan.  

• Interests in the potential of antioxidant compounds as a functional ingredient and a
food preservative are increasing.  Seaweeds and seafood waste are each potential 
sources of commercially viable antioxidants. A challenge facing the production of 
antioxidant compounds from marine sources is the availability of competitive 
production processes. 

• Microalgae are already used in food supplements and incorporated as nutritional
ingredients into foods and drinks. 

• With only about 40 species currently grown in commercial aquaculture, the search for
the ideal microalgal species for specific applications is on-going. The demand for new 
algae-derived bioactives for food use is behind the acknowledged rapid growth in 
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microalgal research. The use of pigments (phycocyanin and carotenoids) as food 
dyes with additional antioxidant activity, and the addition of small amounts of 
microalgal PUFAs into savoury foods, appear to be options with potential.  

2.22. Processing marine materials for use as functional 

ingredients 

Many factors influence the way companies compete for market space; however, the speed at 

which a product moves from initial concept to the shelf in a store ultimately affects overall 

competition. The ability to rapidly commercialise a product relies on developing early insights 

to the processes required to create it. Creating robust reliable products demands equally 

appropriate, reliable and robust production processes. Developing early insights to the 

manufacturing options, including any process limitations, provides knowledge that is essential in 

establishing the feasibility of a new product.  

A range of marine organisms are identified as sources of novel ingredients, ranging from 

microalgae to fish, each will have specific limitations on how they are processed, from harvest 

to use. Biological and chemical characteristics of these organisms change in the period from 

capture to consumption, further changes may occur during processes used to extract 

functional and other compounds (Ababouch, 2005). These autolysis and other changes pose 

challenges in optimising processing conditions pointing to the need to develop early insights to 

processing methodologies and limitations.   

It is most likely that species and compound specific processes are required in developing 

functional materials from marine organisms. In this respect, a processing challenge to be 

considered by NutraMara was the extent to which it may be possible to use a biorefining 

approach to produce several product streams, thereby improving processing capabilities.  

2.23. Protein extraction 

2.23.1. Algal proteins 

Extraction processes are key steps in discovering algal protein sources. Such processes may be 

complicated due to the presence of polysaccharide (such as alginates) and polyphenolic 

compounds in algae (Fleurence et al., 1995a; Wong and Cheung, 2001; Jordan and Vilter, 1991). 

These molecules can bind with proteins, hindering their extraction (Wong and Cheung, 2001). 

A solution to this issue is to use alkali solutions under reductive conditions (NaOH and 2-

mercatoethanol) to break polysaccharide-protein linkages (Wong and Cheung, 2001; Rice and 

Crowden, 1987; Fleurence et al., 1995a). Alternatively, polysaccharide degrading enzymes that 

degrade the cell wall and intracellular polysaccharides could be employed (Fleurence et al., 

1995a; Fleurence et al., 1995b; Fleurence, 2003; Joubert and Fleurence, 2008). A targeted or 

sequential use of enzymes may form part of this process. This process is likely to involve 

polysaccharide digesting enzymes such as cellulose, hemicellulase and β-glucanase (this 
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particular mixture enhanced recovery of proteins from Ulva rotundata) (Fleurence et al., 1995). 

Other combinations of digestive enzymes have been shown to be effective, with at least one 

mixture (xylanase and cellulose) being patented for use in the food industry (Fleurence et al., 

2001).  

Membrane-based technologies such as ultrafiltration and nanofiltration may provide 

industrially-relevant processes to purify and enrich of peptides of specific molecular mass 

(Korhonen and Pihlanto, 2007; Korhonen, 2009). Other approaches include electro-membrane 

filtration, which involves the use of charged membranes, and enzymatic membrane reactors 

which integrate enzymatic hydrolysis and product separation into a single process (Korhonen 

and Pihlanto, 2007). These are proven in the industrial production of non-marine sourced 

ingredients containing bioactive peptides.  

The isolation and purification process can be partly guided by the emerging structure-

bioactivity profile of bioactive peptides. For example, ACE inhibitory activity is more likely with 

hydrophobic C-terminal amino acid residues (produced by branched or aromatic side chains), 

along with a number of other structural signifiers of likely activity (Murray and FitzGerald, 

2007). Antibacterial peptides associate with membranes, often through a hydrophobic 

tryptophan containing region, but with a hydrophilic region containing positively charged 

residues that interfere with (generally negatively charged) bacteria (López Expósito and Recio, 

2006). Antioxidant peptides are often associated with the amino acids histidine, proline, 

tyrosine and tryptophan (Pihlanto, 2006).  

2.23.2. Fish proteins 

Enzymatic hydrolysis is a common step in recovering material from fish and fish wastes, with a 

traditional use for the resulting material being animal feed or fertilizer (Venugopal, 2009a; 

Kristinsson and Rasco, 2000). The process can be modified to screen for peptides with 

functional properties.  

While some digests involve combinations of expensive food-grade enzymes, there may be 

possibilities for the simpler processing of materials. For example, de-shelled mussels left in salt 

solution (25 % NaCl, 20 °C) for 6 months generated peptides with ACE inhibitory activity (Je 

et al., 2005). Similarly, mussel fermentations were shown in a different study to produce 

peptides with metal-chelating and antioxidant properties (Rajapakse et al., 2005).  

2.24. Lipid Extraction 

2.24.1. Algal lipids 

Given the large diversity of algal species, optimising the extraction of lipids is a challenge. Algal 

lipids can be divided into two major types: polar lipids such as phospholipids and glycolipids, 

and neutral/non- polar lipids such as mono-, di- and tri-acylglycerides (Schuhmann et al., 2012).  

Even though many extraction methods are described, algal lipid extraction remains a challenge, 

particularly at commercial scales where energy efficiency and cost effectiveness are important 
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factors in achieving overall competitiveness (Grima et al., 1994). Efficient cell disruption is a 

prerequisite for oil extraction (Lee et al., 2010). 

Combinations of chloroform, methanol and water, known as the Bligh and Dyer method, can 

be used to extract lipids from algae. The need for more biocompatible and less toxic 

extraction methods for oils to be used in food related applications, resulted in alternative 

solvent based methods. Direct saponification is reported as such a process suitable for 

extracting significant yields of oils from algae (Li et al., 2014). 

Process developments have allowed supercritical fluid technology to be used for microalgal oil 

extraction for pharmaceutical and nutraceutical bioproducts. These relatively recent 

developments offer processors several benefits over more traditional liquid solvent based 

methods (Santana et al 2012). The attraction of supercritical fluid extraction is it does not 

require the use of toxic compounds or high-temperatures, and provides a greater degree of 

control in the separation of products.  

The continuous microwave-assisted extraction (MAE) is a further method developed for rapid 

oil extraction from algae.  At least 77 % of recoverable oil was extracted in 30 min, compared 

to 47 % for control.  Moreover, the MAE oil contained more unsaturated fatty acids, with 

more omega-3 and omega-6 essential fatty acids, indicating superior quality (Balasubramanian et 

al., in press). 

2.24.2. Fish lipids 

Different methods are available to extract oils from fish and fish co-products, and the choice of 

extraction method can influence oil yield.  With some methods relying on high-temperature 

processing or the use of toxic solvents, there are practical issues to be considered in deciding 

on extraction processes. Methods that require high temperatures to extract oils can degrade 

what is a thermally unstable compound; and those methods relying on solvents can have 

adverse health effects. Even allowing for such inherent disadvantages hexane extraction, 

vacuum distillation, urea complexation or conventional crystallisation are described as suitable 

for the extraction of lipids from algae (Staby et al., 1993; Sahena et al., 2010a).  

More benign processes are used to extract omega-3 concentrates for pharmaceutical or 

nutritional purposes, including enzymatic methods and methods that use supercritical fluids 

(Rubio-Rodriguez et al., 2010). Supercritical fluid extraction, which operates under mild 

conditions, is suited to the extraction and fractionation of edible oils containing labile PUFAs. 

In particular, supercritical extraction with carbon dioxide offers new opportunities for the 

solution of separation problems as it is non-toxic, non-flammable, inexpensive and a clean 

solvent (Sahena et al., 2010). The pressure swing and soaking techniques of supercritical 

carbon dioxide extraction were found to be the most effective for extracting the omega-3 

family of fatty acids from fish samples (Sahena et al., 2010a; Sahena et al., 2010b). 

The advantage of avoiding the use of solvents and high temperatures prompted further 

research on the use of enzymatic technology for fish oil extraction. Liaset et al., (2003) 
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reported that enzymatic hydrolysis of salmon frames with proteases obtained omega-3 

enriched oil with good recovery (~ 77%) along with several peptides and essential amino acids. 

Commercially available enzymes at middle temperatures were also used to extract oil from fish 

processing discards – salmon heads (Linder et al., 2005).  

2.25. Carbohydrate extraction 

2.25.1. Algal carbohydrates 

Seaweeds contain a number of different types of polysaccharides, which include the sulphated 

galactans agar and carrageenans. These molecules, often termed phycocolloids, hydrocolloids 

or gums, can be used to stabilize emulsions, retain water and form gels. Sulphated fucans and 

galactans are negatively charged polysaccharides found in species of brown algae. A crude 

extract can be made using a hot water or acid soak. The Australian company Marinova, use a 

patented cold water process to extract fuciodan from a range of seaweeds including Fucus 

vesiculosus, Ascophyllum nodosum and Laminaria digitata which is said to cause less degradation of 

the polysaccharide than methods that use ethanol.  

Along with agar and carrageenan, alginates are polysaccharides with a history in food and 

related industries. Alginates are mostly found in brown algae, with the bulk of worldwide 

production derived from the kelps Macrocystis pyrifera, Laminaria spp. and the intertidal 

Ascophyllum nodosum. Alginate, which may make up to 40% of the dry mass of some species, 

can be extracted by a multistep process that involves treating the algae with a hot alkali 

solution before adding salts and changing the pH to cause alginate to precipitate out of 

solution.  

The complex nature and large sizes of seaweed polysaccharide molecules mean extraction 

technologies play an important role in the bioactivity, purity and composition of algal 

carbohydrates. Materials are often stabilised by dehydration or freeze-drying prior to 

extraction. A general extraction approach is to make a crude extract using aqueous (water, 

acid or alkali) or partially organic solvents (often ethanol). An example of an initial extraction 

of a sulphated polysaccharide from the red seaweed Champia feldmannii, involved a fairly 

aggressive initial treatment of enzymatic hydrolysis at pH 5.0 with papain (30 mg ml−1 ) at 

60ºC.  

More recently developed extraction techniques such as ultrasound (Zhu et al., 2008) and 

microwave (Wu and Dai, 2007) assisted extraction have been used to maximise extraction 

yields.  

2.25.2. Fish carbohydrates 

The major source of bioactive carbohydrates from fish is chitin. This abundant natural 

compound, which is extracted from the shells of crustaceans, is made up of N-acetylated 

glucosamine, a glucose derivative. Chitin is insoluble in water, but can be treated 

chemically/enzymatically to produce chitosan, which, depending on molecular weight is soluble 
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in weakly acidic solutions. Native chitosan polymers with high molecular weights are associated 

with low solubility and high viscosity, which limits its cellular absorption and bioactivities. 

Therefore, low molecular weight chitosan (LMWC) and chitooligosaccharides are generally 

produced by hydrolysis of the chitosan polymer. A variety of methods are used in this process 

including chemical, enzymatic or physical hydrolysis.  

The main industrial techniques used to extract chitin from different shell-waste sources rely on 

chemical processes for the hydrolysis of protein and removal of inorganic matter (Hayes et al., 

2008). Chitin isolation consists of three steps, which are demineralisation, deproteinisation and 

bleaching. Demineralisation can be achieved using dilute HCl while aqueous base solutions 

such as NaOH are used for the deproteinisation step (Hayes et al., 2008). A decolourisation 

step is often added to remove remaining pigments resulting in a colourless product (Rinaudo, 

2006).  

Producing chitosan at an industrial scale involves chemical based processes. Employing high 

concentrations of mineral acid and alkali, they are hazardous, energy consuming and potentially 

damaging to the environment (Healy et al., 2003). Other less hazardous extraction processes 

using enzymatic extracts and microbiological fermentations, are feasible alternatives. An 

extraction study, using a lactic acid fermentation of prawn shell, produced a lower quality of 

chitin compared to that normally produced by chemical extraction. This lactic acid 

fermentation approach may be useful as an effective pre-treatment step to chemical extraction, 

ultimately leading to a reduction in the use of hazardous chemicals (Beaney et al., 2005).  

The physicochemical characteristics of chitosan/chitooligosaccharides such as the MW and 

degree of acetylation (DA) are highly dependent on the type of preparation method and the 

rigour of the various process parameters applied (Aranaz et al., 2009). It is necessary therefore 

to optimize an extraction protocol to generate chitosan/chitooligosaccharides with the desired 

level of bioactivity. 

2.26. Antioxidant compound extraction 

Protein hydrolysates of fish processing discards have been found to have antioxidant activity. 

These hydrolysates are treated with various combinations of filtration and chromatography to 

produce extracts of different structures and molecular weights.  

Carotenoids have been extracted from shrimp by fermentation with enzymatic cleaving of the 

carotenoids from a protein matrix. Astaxanthin is the most common and stable pigment to be 

extracted from crustacean sources, but other carotenoids have also been extracted. 

Fermentation methods have also been used to generate antioxidant peptides from mussels. 

The extraction of algae for antioxidants has used various organic solvents, including acetone, 

methanol and ethanol.  
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2.27. Carriers for functional ingredients 

Generalisations about the typical consumer can obscure real knowledge about the nature of 

foods that appeal to different groups of people. An early concern about functional foods was 

the ingredients might impair the taste of the product, requiring stronger health beliefs on the 

part of the consumer to overcome this negative factor. Verbeke, (2006) found that, although 

consumer surveys indicated that people with a belief in health benefits might compromise on 

taste, the strength of this effect has decreased in more recent surveys. Behind one trial, the 

thought was that the provision of health information might increase the overall acceptance of 

some functional beverages. However, this was not the case; health conscious consumers still 

preferred a palatable fruit drink with less active ingredients than a healthier drink with an 

impaired taste (Sabbe et al., 2009). Generally functional foods have to be perceived as 

attractive regardless of any added functionality (Siro et al., 2008). Results from studies of the 

role of advertising in functional foods suggested that marketing a functional food on the basis 

of taste, rather than a health claim, may be a suitable strategy in some cases (Kim et al., 2009). 

Findings as these are amongst the factors to be taken into account in the design of functional 

foods, with special consideration given to how active ingredients are best delivered. They also 

highlight the importance of concurrently developing the functional ingredient and carrier.   

Opportunities identified as potential carrier products for functional ingredients include: 

• Incorporation of antioxidants from mussels as ingredients in seafood based sauces for
use as a condiment or in a prepared consumer food. 

• Drawing from Asian experiences, where seaweeds are used as a vegetable, to create
salad products that incorporate active ingredients from seaweeds, or whole 
seaweeds.  

• To introduce health beneficial compounds from seaweed into classical food or/and
beverages. 

• Omega-3 oils may be included in bread, crackers, cereals, cereal bars, milk and dairy
products, fruit juices, salad dressing, mayonnaise, spreads, margarine, pasta, meat 
and lean fish products and baby food and infant formulas.   

• Possibilities exist to use marine origin antioxidants in conjunction with omega-3 oils.

• The encapsulation or microencapsulation to retard lipid auto-oxidation and enzyme
hydrolysis was found to improve the oil stability and control off-flavours. Scope 
exists to use fish oil microcapsules in functional foods such as cream to fill sandwich 
cookies, instant foods (soups, cocoa drinks etc.), dairy products (yoghurt, fresh 
cheese, butter) or pasta.  

• In general, antioxidant compounds are incorporated into foods during the
manufacturing process.  Another approach to enhancing the oxidative stability of, for 
example, muscle foods (beef, pork, poultry and associated processed meat products) 
is to supplement pre-slaughter diets with antioxidant compounds.  

• Potential exists to use the antioxidant properties of powdered seaweeds in the
manufacture of meat based products, thus enhancing their functionality and 
delivering low sodium products with enhanced dietary fibre and mineral profiles. 
Powdered seaweeds can also be incorporated within pasta and pasta sauces. 
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2.28. Knowledge gaps 

2.28.1. Introduction 

From the outset the NutraMara research programme faced into a large research area and an 

almost endless list of potential research challenges. These ranged from species selection, to 

overcoming legal and ethical issues associated with both animal and human trials, as well as 

understanding key aspects of processing and commercial opportunities for marine functional 

foods. In commencing the NutraMara programme, early decisions on direction were influenced 

by knowledge embedded within the consortium and the challenge of maximising the available 

human resources in ways that would enable the maximum impact on Ireland’s food sector.  

During the early stage of the project, which explored the feasibility of drawing from available 

marine resources and assessing the potential of these as sources of functional ingredients, it 

was apparent that little research on specific Irish resources had taken place. There was a 

noticeable bias towards research on species that do not normally occur in Irish waters: Pacific 

species being far more prominent in the literature, than Northern Atlantic or other cold-water 

organisms. This was particularly noticeable in macroalgal research publications. Not only were 

Irish species poorly characterised, so too were bioactivities of compounds they produce. Of 

particular down-stream relevance for any commercialisation activity, is the availability of stable 

raw materials to process. Insights to the volume and compositional variations of organisms 

collected at different times of the year, and from different locations, were also quite poorly 

defined. The NutraMara consortium benefited from feedback from a management board and 

from an expert review panel. These wide contributions significantly added, when combined 

with insights delivered by the feasibility study, to the identification of knowledge gaps that the 

research programme could fill.   

2.28.2. Characterising sources and stability of supply 

Sources of supply for functional ingredients have previously been identified as fish, algae and 

discards from the fish processing sector. Insights developed from the extensive literature 

challenged the absence of microalgae from the work programme, particularly in light of a 

reported global interest in the resource and the prioritisation of microalgal research in Europe. 

Proposals concerning planned macroalgal research were identified as requiring a more in-depth 

study than was planned, with greater precision built into the sampling plans to account for 

geographic and temporal variations within Irish species that were of specific commercial 

interest and potential. There were also major gaps in understanding the profile and availability 

of compounds in macroalgae, and for a systematic evaluation of extraction techniques to 

maximise yields. Without this fundamental knowledge downstream commercialisation 

opportunities could be missed. An integration of the two strands of algal research (macro- and 

micro-) would add value to the programme.  
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2.28.2.1. Microalgal research 

In Ireland, where few microalgal species are exploited, opportunities exist to explore these 

organisms for bioactive compounds. High returns from microalgae may be achieved by 

targeting the pigments, lipids and mycosporine-like amino acids (MAAs) they are known to 

produce. The general pathways of compound production are common to most algal groups. 

However, the diversity of the different, largely unrelated microalgal groups, points to these 

pathways being diverse. Further research is needed to fully explore factors that contribute to 

compound production.  

Only a small number of species are being cultivated or tested for food use. Cultivation has 

focussed on a small number of groups, which can be easily grown for aquaculture feed 

production and more recently for biofuels. For food purposes, different species need to be 

grown in mono-specific axenic conditions. International literature and industry demands for 

new food ingredients from algal sources, point to the need for new knowledge regarding, 

• Exploiting new species not currently grown for food purposes

• Optimising production based on biological and ecological methods

• Screening for new compounds with application in food

• Screening for new bioactivities in existing compounds

• Optimising the production of compounds of food interest (levels and composition):
fatty acid profile, carotenoids (xanthophylls and carotenes), Phycobilins/MAAs. 

2.28.2.2. Macroalgal research  

Research indicates considerable knowledge gaps exist concerning the profile of seaweeds 

found in Irish waters, with little specific research on species of commercial relevance. An 

important step in the viability of an industrial application is in establishing the stability of supply 

raw materials. There is a need for targeted mining of macroalgae for novel bioactive food 

ingredients by focusing on species where a known potential exists to (naturally and artificially) 

optimise yield, profiles and activities based on the biological control of specific compounds.  

International research in the field clearly indicates that the biochemical profile (and associated 

bioactivity) of algal species is highly variable. However, combining surveys of natural 

populations with experimental manipulations can elucidate the factors that control the 

compound of interest. Impacts that are known to influence bioactive profiles include habitat 

(or culture) conditions, seasonality and biotic interactions.  

Research should thus focus on the application of new sampling and short-term culture 

experiments to investigate seasonal and spatial variability, and control, modify and optimise 

compounds (e.g. pigments, fatty acids and MAAs). Macroalgal species of particular interest are 

Ascophyllum nodosum, Fucus spp, Palmaria palmata, and Laminaria digitata. In addition, specific 

knowledge gaps exist regarding the, 
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• Level and mechanism of impact of different single and interactive environmental factors
on compound levels (e.g. pigment, fatty acid and MAAs) in chosen macroalgal 
species.  

• Level and mechanism of impact of different single and interacting environmental factors
on compound composition (e.g. pigment, fatty acid and MAAs) in chosen macroalgal 
species.  

• Establishing a linkage between observed variability and bioactive profiles through
focussed assessment of bioactivities of well characterised materials grown under 
known (controlled) conditions. 

• Impacts of genetic variability of different morphological types on biochemical
composition of Irish target species. 

• Potential to stabilise biochemical profile (and related bioactivity) by exposure to
controlled conditions. 

2.28.3. Identifying and evaluating novel compounds 

2.28.3.1. Proteins, peptides and amino acids  

Bioactive proteins, peptides and amino acids from marine sources were identified as 

opportunity areas in the development of novel functional foods. To fully exploit these marine 

resources for novel compounds requires the identification of novel bioactive nitrogenous 

components. Few examples of such compounds from Irish sources exist. Exploitation of 

marine-derived bioactive peptides as anti-diabetic agents is a relatively untapped area of 

research that offers significant opportunities for commercially relevant innovation. Knowledge 

gaps were addressed by research that would focus on,   

• Directing research effort towards the identifying of macroalgal species for bioactive
nitrogenous compound mining, specifically macroalgal species which grow off the 
coast of Ireland and which represent good candidate raw materials for further and 
more diverse biofunctional nitrogenous compound mining. 

• Generating detailed knowledge of the parameters affecting macroalgal protein
extraction efficiency, since no systematic study has been carried out to determine 
the parameters that affect protein extraction efficiency. 

• Detailed knowledge of the parameters affecting the non-protein nitrogen compounds
in macroalgae present in Irish waters. Non-protein nitrogenous components have 
the potential to display unique biofunctionality. However, research relating to those 
parameters which affect non-protein nitrogen composition and content is limited, if 
not non-existent, in many instances. 

• Developing food-friendly bioactive peptide enrichment protocols to support the
enrichment of macroalgal peptides by adapting and development of technologies and 
processes (e.g., membrane and electro-membrane processing) currently used to 
fractionate and enrich peptides from other sources.  

• Exploring the stability of isolated/extracted bioactive components providing
information on the interactions of marine proteinaceous compounds with other 
food components during processing and storage, and the effects of these 
interactions on their bioactivity.  

• Complete sequence identification of marine-derived bioactive peptide structures, thus
providing platform knowledge that will contribute to a greater understanding of the 
mechanism of action of macroalgal peptides. 
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• To date, no macroalgal-derived protein hydrolysates have been assessed for
insulinotrophic activity. Specific opportunities exist for the generation and 
subsequent screening of insulinotrophic peptides from macroalgae for anti-diabetic 
activity. 

• Target the generation and exploitation of proteins and peptides from marine to help
the marine sector not only to add value, but to find solutions that address the legal 
restrictions, high cost and environmental problems associated with disposal of a 
waste material. 

2.28.3.2. Polyunsaturated fatty acids 

Opportunities are known to exist to develop PUFAs from fish, algae and discards from fish 

processing activity. The extent that these can be realised is dependent on developing greater 

insights into process and product interaction. Despite the number of health claims that have 

been attached to the consumption of PUFAs, and the wide recognition of biological activities 

of marine PUFAs, specific knowledge gaps remain. Strong evidence suggests that interactions 

between the gut microbiota and PUFAs, and in particular omega-3 fatty acids, may affect 

human health, though specific information on the influence of marine-derived lipids on gut 

health is currently lacking. A better understanding of potential interactions between omega-3 

PUFAs and indigenous microbiota could offer strategies to optimise gastrointestinal health and 

improve overall health. Omega-3 fatty acids are highly unsaturated and sensitive to 

autooxidation. Factors affecting oxidation rates are known to include fatty acid composition, 

storage conditions and physical state, however, knowledge of the effect of oxidation on the 

bioactivities of marine lipids is limited. Specific knowledge gaps relating to marine lipids 

included, 

• The effects of bioactive lipid fractions on gut microbiome, including developing an
understanding of interactions of PUFAs with indigenous microbiota and probiotics. 

• The stability of lipid fractions subjected to typical food processing, environmental and
storage conditions, and the potential of natural antioxidants to prevent omega-3 
oxidation.  

• The bioaccessibility of marine lipids in model foods consistent with established stability
and sensory profiles.   

2.28.4. Polysaccharides of fish origin 

The obesity epidemic, concerns over the increasing prevalence of inflammatory bowel disease 

(IBD) and the demand for animal feed additives are key drivers of research into uses of chitin 

and chitosan. Aqueous solutions do not dissolve either compounds, which restricts 

bioavailability and limit their application as functional ingredients. Alternative approaches to 

overcome the solubility issue, include using chemical approaches to modify chitosan to form 

derivatives such as chitosan hydrochloride.  

Despite these barriers, the binding of chitosan molecules with dietary lipids is recognised as a 

possible mode of action in chitosan mediated weight loss. The diversity in physico-chemical 

properties of chitosan and its derivatives greatly influence the bioactivity, and hence their 

potential use as functional ingredients. Existing screening methods limit close examination of 
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the bioactivity of these compounds. Opportunities to exploit known effects of chitosan such as 

an enzyme immobiliser, its antimicrobial properties and role in stimulating immune function 

exist. However, the mechanism and modes of action of chitosan in these applications remain 

poorly understood. Without this knowledge, health claims for chitosan based compounds are 

unlikely. Research is required to resolve the following knowledge gaps, 

• Factors that contribute to variations in the physico-chemical properties of chitin,
chitosan and its derivatives that are associated with an unpredictable bioactivity. 

• Suitable scientific methodologies to be used in screening of various types of chitin,
chitosan and its derivatives and evaluation of the bioactivity. 

• Adequate scientific understanding is currently lacking on the mode of action of various
types of chitin, chitosan and its derivatives. 

2.28.5. Algal Polysaccharides 

Macroalgal polysaccharides are used in a myriad of food applications, including as emulsifiers, 

food stabilisers and microencapsulation ingredients. The bioactive potential of these 

compounds as anti-coagulants and anti-virals is well recognised, opening the way for further 

research. The bioactivity of macroalgal polysaccharides is not yet fully characterised in species 

of interest, such as Fucus serratus, Laminaria digitata, Gracilaria gracilis, and Pelvetia canaliculata. 

Providing new knowledge on these species could be completed by, 

• Research to combine exploring polysaccharides with research on polyphenols and
carotenoids from these species, in conjunction the development of food friendly 
extraction methods for polysaccharides. 

2.28.6. Knowledge to demonstrate the impact of marine functional foods 

A large scale clinical study is outside the scope of the NutraMara programme due to time-

constraints, and the high costs that such an approach would incur.  Small-scale targeted pilot 

studies can investigate the effects of marine bioactives on health. The findings from such 

studies will not only contribute to public knowledge of the health benefits of marine 

compounds, but also contribute to establishing health claims. The lack of data concerning the 

health benefits of consuming compounds from Irish seaweeds justifies the design of a focused 

study.  Investigating the effects of marine bioactives from Irish algae on biomarkers of health 

among healthy individuals will generate useful fundamental knowledge to inform the design of 

larger scale human trials and identify further research needs. Pilot studies will be used to, 

• Demonstrate the health effects of seaweed consumption.

• Measure the effect of seaweed consumption on weight management in humans.

• Identify mechanisms of action of seaweed constituents in type 2 diabetic individuals.

• Investigate the prebiotic activity of marine derived polysaccharides.

• Understand the influence of marine products on osteoarthritis and osteoporosis.

• Investigate the effect of seaweed consumption on cancer risk in humans.

• Assess the anti-cancer effects of Irish marine bioactives in vitro.

• Assess the anti-viral properties of Irish marine bioactives.
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3. SOURCING AND SAMPLING

3.1. Introduction 

Macroalgae (seaweeds), microalgae, fisheries and aquaculture and processing discards are all 

potential sources from which to obtain compounds for use as functional food ingredients. 

Understanding the main characteristics and scale of the Irish resource was essential when 

seeking to maximise the use of available resources. Several factors affect the volumes of 

available algae, fish and shellfish including seasonality, internationally agreed quotas, fisheries 

management plans and the extent of processing in Ireland. The discards and wastes associated 

with processing activities result from wild caught fish and from aquaculture.  Compared to the 

variety of species of fish from the wild, aquaculture offers a narrow range, principally salmonids 

and mussels. Irish seaweed aquaculture production is relatively small compared to species 

collected from the wild. Although there may be a considerable standing crop of wild species 

offering potential for harvest, uncertainties exist surrounding the actual biomass and impact of 

harvesting on the marine environment. Microalgae occur in the wild, however, the majority of 

species used for food related and other applications are grown in culture and not collected 

from the wild.  

A key aspect of assessing marine materials for their functional properties revolves around the 

gathering and collection of samples and preserving them for future analysis. This required a 

robust approach to sampling to be developed that was appropriate to the accurate 

determination of bioactive compounds from samples of fish, algae and processing discards. 

Steps also have to be taken to minimise the possibilities for samples to degrade or become 

contaminated. Thus it was imperative to have a process of storage (short and long term) that 

was efficient and preserved sample integrity over time. Faced with potentially large numbers of 

different species, particularly from the algal resources, an accurate taxonomic description of 

the species is essential. Further data concerning the habitat from which the samples were 

collected, including accurate location data, are also required.   

Having obtained samples, there was a requirement within the programme to collect data and 

track information concerning the distribution and analysis of samples; thus managing the 

sample inventory was a core project activity. The development of standard operating 

procedures and plans to assure sample quality would safeguard the validity of results obtained 

from the analysis. Establishing procedures designed to capture the chain of custody of samples, 

extracts and results of analysis, supported down-stream commercialisation activities. As the 

research programme developed, the number of samples was expected to increase. Adding to 

the complexity of the data management challenge within the NutraMara programme, was that 

multiple locations would be involved in the analysis and characterisation of sample materials. 
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Reliably tracking samples and the results of analysis was essential for repeatability and for 

compliance with any legal or regulatory obligations: requiring steps to be taken to eliminate 

data entry errors or other failures that could jeopardise the validity of results.  

3.2. Assessment of marine resources 

3.2.1. Irish fishery captures 

The composition of the Irish fish catch can be subdivided into stocks of deep sea demersal, 

pelagic fish and shellfish. Typical species in different groupings are demersal - cod, saithe, 

haddock, whiting, hake, megrim, monkfish, ling; pelagic - mackerel, horse mackerel, herring, 

sprat, sardines; shellfish - nephrops (Dublin Bay prawn), scallops, mussels, crabs, lobsters, 

squid, cuttlefish. Deep water fisheries include species like the orange roughy, but this category 

is in decline, with the most recent landings figure being 667 tonne. On the basis of landed 

weight, pelagic fish dominate the catch (Table 6). Despite making up only around 15% of the 

landings by weight, shellfish, particularly Nephrops, contribute over a third of the landed catch 

value. Further subdividing the catch into species, the top 10 species in terms of value are 

shown in Table 7 

Table 6 Average annual landings of fish and shellfish 2005-2008 

Fishery Landed weight (t) Value (€) 

Demersal 30,929 59,453,467 

Deep water 1,341 1,515,063 

Pelagic 179,608 65,382,164 

Shellfish 35,211 74,126,431 

Source: Sea Fisheries Protection Authority 

Table 7 Top species in Irish fisheries by value for 2008 

Species Live weight 

(t) 

Value (€000) 

Nephrops 9,391 39,819 

Monkfish 7,302 28,914 

Mackerel 25,738 19,123 

Hake 7,584 16,664 

Great Scallop 1,116 11,599 

Horse Mackerel 35,640 11,439 

Megrim 3,167 9,574 

Blue Whiting 76,469 9,182 

Edible Crab 6,331 9,149 

Haddock 4,059 6,812 

Source: Sea Fisheries Protection Authority 
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Herring has also been a significant stock in terms of landed weight in Ireland. A total of 33,167 

tonnes were landed in 2006. Catches of herring are currently at a relatively low level, there is 

some uncertainty over stocks and the prices of some segments of the market have collapsed 

(Stock Book, 2008). The Irish quota for Herring in 2009 was 29,191 tonne, with an estimated 

landing of 19,983 tonne into Irish ports during 2008.  

3.2.2. Finfish and shellfish aquaculture production 

Aquaculture produces around 58,000 tonne of fish and shellfish per annum, just under 25 % of 

the equivalent figure for capture fisheries. The aquaculture of shellfish, principally oysters and 

mussels, has generally increased over the past 15 years. Smaller amounts of clam (Ruditapes 

philippinarum) and scallop (Pecten maximus) are also cultivated with mean production of 182 

tonne and 72 tonne per year respectively. Mussel aquaculture is dominated by bottom grown 

stock, with the remaining fraction being rope grown. Finfish aquaculture is essentially static, 

with a peak salmon production in 2001. Other cultivated species include Arctic char, perch, 

turbot and ornamental fish.  

3.2.3. Discarded fish 

Waste products can be generated at any point in the value chain from harvest to consumer. 

Landing size regulations and species quotas have the unfortunate outcome of generating waste, 

in the form of fish discards at sea. Discards are notoriously difficult to estimate as the 

proportion of discarded catch varies seasonally, with location and with different fishing gears. 

An estimate of the weight of discarded deep water, demersal and pelagic fish and shellfish for 

Irish landings is shown in Table 8. The discard estimates used by Archer et al., (2001) are 

consistent with more recent estimates from certain Irish fleets, although there is variability by 

gear, fishing area and targeted species (Borges et al., 2005).  

Table 8 Estimates of fish discarded at sea from Irish vessels landing into Ireland in 20072 

Landings 2005-2008 (t) Average discard per 

catch (%) 

Discard (t) 

Deep water 30,929 50 15,465 

Demersal 1,341 12.5 168 

Pelagic 179,608 12.5 22,451 

Shellfish 35,211 43 15,141 

Total 247,089 53,224 

Developing discards as a source of functional food components, although superficially 

attractive, is not a reliable source. The planned reform of the EC Common Fishery Policy aims 

to introduce regulations that inter alia will prohibit discarding and require all the catch to be 

landed (European Commission, 2014).  

2 Average discard rate estimates are based on percentages provided by Archer et al., 2001, with Shellfish 
discards based on a Nephrops fishery, Catchpole et al., 2006. 
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3.2.4. Processing at sea 

Depending on the species and market, fish may be processed at sea with the waste generally 

disposed of overboard – typically, viscera and heads. At-sea processing is generally greater for 

demersal fish than pelagics. Shellfish such as Nephrops are often ‘tailed’ – the head and claws 

are removed. A comparison of live weight with landing figures (Table 9) indicates that pelagic 

fish are generally not processed at sea, while demersal and some shellfish are processed at sea. 

The mass of fish processed at sea is close to zero for pelagic species, around 2,300 tonne for 

demersal species, 39 tonne for deep water species, with the shellfish figure dominated by the 

figure of approximately 3,000 tonne of Nephrops.  

Table 9 Processing at sea calculations for the 10 top species landed in Ireland in 2007 3 

Species Live weight (t) Landed weight (t) 
Processed at sea 

(t) 

Processed at sea 

(%) 

Mackerel 48,417 48,417 0 0 

Nephrops 9,314 5,975 3339 36 

Crab 12,518 12,434 84 1 

Monkfish 3,480 2,776 704 20 

Horse Mackerel 39,091 39,091 0 0 

Megrim 2,034 1,937 97 5 

Herring 30,821 30,821 0 0 

Haddock 3,549 3,302 247 7 

Lobster 242 242 0 0 

Cod 1,793 1,566 227 13 

Source: Sea Fisheries Protection Authority 

3.2.5. On-shore processing waste 

Nearly two thirds of the waste from fish and shellfish processing is generated during on-shore 

processing (Archer et al., 2001). The nature of the waste is dependent on the species, the on-

ship processing and the destination market. The latter two factors may vary within a species, 

for example Nephrops tails as scampi or whole Nephrops as langoustines for export. Fish fillets 

and other sections of meat are removed for human consumption. This leaves the viscera, fins, 

bones and, depending on the product, head and skin to be discarded as waste. Shells may also 

form part of the crustacean waste stream. Volumes of waste have been estimated from the 

fraction of edible product in different categories of fish (Archer et al., 2000) and these fractions 

are shown in Table 10.  

3 Note large variation in landings figures in comparison to other years for example in mackerel. 
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Table 10 Edible portions of fish 

Species Edible portion 

(%) 

Demersal general 43 

Cod 50 

Haddock 43 

Hake 50 

Lemon Sole 42 

Ling 48 

Plaice 35 

Whiting 38 

Herring 53 

Source: Archer et al., (2001) 

Potential wastes by weight fractions are similar for shellfish and finfish. Average edible fractions 

are 39% for crustaceans and 20% for molluscs (Archer et al., 2001). The economically 

important species in Ireland are Nephrops (24% edible whole, 58% unshelled tails edible), crab 

(32% edible), and lobster (44% edible). The edible portions of some shellfish species are 

outlined in Table 11. The average edible portion for crustaceans and molluscs is 39% and 20% 

respectively. 

Table 11 Edible portion of some shellfish species 

Species Edible portions (%) 

Crab 32 

Lobster 44 

Nephrops Whole 

Unshelled tails 

24 

58 

Brown Shrimp 35 

Prawns 40 

Oyster 14 

Cockle 12 

Winkle 23 

Scallop 14 

Mussel 14 

Whelk 42 

Source: Archer et al., (2001) 

The approach used by Archer et al., (2001) assumes that most of the catch is processed to 

fillets. The majority of the Irish fish catch is, however, exported whole (88% of the fish catch 

exported whole, CSO figures 10 year mean). This reduces the potential processing waste to an 

average of 11% waste by weight (Table 9). The Irish landings figures can therefore be split into 

whole and filleted fractions for fish to estimate waste percentages. Depending on the species in 
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question, between 15% and 90% of crustacean landings are exported whole (Pfeiffer, 2003). 

Mussels are mostly marketed whole, whereas whelks and scallops are usually shelled. If the 

landings figures are disaggregated to reflect species level differences before summarizing, the 

estimated waste volumes are shown in Table 10. The largest source of processing waste is 

from the pelagic sector (Table 12). The majority of waste from mollusc and crustacean 

fisheries is made up of shell waste. 

Table 12 Landings of fish and shellfish in Ireland (2005-2008 average) and their waste production. 

Fishery Landings Weight (t) Maximum waste (%)  Waste (t) 

Deepwater  1,341 52 213 

Demersal 30,929 57 5,109 

Pelagic 179,608 47 27,516 

Shellfish 35,211 70 16,258 

TOTAL 247,089 49,096 

Source: SFPA; Percentages based on Archer et al.,(2001) 

3.3. Aquaculture waste 

Aquaculture activities are concentrated in the south and west of Ireland, with nearly 60 % of 

licensed sites lying in the counties of Donegal, Cork and Galway (Browne et al., 2008). As with 

caught fish, the type of processing determines the level of waste. Overall, an estimated 2,778 

tonne of waste arises from processing farmed fish (Table 13). 

Table 13 Percentages and volume of waste from processing of farmed fish.4 

Product Processed Production 

2007 (t) 

Waste % Total 

waste 

Type 

Gutting for 

export 

Salmon 70% 6,946 

11% 

764 Viscera 

Trout 26% 329 36 

Other 20% 10 1 

Filleting Salmon 10% 992 

50% 

496 Skin, frames, 

heads Trout 62% 786 393 

Other 60% 29 14 

Other 

processing 

Salmon 20% 1,985 

50% 

992 Heads, skin 

frames, 

bones, meat 

Trout 12% 152 76 

Other 20% 10 5 

Total 11,238 2,778 

4 Production figures from Browne et al., (2008), the split of product destination and waste percentages follow 
Pfeiffer, (2003). Trout includes both sea reared and freshwater sources. 
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Mussels dominate shellfish production; rope mussels are graded onshore with waste generated 

as shells, and rejected undersized stock. Bottom-cultured mussels, since they are graded at sea, 

generate little waste (Table 14).  

Table 14 Wastes arising from processing of cultured mussels. 5 

Rope mussel (11,200 t in 2007) Bottom mussel (18,270 t in 2007) 

Source of 

waste 

Processing (%) Waste (%) Waste (t) Processing (%) Waste (%) Waste (t) 

Grading 50 20 1,120 10 20 365 

Cooking 40 25 1,120 10 32 585 

Meat 

extraction 10 75 840 0 75 0 

Total 3,080 950 

Other cultured shellfish include oysters; clams and scallops generate negligible amounts of 

waste. Since only scallops tend to be processed, this approximates to 28 tonne of shell waste 

and 19 tonne of organic waste generated in 2007. 

3.4. Seaweed harvesting (inc. aquaculture) 

The brown alga Ascophyllum nodosum and the coralline red algae known as maerl, together 

account for the majority of the 36,000 tonne of seaweeds harvested from Irish waters (Table 

15). In general, seaweeds are not processed in a reductive manner to remove unwanted 

components; hence the waste fraction from processing is relatively low and estimated to be 

around 22 tonne per annum. Irish seaweed aquaculture activity in 2008 is confined to 4 

licensed areas producing 5 tonne (Irish Seaweed Industry pers. comm.). 

Table 15. Irish seaweed biomass from wild harvest and aquaculture in 2008.6 

Species 

Production 2008 

(wet t) 

Primary processing 

Waste (t) 

Secondary 

processing 

Waste (t) 

Alaria esculenta 5 4 % 0.02 - 

Ascophyllum nodosum 25,000 4 % 1000 14.6 

Laminaria hyperborea 2,000 4 % 80 2 

Laminaria digitata 500 4 % 2 0.5 

Fucus vesiculosus and F.spiralis 10 4 % 0.04 - 

Fucus serratus 300 100% 300 - 

5 Waste percentages are taken from Pfeiffer, (2003), with production figures for 2007 from Browne et al., 
(2008). The grading waste for bottom-cultured mussels contains only the proportion that is estimated to 
be graded ashore. 

6 Data collected by NutraMara consortium from companies. 
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Carageen moss (Chondrus crispus and 

Mastocarpus stellatus) 

60 4 % 2.4 2 

Palmaria palmata 125 4 % 5 2 

Maërl  8,000 4 % 320 

Asparagopsis armata 1 4 % - 1

Total 36,001 4 % 1440 22 

Ascophyllum nodosum followed by maerl and Laminaria hyperborea account for the largest 

amount of seaweed collected from Irish wild sources. In general 4% of the seaweed processed 

into a milled dried product ends up as waste (Irish Seaweed Industry pers. comm.), which 

yields 1,440 tonnes of waste. Several other companies then use the dried seaweed meal as 

input material for extractions and secondary processing (about 600 tonnes per annum). Several 

companies performing extractions produce together about 400 litres of sludge containing 10 % 

solids, i.e. 40 kg of solids a day or ca. 14.6 tonnes per annum (Irish Seaweed Industry pers. 

comm.).  

All other species are mainly used for food or agricultural purposes and very small quantities 

are used for secondary processing or in the cosmetics industry. Focus serratus is predominantly 

used for seaweed baths and once used is discarded.  Used in this manner, where it is soaked in 

hot water is likely to remove the water-soluble fraction and denature many enzymes and other 

molecules from the seaweed. The amount of solid waste of seaweed generated by seaweed 

spas is estimated at 300 tonnes or 75 tonnes dry weight. 

3.4.1. Microalgae 

Microalgae are microscopic mostly unicellular organisms belonging to a large range of 

taxonomic entities. The major phylogenetic groups that contain microalgae are diatoms (c. 

10,000 species), dinoflagellates (c. 2,000 species), Cryptophyta (c. 200 species), Haptophyta 

(Prymnesiophyceae; c. 500 species), Xanthophyceae (c. 600 species), Chrysophyceae (c. 1000 

species) and representative groups within green algae (total number c.7,500 species), red algae 

(total number c. 6,000 species) and brown algae (total number c 1,500 species) (species figures 

adopted from Falkowski and Raven, 2007). 

Although some species form blooms in natural environments, with high cell numbers 

particularly common in tropical eutrophic freshwater bodies, the actual biomass and the 

complex community structure renders commercial exploitation of natural stock as not feasible. 

Microalgae therefore need to be cultivated to obtain the required biomass for the desired 

purpose. 

Despite the vast diversity of algae that exist, clearly not all are suitable for cultivation or 

commercial application. In selecting a species for cultivation factors such as ability to produce 

biomass quickly, actual growth rates, commercial processing requirements and product 
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stability need to be considered. Unfortunately large cells which would theoretically provide 

suitable biomass more quickly, commonly exhibit notoriously low productivity.  

The options for microalgal cultivation in Ireland are limited; with outdoor cultivation unlikely 

due to largely unfavourable environmental conditions, indoor systems offer a solution. Such 

systems however, are complex and costly to run, (see Borowitzka, 1992; Pulz and Gross, 

2004; and Milledge, 2010) possibly limiting their use for the production of high-value products.  

Generally there are two approaches to sourcing microalgae for commercial application; either 

algal samples are collected from natural environments, or species or strains previously isolated 

and available from culture collections worldwide are used.  

3.4.2. Species from the wild 

The isolation of microalgal species from natural populations involves the collection of water 

(pelagic) or biofilms (benthic) samples, followed by a series of isolation steps in the laboratory 

to obtain mono-specific cultures. In their natural environment the distribution of different 

communities and groups of species within these depends on season, location, physico-chemical 

factors (e.g. light, salinity, nutrients, pH), turbulence and biotic factors such as grazers and 

pathogens. Several isolation and separation steps need to follow the initial sample collection, 

with the aim to obtain an axenic (no contaminants, particularly bacterial, viral or fungal) and 

monospecific isolate which will grow under particular laboratory culture conditions which 

need to be adjusted for different species. The general challenges of this approach can be 

summarised as follows: poor survival of cells in sampling containers; change in species 

composition and loss of species before start of culture; difficulty in obtaining sterile cultures 

not infected by bacteria or fungi which were naturally associated with microalgal cells. 

3.4.3. Species from algal collections 

The more common and practical approach for commercial applications is the purchase of 

microalgal species. Different strains of these, from within a large range of available culture 

collections cost between €15-€100 each for small quantities (20-40ml at varying cell densities) 

(See Appendix 2 for details of supply). These require cultivation to obtain larger amounts of 

biomass, which allow the assessment (and modification) of biochemical composition and 

potential bioactivities.  

Advantages of commercial sources of algal materials over open sourced are,  

• They are monospecific and mostly axenic, and thus suitable for the production of food
ingredients; 

• Traceability shows that cultivation is possible at least at a small scale, and culture
conditions then can be modified to optimise the production of certain compounds 
of interest to the food industry, and 

• The diversity of species available commercially is considerable, with most culture
collections supplying hundreds of species and different strains within these. 
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Figure 3 illustrates the diversity of species which are commercially available at just one such 

collection (Oban); SAG in Göttingen also provides a range of 2400 algal strains (representing 

538 genera and 1424 species) 

(http://www.epsag.uni-goettingen.de/cgi-bin/epsag/website/cgi/show_page.cgi?kuer zel=about.) 

Figure 3 Screenshot of options available from a sample culture collection7 

Further potential sources of microalgal samples for large scale cultivation are microalgal 

cultures currently used in aquaculture as animal feed. Internationally, diatom species such as 

Chaetocerous, Skeletonema, Thallasiosira, Nitzschia and Tetraselmis, and others, are most 

commonly used for animal feed (Borowitzka, 1997; Becker, 1994; Raja et al., 2008; Brown, 

2002). Whilst there may be stocks of microalgae available in Ireland for up-scaling, their 

potential is limited as the species have been chosen for particular purposes such as nutritional 

consistency, or simply local expertise, with less consideration to product range or new 

product potential (Borowitzka, 1997). To be used in food applications, such as functional 

ingredients, production facilities for these species would have to comply with food product 

standards. The potential of high-value products derived from microalgae grown under suitable 

conditions is significant and thus further research should concentrate on the application of new 

species, screening of new compounds and efficient, but adequate, modes of cultivation. 

3.5. Use of Irish marine materials as functional ingredients 

Knowledge about relevant compounds and availability of marine source material for use as 

functional ingredients varies greatly. For example, the characteristics of the algal polysaccharide 

alginate obtained in Ireland from Ascophyllum nodosum and a small number of other brown 

seaweeds are relatively well understood. In contrast, some marine origin bioactive proteins are 

7 (http://www.ccap.ac.uk/ccap_search.php?mode=attr; accessed 17/12/2010) 

http://www.epsag.uni-goettingen.de/cgi-bin/epsag/website/cgi/show_page.cgi?kuer%20zel=about
http://www.ccap.ac.uk/ccap_search.php?mode=attr
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still being defined; hence little is known about their availability or requirements to process 

them for food use.  

Estimates of waste materials from fishery and aquaculture species are summarised above in 

Tables 11, 12 and 13. The majority of waste from the major pelagic species is processed in 

existing facilities into fishmeal. Any large-scale processing into functional ingredients would 

have to offer a price advantage to the existing route for this material.  

Demersal fisheries provide a lower volume of potential waste. This source, along with 

aquaculture, is not as dispersed throughout coastal areas as are pelagic landings. This may 

favour more small-scale processing rather than collection and transport to a single processing 

site, which incurs additional costs and introduces the risk of spoilage for some materials such 

as fatty acids. Changes in export and processing patterns for stocks may also affect the 

availability of wastes. For example, the promotion of more Irish-based processing, particularly 

for demersal stocks, may increase the volume of available waste. Algal waste from existing 

processing, in addition to being low in volume, is unlikely to contain activities of interest. And 

volumes from the algal aquaculture are presently also low. Together these sources are unlikely 

to be of immediate interest.  

The diversity of seaweed species that grows in the wild remains of interest as a source of 

bioactives with functional food potential. Some species such as Ascophyllum nodosum and 

Laminaria hyperborea are already harvested from wild standing stock. The challenge facing any 

wide-scale harvesting and subsequent use as a sustainable source of bioactives, is a lack of 

reliable data concerning the distribution of species and available biomass. Concerns have been 

expressed regarding the extrapolative nature of the estimates of Irish seaweed biomass 

(Bruton et al. 2009). In light of this concern, and lasting knowledge-gaps on distribution and 

volume, there may be insufficient biomass to support the exploitation of species other than the 

algal kelps and fucoids. Species of maerl (coralline red algae) grow very slowly and it is not 

clear that any level of harvesting is sustainable (Maerl is also protected by the EU Habitats 

Directive).  

The diversity of European macroalgal species has not been extensively screened – there is an 

uneven pattern of investigation across taxa, with different target compounds and with different 

extractions. Further research may identify and quantify previously overlooked resources. The 

availability of more precise data of the potential resource and any harvesting limitations for 

standing stock may open opportunities for niche aquaculture of specific species.  Markets may 

exist for purified high-value molecules based on relatively low harvests (e.g., specific pigments) 

that could be met through aquaculture. 

The largest volume of material from Irish shellfish aquaculture comes from mussels. Mytilus 

spp.: both Mytilus edulis, and Mytilus galloprovincialis occur in Ireland with overlapping 

distributions that include hybrids between species (Gosling et al., 2008). There are few 

published studies of components of Mytilus relevant to functional foods, so further 
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characterisation and extraction development may create opportunities from this widely 

available resource. 

Although relatively low in volume at present, abalone culture is a high value capital-intensive 

form of aquaculture that may provide opportunities for synergistic production of functional 

food components. Ireland currently has a small number of farms, with two main producers. 

Future plans for production include increasing the capacity for individual farms up to around 80 

tonne (Tower Products, 2014). Local processing of this output would create waste (viscera) of 

the order of 16 tonne. (waste percentage from Sun et al., 2010). The species of abalone under 

culture in Ireland are Haliotis discus hannai (Ezo awabi) and Haliotis tuberculata (European 

abalone). H. discus hannai is generally more prevalent due to a superior production in 

aquaculture.  

Table 16 Potential waste for processing available in Ireland 8 

Species Bioactive 

compounds 

Waste 

available 

(t) 

Yield (if 

known) 

Potential 

Extraction 

(t) 

Mackerel Protein, peptides 

omega-3 (n-3) PUFAs 

Collagen 

4,170 

- 

3 % 

36-54 %

- 

128 

1501-2252 

Horse Mackerel Protein, peptides 

omega-3 (n-3) PUFAs  
5,774 

-

3 %

- 

177 

Blue whiting Protein, peptides 

omega-3 (n-3) PUFAs 
12,388 

- 

3 % 

- 

380 

Salmon Protein, peptides 

omega-3 (n-3) PUFAs 
2,252 

- 

1.5 % 

- 

34 

Ascophyllum 

nodosum 

Fucoidan, alginates, fucoxanthin 
1,015 

30 % 305 

Laminaria digitata Fucoidan , laminarin, alginates, 

Fucoxanthin 
3 

30 % 1 

Fucus spp. Fucoidan , laminarin, alginates, 

fucoxanthin 
300 

30 % 90 

Mussel Protein,Peptides 

omega-3 (n-3) PUFAs 
4,030 

- - 

8 Omega-3 yields for pelagic fish are based on an aggregate figure from Zuta et al., (2003). The value for 
salmon is based on the table for long chain omega-3 content in Rubio-Rodríguez et al., (2010). Figures for 
algae are based on alginate only (Moen et al., 1999), seasonality, storage and processing are known to 
greatly affect the yields of polysaccharides from algae. For comparison, Laminaran and fucoidan are 
summarised at 14% and 5% of dry weight for Laminaria spp. by Reith et al., (2005). Nephrops waste is 
based on 50 % landings being tail only with a further 50% receiving processing onshore (Archer, 2008). 
Crab waste is based on an estimate of 85% on-shore processing (Pfeiffer, 2003). Nephrops yields are for 
chitin (Healy et al., 2003) and total carotenoids (Shahidi and Synowiecki, 1991). The figure for collagen 
recovery is only shown for mackerel, but the same figures (Arvanitoyannis and Kassaveti, 2008) can be 
applied to other fish. 
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Nephrops Chitan, Chitosan, 

Astaxanthin (carotenoids) 
3,569 

20 % 

0.009 % 

713 

0.32 

Brown crab Chitan, Chitosan, 

Astaxanthin 
3,659 

- - 

Microalgae are frequently cultured as part of aquaculture operations (often as food for zoo 

plankton that are then fed to juvenile fish). An aquaculture-based business model that included 

the production of microalgae as feedstock and functional food ingredients, may create 

conditions to justify shared co-production of microalgae. This approach to cultivation would 

need to comply with regulations concerning food production for human consumption. 

Changes in the ecosystem may result in the creation of additional sources of novel food 

components. For example, small pelagic fish are becoming relatively more abundant; a trend 

that is likely to continue under climate change (Perry et al., 2005). Boarfish (Capros aper), is 

such an example; taken in an industrial fishery with landings of 21,584 t in 2008 (Marine 

Institute Stock Book, 2008), this catch is an increase on the 2005 baseline catch of c. 200 t in 

2005. With no published research on novel food components from boarfish (they are too 

small and bony to be of direct food value) they are used to make fishmeal.  

Balanced against this apparent opportunity is the possibility that the fishery may come under 

greater regulation, as unregulated harvests are not generally permitted to continue without 

assessment. Furthermore, the climatic and ecological conditions that lead to greater stocks are 

not well understood and the available stock could rapidly disappear even without harvesting 

pressure.  

3.6. NutraMara sampling plans 

3.6.1. Introduction 

Developing functional ingredients from marine organisms is reliant on the inherent bioactivity 

of natural chemical compounds found within the organism. Bioactivity in natural sources is 

based on molecules that are likely to vary in their concentration in the target organism 

(Craigie et al., 2008). These changes in concentration may relate to changes in environmental 

conditions experienced by the organism (seasonal, site or other changes) or there may be 

intrinsic processes such as maturation, aging or death, which cause concentrations of 

bioactives to vary.  They may also result from contaminations during the collection or handling 

process, or as a result of contamination by bacteria, fungi or insects at the point of collection. 

A further level of complexity is that bioactivity is often described with respect to a 

heterogeneous extract: a term such as ‘fucoidan’ or ‘chitosan’ does not describe a single 

molecular structure.  

When screening for bioactive compounds from natural sources, initially the exact molecule(s) 

and mechanisms of activities are unknown. It is also possible that effects are due to a 
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synergistic action among different parts of an extract. For example, Connan et al., (2006) 

attribute differences among algae in the relationship between antioxidant assay (DPPH) 

response and phenolic content to possible variation in the pool of phenolic compounds or to 

interference from other molecules with antioxidant properties (such as carotenoids).  

An understanding of the compositional variations often found in marine organisms is essential 

in attempting to make use of naturally occurring compounds. Without establishing clear causal 

relationships between consumption of a naturally occurring bioactive and desired health 

outcome, attaching the all-important health claim will be impossible. The same data is required 

in designing the production system that will process raw materials into a functional ingredient. 

Prior knowledge of any compositional variation at the input stage of the conversion process is 

necessary in designing robust systems with the capability of producing stable products.  At the 

heart of the various processes and activities that contribute to the discovery of bioactives from 

marine organisms is the application of rigorous scientific methodologies at all stages of 

research.  

3.6.2. Sampling to test ideas about variation in concentration 

The methods for testing hypotheses about variation in mean concentration or activity of an 

extract are well established and use Analysis of Variance (ANOVA), the standard statistical 

test for comparing means. A key issue for ANOVA is the appropriate distribution of repeat 

measurements (replicates) to test the hypotheses of interest. In the case of seasonal variation, 

if different seasons are to be compared then replicated dates are required within each season. 

Without replicate dates, the observer cannot logically conclude that seasons are any more 

different than separate dates within a season - as the information on dates within a season is 

lacking (Underwood, 1997). The same logic applies to spatial sampling. A comparison of two 

sites, 10 km apart cannot discount the probability that concentrations are not even more 

different a short distance (metres) away from one of the sites. Studies that attempt to reveal 

spatial or temporal structure typically use a nested or hierarchical ANOVA (e.g., Pavia et al., 

2003). In these designs the replicates are partitioned in space and/or time to avoid the 

potential logical flaws outlined above. A typical temporally-nested design is outlined in Figure 4. 

Non-parametric alternatives to ANOVA are possible, but a balanced ANOVA is generally 

robust to departures from normality that require non-parametric designs (Underwood, 1997). 

Prior consideration of the statistical approach required to test a hypothesis informs decisions 

concerning the nature and extent of sampling activity.  

The example in Figure 4 illustrates an approach used for sampling materials to test for seasonal 

variation. This nested design uses three replicates; generally considered as a minimum number 

of replicates (Pavia et al., 2003 used 6 individuals at each sampling so more replicates may be 

generally advisable, if possible). Although a mean can be calculated from two replicates, such a 

design is vulnerable to any loss of samples or failure during analysis and is likely to lack 

statistical power - the ability to detect differences when they exist. 
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Figure 4 A nested design used in describing seasonal variation 
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Depending on the study, it may be preferable to pick random dates within each season. Ideally 

potentially confounding processes should occur randomly in different seasons (e.g., sampling 

on neaps equally distributed among months). It may be preferable to sample at the same state 

of tide to minimise variation with such covariates. In some cases sampling may only be possible 

at certain states of the tide.  

A design to compare the seasonal patterns among a small number of different shores (n =5) is 

indicative of the extent of sampling in NutraMara; this might have 360 replicates, made up as 5 

shores x 2 sites within each shore x 4 seasons x 3 dates within each season x 3 replicates at 

each date. 

3.6.3. Sampling approaches in NutraMara 

Given that NutraMara is likely to generate relatively large amount of extracts, some levels of 

sampling may not be relevant to the overall programme. For example, age-related variation 

may not be relevant if harvesting or waste supply is unlikely to discriminate between individuals 

without extra cost. Therefore it is the question that defines the type of sampling programme 

required. Even addressing a limited number of factors in a nested design could create a large 

sample processing overhead. The adoption of a question-based approach (with reference also 

to any previous studies) may lead to a fully nested sampling design, a structuring of sampling to 

examine variability with respect to a particular variable (e.g., reproductive status) or an 

experimental approach. When the active elements of an extract are unknown, the variation in 

composition of material of the same species from different times and places can interpret 

variation in activity. Even in the absence of formal hypothesis testing within a nested ANOVA, 

sampling should include material from different dates and locations so that a representative 

picture of natural variability is established.  

While there may be flexibility in the time and location in which some marine sources could be 

sampled (mostly, but not exclusively, seaweeds), other marine sources could be dependent on 

industrial processing. There is little point in seeking or defining high bioactivity at times or 
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locations outside when the bulk of the resource will be available. Within a sampling period 

there may be variations in bioactivity (e.g., seasonal omega-3 profile decline in fish).  

When material is processed (e.g., protein hydrolysates or conversion to chitosan), a number of 

factors may influence yield, including sensitivity to raw materials. The question again defines 

what sampling is appropriate, although the dependency on industrial process requires that 

information on timing and logistical issues at the time of sampling should be recorded.  

Requests for sample materials should be accompanied by a description of the questions that 

are being addressed with the samples collected. This should be used as the basis for a 

discussion of a sampling programme that complements the intended use of material. 

Dependant on the question and the effort allocation available for sample processing, an 

appropriate sampling scheme can be devised. This may include a nested design, a focus on a 

specific variable or a limited number of samples. 

Where the material is collected from an intermediary (e.g., processor, fisheries co-op); 

information should be collected on a species by species basis. Such information should cover 

the availability of material, any restrictions on sampling and any known quality issues. 

In the absence of a hypothesis driven approach, it is preferable to sample material from a range 

of sites and dates so that an estimate of background variability for different bioactives can be 

made from the collected material. For most algae this should include notes on the 

reproductive maturity of collected material. 

3.7. Sample database 

The NutraMara sample database was designed to record the flow of material from collection 

to use within the consortium. It provides users with search facilities allowing samples and 

actions completed on samples to be identified and tracked on an individual basis. The sample 

database evolved from a desk-based system, which required a centralised manual input, to a 

web-based system that allows remote input and provides users with search facilities.  

The NutraMara database contains details of 613 samples from 39 species of algae and fish, 

together with results generated by submitting samples/extracts to various bioassays. The 

submission of 5,800 extracts to bioassays resulted in 3000 “hits”. Database users can 

interrogate it via queries designed to generate reports in tabular or graphic formats. Typical 

queries include, 

• Number of samples collected in a given time frame grouped by species/location.
• List of bioactive species sorted by available weight.
• Number of bioactive hits in a given time frame grouped by species/location/bioassay

type/bioassay name/institution/season. 

The NutraMara database was developed using the same architecture as the Beaufort Marine 

Biodiscovery project database; thus offering scope to integrate the two databases into a 

common marine biomaterials data repository.  
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The following Figures 5 and 6 below are examples of searches of the database for details of 

samples and the results of bioassays on samples obtained from the red seaweed Palmaria 

palmate.  Users of the database are also provided with a mapping facility to identify the precise 

(GIS coordinates) location from where all samples were collected, thus facilitating return visits 

to collection sites.   

Figure 5 NutraMara database screenshot for Palmaria palmate samples 

Figure 6 NutraMara database screenshot for Palmaria palmate bioassays 

Materials were distributed upon request across the consortium, with details of 5647 assays 

held on the NutraMara database. The institutional breakdown of assays shows how most 

assays were carried out by Teagasc, but with contributions across the consortium (Figure 7). 
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Figure 7 Distribution of assays across the consortium 

A range of species was investigated, and the number of assays of each species varied depending 

on the aim of the individual line of research. In summary, 23 taxa returned at least one assay 

result considered as a hit (positive) by the analyst. The pattern of hits was dominated by 

macroalgae, but this also reflects the effort put into these species (Figure 8). 

Figure 8 Distribution of assay hits by taxon. 
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Material used by the different laboratories was generally destroyed during the process of 

extraction and assay (e.g., ASE accelerated solvent extraction at raised pressures and 

temperatures). NUI Galway retained 100g of collected materials to allow analysts the 

opportunity to go back and check unusual results.  

Figure 9 NutraMara database screenshot showing location of bioactive “hits” 

3.8. Sample repository 

Sample materials were collected almost exclusively from 21 locations in counties Galway and 

Clare. A total of 1,500 kg of fresh biomass was collected and subsequently frozen at -80oC or 

freeze dried. Samples of collected and cultured species are securely retained at NUI Galway. 

The voucher materials from NutraMara were held in a freezer and as freeze-dried material in 

sealed bags. Most of the materials were maintained as individual freeze dried samples of 100g, 

which represents around 1 kg of fresh material. The majority of materials collected during the 

project were distributed to partner institutions for destructive analysis; however, some 

samples are available for further work on request from the Programme Director.  
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4. DISCOVERY AND CHARACTERISATION OF BIOACTIVE

COMPOUNDS

4.1. Introduction 

The NutraMara work programme identified macro-and microalgae, farmed species of fish and 

shellfish, and fish processing co-products as targets from which to extract compounds known 

to possess characteristics of functional ingredients. Bioactive compounds would be extracted 

from samples of macroalgae collected from various harvesting sites, cultured macro- and 

microalgae species, co-products obtained from Irish fish processing companies and samples of 

fish from Irish fish farms.  

Various species of seaweeds, some of which are to be found in Irish waters, have been shown 

to be sources of lipids, carotenoids, polyphenols and polysaccharides. Samples of red, green 

and brown macroalgae, including Chrondrus crispus, Palmaria palmate, Codium fragile, Ulva 

intestinalis, Ulva lactuca, Ulva rigida, Pelvetia canaliculata, Fucus spiralis, Fucus vesiculosus, Fucus 

serratus, Alaria esculanta, Ascophyllum nodosum, Saccharina larissima, Laminaria digitata, Laminaria 

hyperborea and Himanthalia elgongata were included amongst seaweeds identified as potential 

sources of bioactive compounds. 

In addition to seaweeds collected from sampling sites, four macroalgal species were cultivated 

under controlled conditions, to provide a source of algal compounds through optimised 

cultivation. In selecting these species, consideration of abundance in the wild, suitability for 

growing in aquaculture facilities and reported as rich sources of bioactive compounds, 

informed the choice of Laminaria digitata, Ascophyllum nodosum, Fucus serratus and Palmaria 

palmata for controlled culture. 

Samples of 14 microalgal species were obtained from UK, USA and German culture collections 

and pre-cultured in batches on receipt, and maintained in the NUI Galway Microalgal Strains 

Collection for further examination in the NutraMara programme. 

Finfish species, included samples of whole fish and processing co-products from Atlantic 

salmon (Salmo salar), Rainbow trout (Oncorhynchus mykiss), Dublin Bay prawn (Nephrops 

norvegicus), Pacific abalone (Haliotis discus hannai Ino) and blue mussel (Mytilus edulis) collected 

from Irish aquaculture and fish processing facilities. 

A specific source of farmed Atlantic salmon (Salmo salar) grown at the NUI Galway, Carna 

Laboratories, and the subject of feeding trials using combinations of macroalgae, was also 

included in experiments to extract and profile functional compounds.   
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4.2. Extraction of bioactive compounds 

Standard extraction protocols for selected target compounds were used across the NutraMara 

consortium in support of chemical characterisation and biological studies; having been 

informed by desk studies. Pressurised liquid extraction using methanolic solvents was used 

routinely to extract antioxidant compounds and more specifically phlorotannins (Heffernan et 

al., 2014a; Tierney et al., 2012, 2013). In addition, a standard approach to protein and 

carbohydrate extraction was also used. An optimal alkaline soluble protein extraction 

occurred when using 0.12 mol/l NaOH, 0.1 g/100 ml NAC, a mass to volume ratio of 1:15 

(w/v) and when stirring for 1 hour at room temperature (Harnedy and FitzGerald, 2013a). 

Atmospheric pressure solid liquid extraction using freeze dried powder and 0.1 M HCl at a 

ratio of 10: at 60 °C for 24 h at an rpm of 170 was the standard protocol when carbohydrate 

was the target material (Heffernan, 2015).  Similar generic extraction approaches, all informed 

by desk studies, were developed for other bioactive compounds from algae and other marine 

bioresources (FitzGerald, 2014; Tierney, 2014; Heffernan, 2015). 

Where necessary, purification and fractionation of extracts for biological studies and chemical 

characterisation followed a standard approach. This involved molecular weight cut-offs 

(MWCO) fractionation, followed by normal and reverse phase flash chromatography (if 

required) (Heffernan et al., 2015; Heffernan et al., 2014b; Tierney et al., 2013; Tierney et al., 

2013a,b). This approach proved particularly useful in providing the quantities of enriched 

fractions required for profiling phlorotannins, which was also carried out using UPLC–MS/MS 

(Tierney et al., 2013a; Heffernan et al., 2015).  

4.3. Algal derived compounds – macroalgae 

The focus of the NutraMara work programme was upon the use of sustainable marine 

bioresources as potential sources of bioactive compounds. The NutraMara Feasibility Study 

identified a number of knowledge gaps concerning the availability and distribution of seaweeds 

and requirements for research to determine the extent to which the harvest of wild seaweed 

is a sustainable activity. However, despite these gaps, the work programme targeted a range of 

macroalgae species to explore as sources of bioactive compounds.  

4.4. Polyphenols 

Phlorotannins are the main class of polyphenols that occur in seaweeds. The typical recovery 

of these compounds was by solid liquid extraction using cold water, hot water and 

ethanol/water (80:20) since these solvents have previously shown to be effective for extracting 

antioxidants from macroalgae (Wang et al., 2009; Ye et al., 2008).  However, experiences in 

NutraMara found the 80:20 ethanol:water proved to be the best extractant solvent for 

phlorotannins. Briefly, the extraction method involved, freeze dried macroalgal material (200-
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250 grams) mixed with extraction solvent at a ratio of 1:10 w/v. The extractions were carried 

out at room temperature in an orbital shaker (MaxQ 6000 Shaker, Thermo Fisher Scientific, 

MA, USA) set at 170 rpm. Following this, the extractions were filtered three times through 

cotton wool and glass wool. Ethanol was removed from the extracts using a rotary evaporator 

(Heidolph Rotary Evaporator with WB eco bath, Germany) with the waterbath set at 40ºC. All 

extracts were freeze-dried to remove water.  Dried extracts were stored at - 80ºC until 

further analysis. 

An alternative extraction process, Accelerated Solvent Extraction (ASE®), otherwise known as 

pressurized liquid extraction (PLE), was also used to extract phlorotannins from species of 

macroalgae. Some extractions from natural products can involve lengthy and time consuming 

steps. An advantage of the ASE® process compared to more traditional techniques is that 

results are generated much more quickly. In addition, ASE offers opportunities to lower cost 

per sample processed by reducing solvent consumption, compared to other methods. The 

chosen PLE system was the Dionex PLE system (ASE 200, Dionex, Idstein, Germany). 

Typically, extraction involved mixing 2.5 g of freeze-dried algal mass with diatomaceous earth 

and 30 g of silica (Merck grade, 60 Å, Sigma Aldrich, St Louis, USA) and loading it into 33 ml 

sample cells. The automated extraction method used 70 % acetone in water and a pressure of 

1,500 psi. The extraction time consisted of 3 cycles of 5 minutes, heat time 5 min, flush volume 

50 %, purge time 60 s, static cycles 4, solvent Acetone:water 70:30 (v/v). 

The recovered fractions were subsequently centrifuged at 3000 X g for 10 minutes to remove 

residual solids (SIGMA 2-16KL, Sigma Zentrifugen, Ostende am Hartz, Germany). Aliquots 

supernatants from each extract were dried under nitrogen (20 psi) using a TurboVap (Caliper 

LifeSciences, Runcorn, UK) and later freeze dried for 24 hrs to eliminate residual water. 

4.5. Carotenoids 

A solid liquid extraction process was employed to extract the carotenoids from species of 

macroalgae under investigation using hexane/acetone (70:30). This solvent system has 

previously been shown to be effective for extracting pigments from plant materials (AOAC, 

1984). Within the NutraMara work programme, crude extracts were prepared by placing 10 g 

of a seaweed powder in a conical flask and adding the extraction solvent hexane/acetone 

(70:30) at a ratio of 10:1 (v/w). The mixture was then placed into a shaker (Thermo Scientific 

MaxQ6000) at room temperature for 24 hours. These extracts were filtered three times over 

a 24 h period through a Buchner funnel. The combined extracts were concentrated to remove 

all solvent using a rotary evaporator (BüchiRotavapour R-200 with a V710 vacuum pump) with 

the waterbath set at 50°C. Extracts were stored for later analysis. 
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4.6. Polysaccharides 

Laminarins and fucoidans are the major polysaccharides in seaweeds. Within the NutraMara 

consortium, a traditional solid-liquid method of extraction of the seaweed polysaccharides was 

used. This process involved stirring powdered seaweed at 70°C for 2.5 h using distilled water 

and 0.1 M HCl as solvents. The extracted samples were then centrifuged at 9000 rpm for 30 

min. The supernatant was separated and precipitated with ethanol overnight at 4°C. The 

precipitated extract was freeze dried and stored at −20°C  for further analysis. The extraction 

yield (%) was calculated by measuring the mass of freeze dried extract over the initial mass of 

the sample (Kadam et al., 2015; Strain et al., 2015). 

4.7. Lipids 

4.7.1. Extraction of total lipids from macroalgae 

Two methods were developed to extract total lipids from samples of macroalgae. Together, 

these methods generated extracts from six species of macroalgae - Pelvetia canaliculata, Ulva 

intestinalis, Ascophyllum nodosum, Fucus spiralis, Fucus dichitus and Alaria esculenta. A summary 

description of each extraction method is given below. 

Accelerated Solvent Extraction of lipids from macroalgae   
Extraction of lipids was carried out by Accelerated Solvent Extraction (ASE®), which is also 

known as pressurized liquid extraction (PLE) using the Dionex PLE system (ASE 200, Dionex, 

Idstein, Germany). Oil was extracted from each seaweed species in triplicate using an 

automated Dionex 200 accelerated solvent extraction system. 2.5 g of freeze-dried algal mass 

was mixed with diatomaceous earth and 30 g of silica prior to loading into 33 ml sample cells. 

Extraction conditions: 5 min preheat, 1,500 psi pressure, 120°C, heat time 5 min, flush volume 

50 %, purge time 60 s, static cycles 4, solvent chloroform:methanol 2:1 (v/v). 

Solvent extraction of lipids from macroalgae 
To evaluate total lipid content, lipids were extracted from the samples with 2:1 

chloroform/methanol. Specifically, 2 g of ground dry sample was weighed into a tube, 14 ml of 

the solvent mixture was added, the tube was closed in an atmosphere of nitrogen, and after 2 

minutes in a vortex mixer the contents of the tube were filtered through Whatman No. 41 

paper. The residue was re-extracted by 30 s treatment with 5 ml of solvent mixture in the 

vortex mixer, the resulting extract was filtered through Whatman No. 41 paper, the two 

filtrates were pooled and concentrated to dryness under nitrogen and the weight of the 

resulting residue was taken as the total lipid content of the sample. 
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4.8. Proteins and peptides 

A desk study of published approaches to the extraction of protein from macroalgae was 

carried out within the NutraMara work programme and is summarised in a publication 

(Harnedy and FitzGerald, 2013a).  

The desk study was carried out not only to detail best practices to date for extraction of the 

target molecules from marine sources, but also to identify gaps in knowledge with regard to 

extraction practices. Accordingly publications dealing with optimising the extraction of 

proteins, peptides, antioxidants and carbohydrates have been published by members of the 

NutraMara consortium including, FitzGerald et al., (2012); Harnedy and FitzGerald, (2013a); 

Heffernan et al., (2014a); Heffernan, (2015); Tierney et al., (2012) and Tierney et al., (2013a). 

This work provided the foundation for an integrated protocol for the extraction of crude 

samples of proteins, peptides and amino acids from red, green and brown macroalgae including 

Palmaria palmata, Porphyra dioica, Chondrus crispus, Ulva sp./Ulva lactuca, Laminaria digitata, Fucus 

serratus and Alaria esculenta. 

The procedures used for the extraction of aqueous and alkaline soluble proteins from milled 

dried Palmaria palmata were based on methods described by Fleurence et al., (1995) with some 

modifications. In the first instance the effect of NaOH (0.08-0.14 M) and N-acetyl-L-cysteine 

(NAC) concentration (0-0.5% (w/v)), mass:volume (1:10-1:30 (w/v)), agitation duration (0.5-3h) 

and extraction temperature (22-50°C) on the recovery of alkaline soluble proteins from milled 

dried Palmaria palmata was studied (Harnedy and FitzGerald, 2013a). The contribution of 

physical (osmotic shock (4°C and at room temperature for 3, 7 and 16 h) and shearing 

(homogenisation with an Ultra turrax at a low (15,000 rpm) and high (24,000 rpm) settings)) 

along with enzymatic cell disruption approaches (Celluclast 1.5L and Shearzyme 500L) 

(enzyme:substrate 1.2, 4.8 and 48.0 x 103 units/100 g) on the extraction of aqueous and 

alkaline soluble proteins was also assessed (Harnedy and FitzGerald, 2013a). In most instances 

above the aqueous and alkaline soluble proteins were sequentially extracted. The effect of 

simultaneous extraction of aqueous and alkaline soluble proteins on protein recovery was also 

assessed. Crude aqueous and alkaline soluble proteins were separated from crude peptides 

and amino acids by isoelectric precipitation of the proteins. The concentration of protein in 

each extract was determined by the Bensadoun and Weinstein (1976) modification of the 

Lowry et al. (1951) protein quantification method. 

The optimised protein extraction/semi-purification method was used to extract aqueous, 

alkaline and a combination of aqueous and alkaline protein extracts from Palmaria palmata 

samples Porphyra dioica. While the extraction protocol was optimised for extraction of 

protein/peptide/amino acids from the protein rich red macroalgal species Palmaria palmata, the 

method was also employed with other red macroalgal species such as, Chondrus crispus and 

Porphyra dioica, the green species Ulva sp./Ulva lactuca and the brown species Laminaria digitata, 
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Fucus serratus and Alaria esculenta. The protein in each fraction was quantified as described 

above and characterised by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE, Laemmli 1970). Furthermore, a number of Palmaria palmata protein extracts were used 

as substrates for the generation of hydrolysates. Furthermore, the non-protein nitrogen (crude 

peptides and amino acids) fraction was used as the starting material to identify and quantify 

non-protein nitrogen components in macroalgae. 

In addition to the integrated protocol described above, the extraction of protein from 

macroalgae (seaweeds) was also carried out according to known methods (Wong et al., 2001; 

FitzGerald, 2012), with some modifications also being made.  In essence, the generic extraction 

process was, freeze dried seaweed powder was suspended in HPLC-grade water (1:20 w/v). 

The suspension was sonicated for 1 hour in an ultrasonic bath and then shaken overnight in a 

water bath set to 35ºC. The mixture was clarified by centrifugation at 4ºC and 10,000 g for 40 

minutes. The pellets were combined and suspended in 400 mL of HPLC-water and subjected 

to a second extraction procedure as described. The supernatants from both extractions were 

pooled and protein precipitation was carried out at 4 ºC. The precipitation involved bringing 

the supernatant to 80% ammonium sulfate saturation, stirring for an hour and then leaving to 

stand for another hour. The mixture was centrifuged at the same conditions as described 

above. The pellet was suspended in a minimal volume of distilled water and dialyzed overnight 

with a 3.5 kDa membrane. The retentate, containing the protein concentrate, was freeze-

dried. 

The reduction and alkylation of the protein concentrate in seaweeds were carried out using a 

method similar to one described previously (Rai et al., 2002) with some modifications. The 

protein concentrate was dissolved in minimal water. The dissolved algal sample, aqueous 

ammonium bicarbonate (1M), dithiothreitol (DTT) (100 mM), acetonitrile, iodoacetamide 

(200mM) and 1% formic acid were combined at a ratio of 12:1:1:12:1.2:5. The mixture was 

incubated at room temperature in the dark for 20 minutes prior to the addition of the 1% 

formic acid. The reduced samples were centrifuged in 10 kDa cut-off filter units to almost 

dryness. The retentate was rinsed twice with water and re-centrifuged to remove solvents. 

The greater than 10 kDa retentate was freeze dried. Digestion of reduced seaweed protein 

extract dissolved in 50 mM sodium phosphate buffer was carried out in the presence of bovine 

trypsin at a pH of 8.0 and 37ºC. The substrate: trypsin enzyme ratio was 50:1 w/w. The pH of 

the mixture was altered to its optimal pH value prior to enzymatic hydrolysis. The enzymatic 

reaction was carried out for 8 hours at 37ºC in a shaking waterbath. The digests were boiled 

at 99ºC for 10 minutes to denature the trypsin enzyme and centrifuged with 10 kDa cut-off 

tubes. The less than 10 kDa digested sample was freeze-dried until further analysis by nano-

UPLC-MS/MS. 
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4.8.1. Total nitrogen (TN), non-protein nitrogen (NPN) and protein nitrogen (PN) 

quantification 

No statistically validated method for the extraction and quantification of the NPN and true PN 

content in different macroalgal species appeared to be available. In filling this knowledge gap, a 

method was optimised for (a) extraction of NPN and PN from macroalgae and (b) 

quantification of nitrogen in NPN and PN extracts within the NutraMara work plan. The use of 

osmotic shock (4°C for 3h) for optimum macroalgal cell disruption was selected for extraction 

of NPN and PN from macroalgae based on results from the optimisation study described 

above. Based on information in the literature, trichloroacetic acid at a final concentration of 12 

% (w/v) was selected for precipitation of macroalgal proteins. The effect of homogenisation in 

conjunction with osmotic shock disruption, mass:volume ratio and the number of sequential 

extractions with TCA on the concentration of NPN and PN recovered was assessed. The 

Kjeldahl nitrogen quantification method was used for quantification of total nitrogen (TN), 

NPN and PN.  

In the first instance the method was validated with a range of (sodium caseinate) standard 

protein solutions to identify the optimum conditions for detection of extracts with low, 

medium and high levels of nitrogen. This method was further validated with macroalgal 

extracts containing low, medium and high levels of nitrogen. The optimised extraction and 

quantification methods were used to determine the seasonal, geographical and cultivation 

variation in the TN, NPN and PN content of selected macroalgal species.  

Results of seasonal and geographic variation of TN, NPN and PN in macroalgae 
Results of what was the first such study of seasonal and geographic variation of TN, NPN and 

PN in Palmaria palmata, Ulva spp, Fucus serratus, Laminaria digitata and Ascophyllum nodosum, 

indicate significant variation of NPN, TN and PN occurs with season and geographical location.  

The highest NPN, TN and PN content in Palmaria palmata and Ulva sp was observed in 

February, while the lowest was recorded in July. Similar seasonal trends in NPN, TN and PN 

content were observed in samples from Spiddal Co. Galway and Finavarra Co. Clare; small 

differences were observed in the NPN, TN and PN content of samples harvested from the 

two locations. The highest NPN, TN and PN content in the brown macroalgal species was 

seen in samples harvested in February and April, while the lowest levels were found in samples 

harvested in July and October. These results provide industry direction regarding the optimum 

times and locations for harvesting macroalgae with high protein and/or non-protein nitrogen 

content. 

4.8.2. Generation of macroalgal protein hydrolysates 

A number of macroalgal protein hydrolysates were generated by enzymatic hydrolysis with 

food-grade proteolytic enzyme preparations by the procedure described by Harnedy, (2013b). 

All hydrolysates generated were characterised in terms of extent of hydrolysis by the TNBS 

method described by Spellman et al., (2005) with some modifications, molecular mass 



89 

distribution by gel permeation chromatography (GPC-HPLC) and hydrophobicity by reverse 

phase high performance liquid chromatography (RP-HPLC) as described by Spellman et al., 

(2005). This work sought to determine the most appropriate protein extract and enzyme 

combination for the generation of Palmaria protein hydrolysates with high in vitro biological 

activity. Aqueous, alkaline and a combination of aqueous (aq) and alkaline (alk) Palmaria palmata 

protein extracts were hydrolysed with the food-grade proteolytic enzyme preparations 

Alcalase 2.4L, Flavourzyme 500L and Corolase PP (Harnedy and FitzGerald, 2013b; 2015). The 

aim of the second study was to assess the effect of starting protein composition and the origin 

and time of harvesting on the in vitro bioactivity of Palmaria palmata protein hydrolysates were 

also examined. Protein hydrolysates generated with Alcalase and Corolase PP, from a 

combination of aqueous and alkaline protein extracts from samples of Palmaria palmata 

harvested at different times of the year during 2011 were assessed.   

The extraction of protein from brown macroalgal species was found to be hindered, in part, 

due to low levels of protein and the accessibility of proteins due to high viscosity arising from 

cell wall and intracellular polysaccharides. A direct hydrolysis of brown macroalgal proteins 

(Fucus serratus, Laminaria digitata and Ascophyllum nodosum) with selected food-grade proteolytic 

enzymes was assessed as an alternative method, to generate brown macroalgal protein 

hydrolysates. The effect of different approaches including the use of a range of cell disruption 

methods prior to incubation with proteolytic preparations, the use of specific 

polysaccharidases prior to or in conjunction with selected proteolytic enzymes, variations in 

hydrolysis conditions (e.g., pH and temperatures) and the removal of alginate prior to 

hydrolysis were investigated in an attempt to improve brown macrolagal protein hydrolysis.  

Results from the generation of macroalgal protein hydrolysates 
Results of physicochemical characterisation (extent/degree of hydrolysis and GPC analysis) 

studies show that the highest extent of hydrolysis of three protein extracts of Palmaria palmata 

was with Corolase PP, followed by Alcalase. However, the same protein fractions were not 

extensively digested when incubated with Flavourzyme. GPC analyses showed that the quantity 

of low molecular weight peptides <10 kDa was significantly higher in protein hydrolysates 

generated with Alcalase and Corolase PP, than in the samples incubated with Flavourzyme: the 

majority of these peptides being ≤ 2 kDa. In general, low molecular mass peptides exhibit 

more potent biological activity and are generally more readily absorbed across the 

gastrointestinal tract.  

Results of physicochemical characterisation (extent of hydrolysis, GPC and RP-HPLC analysis) 

studies on combined aqueous and alkaline protein hydrolysates (Alcalase and Corolase PP) 

generated from Palmaria palmata samples harvested from wild and cultured sources at different 

times of the year during 2011 showed similar results. No differences were observed in the 

molecular mass profiles and extent of hydrolysis of the different protein extracts with Alcalase 

(8.81-10.57 mg amino group/g protein) or with Corolase PP (19.13-22.23 mg amino group/g 
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protein) (Harnedy et al., 2014). For hydrolysates generated with each enzyme, small differences 

in RP-HPLC profiles were observed for hydrolysates from samples harvested at different times 

of the year.  

4.9. Algal derived compounds – microalgae 

4.9.1. Introduction 

Microalgae have numerous potential applications in different fields such as human and animal 

nutrition, pharmaceuticals, cosmetics, CO2 sequestration and biofuels (Spolaore et al., 2006; 

Mata et al., 2010). Interest in the development of functional foods from natural sources, 

including algae, is currently growing because of their beneficial health effects. Due to their 

taxonomic and biochemical diversity, microalgae represent a valuable alternative to existing 

food ingredients containing multiple bioactive molecules which could be co-extracted by 

applying a biorefinery approach (Lordan et al., 2011; Stengel et al., 2011; Mimouni et al., 2012). 

Long-chain polyunsaturated fatty acids (LC-PUFAs), carotenoids, phycobiliproteins, 

polysaccharides and vitamins are the major molecules of interest, due to their capability to 

enhance the nutritional and functional quality of foods. Nevertheless only a few microalgal 

species are successfully grown commercially and included in human diets today (Pulz and 

Gross, 2004; Mimouni et al., 2012).  

Algal cultivation, induction and accumulation of bioactives is a complex problem. The 

metabolic plasticity of microalgae allows them to adapt quickly to changing environmental 

factors. In their natural environment or during outdoor cultivation, algae are subjected to 

different abiotic factors with daily and seasonal variations that may be stressful, such as 

temperature, light levels or UV radiations (Stengel et al., 2011; Mimouni et al., 2012). 

Microalgae usually grow in diluted culture media, in closed or opened systems, causing high 

cultivation and harvesting costs, and variable productivities due to environmental changes. 

Desert areas with abundant sunlight are generally considered to provide the ideal conditions 

for algal cultivation; successful microalgal production in Ireland thus has to take into account 

the regional parameters. Potential advantages could include a moderate climate with a reduced 

need for cooling, long day length in summer, sufficient water availability, and industrial waste 

streams for CO2 and heat. In this sense, microalgal cultivation for NutraMara has focused on 

indoor production i.e. closed photobioreactors with controlled conditions, a system more 

suitable for food applications. 

Microalgal production requires the development of specific culture techniques appropriate to 

obtain constant levels of molecules of interest to improve their nutritional value. Research 

conducted at NUI Galway as part of the NutraMara programme focuses on the production of 

microalgal biomass that is rich in bioactive molecules for food applications. The effects of 

various abiotic factors were investigated as an approach to enhance growth and trigger 

bioactive accumulation in a range of species belonging to several groups of microalgae. 
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Combined growth conditions and stressors (i.e. light, UV-radiation, temperature and nutrients) 

were tested on different marine species using controlled in-door cultivation systems (e.g. 

Erlenmeyer flasks, carboy vessels and low-cost flat panel photobioreactors). Bioactive 

compounds from the algal biomass were analysed using techniques such as HPLC-DAD/FLD 

(pigments, mycosporine-like amino acids), spectrophotometry (phycobiliproteins) and GC-

FID/MS (fatty acids). 

Several different culture strategies were developed and employed to optimise the production 

of specific bioactives and potential co-products in a number of microalgal species for food and 

health applications. Bioactive-rich microalgal biomass and extracts have been produced and 

provided to NutraMara partners for further bioactivity testing. 

4.9.2. Objectives 

The objectives were to investigate the effect of different culture conditions and stressors (i.e. 

light, UV-radiation, temperature and nutrients) on the growth performance and bioactive 

production of microalgae (small-scale experiments), and accordingly to assess indoor 

microalgal large-scale production of selected microalgae (large-scale experiments: low-cost flat 

panel photobioreactors) for targeted bioactive production under controlled conditions. And to 

use the results of this work to develop culture strategies for optimising the production of 

specific bioactives and potential co-products in a number of microalgal species for food and 

health applications; aiming to provide bioactive-rich microalgal biomass and extracts to 

partners for further bioactivity testing. 

4.9.3. Overview of materials and methods 

Microalgal species from various taxonomic groups were obtained from different culture 

collections i.e. Plymouth Culture Collection of Marine Microalgae (PLY) at the Marine 

Biological Association (MBA, UK); Culture Collection of Algae and Protozoa (CCAP) at the 

Scottish Marine Institute (SAMS Research Services Ltd., UK); Culture Collection of Algae at 

the University (UTEX, USA); Provasoli-Guillard National Center for Culture of Marine 

Phytoplankton (CCMP, USA); Culture Collection of Algae at Goettingen University (SAG, 

Germany). 

Table 17 displays the classification and the collection number of the main microalgal strains 

investigated in the microalgal biomass production work of the NutraMara programme. 
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Table 17 Main microalgal species investigated through WP3 Task 1.3 and available at the NUI 
Galway Microalgal Strains Collection 

Species Phylum Class Family Collection Number 

Phaeodactylum tricornutum Heterokontophyta Bacillariophyceae Phaeodactylaceae UTEX 646 

Leptocylindrus danicus Heterokontophyta Coscinodiscophyceae Leptocylindraceae CCMP 740 

Thalassiosira weissflogii Heterokontophyta Coscinodiscophyceae Thalassiosiraceae PLY#541 

Porphyridium purpureum Rhodophyta Porphyridiophyceae Porphyridiaceae PLY#539 

Dixoniella grisea Rhodophyta Porphyridiophyceae Dixoniellaceae SAG 72.90 

Rhodella  violacea Rhodophyta Rhodellophyceae  Rhodellaceae CCAP 1388/5 

Pavlova lutheri Haptophyta Pavlovophyceae Pavlovaceae CCAP 931/6 

Isochrysis galbana Haptophyta Coccolithophyceae Isochrysidaceae CCAP 927/1 

Rhodomonas salina Cryptophyta Crytophyceae Pyrenomonadaceae CCAP 978/27 

Nannochloropsis salina Ochrophyta Eustigmatophyceae Monodopsidaceae CCAP 849/2 

Nannochloropsis  oculata Ochrophyta Eustigmatophyceae Monodopsidaceae SAG 38.85 

Dunaliella tertiolecta Chlorophyta Chlorophyceae Dunaliellaceae PLY#83 

Tetraselmis suecica Chlorophyta Chlorodendrophyceae Chlorodendraceae NCC 62 

Nodularia harveyana Cyanobacteria Cyanophyceae Aphanizomenonaceae SAG 44.85 

4.9.4. Cultivation and growth  

All strains were pre-cultivated in batch-culture using RS-F/2 medium, a modified version of 

Guillard’s (1975) F/2 medium where filtered seawater is substituted by Reef Salt (H2Ocean 

Pro+, UK). RS-F/2 medium was composed as described by Guihéneuf et al., (2013). 

All experiments were performed in fully controlled (temperature and light) Binder GmbH 

growth chambers (Tuttlingen, Germany) or temperature-controlled rooms. Microalgae were 

batch cultivated in Erlenmeyer flasks, Nalgene carboys or low-cost flat panel photobioreactors 

with growth conditions adapted according to requirements and growth parameters (i.e. cell 

density, optical density at 750 nm, nitrate uptake) followed and measured daily. 

Total carbohydrate content was determined according to the phenol-sulfuric acid method of 

Dubois et al., (1956). 

4.9.5. Analysis of fatty acid composition and content 

Fatty acid methyl esters (FAMEs) were obtained by direct transmethylation on freeze dried 

biomass or lipid extracts as described by Guihéneuf et al., (2011) and analysed by Gas-

Chromatography performed on a Agilent GC-MSD 5975C Series equipped with the flame 

ionization detector (FID) and a fused silica capillary column (DB-Wax, 0.25 mm × 30 m × 0.25 

µm). 

4.9.6. Pigment composition 

After extraction with 90% Acetone, pigments were analysed by High-Performance Liquid 

Chromatography performed on an Agilent 1200 series using the method of Wright et al. 

(1991) modified by Bidigare et al., (2005). 

4.9.7. Phycobiliprotein content 

Phycobiliproteins (i.e. phycocyanin and phycoerythrin) were extracted in accordance with the 

method of Chopin et al., (1995). Freeze-dried biomass being homogenised in a 0.1M phosphate 
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buffer (pH 6.8) and samples then centrifuged. After filtrations samples were analysed using a 

Cary UV50 spectrophotometer and CaryWIN software (Varian Inc., Palo Alto, CA, USA) and 

phycoerythrin and phycocyanin concentrations determined after Beer and Eshel (1985). 

4.9.8. Mycosporine-like amino acid composition 

Mycosporine-like amino acid composition and content were analysed according to an adapted 

version of Karsten et al., (2009). Freeze-dried biomass was extracted using 100% methanol and 

analysed by High-Performance Liquid Chromatography performed on an Agilent 1200 series 

using ACE C18-AR column (particles size, 5 µm; column length, 30 mm). 

4.10. Screening of bioactives in microalgae 

The objective of some preliminary works conducted at NUI Galway was to investigate and 

pre-select valuable microalgal species obtained from culture collections for specific bioactives 

i.e. LC-PUFA (eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) & arachidonic acid

(ARA) and pigments (Figure 10).

4.10.1. Culture conditions

A first screening of some bioactive compounds (i.e. PUFAs, carotenoids and phycobiliproteins)

was undertaken using microalgae cultivated under intermediate growth conditions (i.e.

continuous light of 100 µmol photons.m-2.s-1, 15°C and full-replete medium).

4.10.2. Results

Preliminary data allowed the pre-selection of promising species from various taxonomic

groups, such as the haptophyta P. lutheri for EPA and DHA, the rhodophyta P. purpureum for

EPA and phycobiliproteins, the diatom P. tricornutum for EPA and fucoxanthin.

Figure 10 Pigment composition and content of five microalgal species 
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4.11. Patterns of carbohydrate and fatty acid changes under 

nitrogen limitation and low inorganic carbon supply in two 

microalgae P. lutheri and P. tricornutum  

4.11.1. Objective 

The total fatty acid (TFA) content and composition of microalgae is known to be affected by 

environmental conditions such as light intensity, nutrient (mainly nitrogen) limitation, salinity, 

temperature, pH, and culture age (Mimouni et al., 2012). In this context, the aim of this work 

was to study the impact of nitrogen limitation on the production of two major secondary 

metabolites, fatty acids and carbohydrates, in two marine microalgae: P. lutheri and P. 

tricornutum, batch-cultivated and known to contain substantial levels of LC-PUFA such as EPA 

and DHA. 

4.11.2. Culture conditions 

Both species were cultivated under intermediate growth conditions (i.e. continuous light of 

100 µmol photons.m-2.s-1, 15 °C) using an initial nitrate concentration of 100 mg.L-1. Nitrate 

was fully depleted after approximately 5-6 days. 

4.11.3. Results 

In both species, the first response to nitrogen limitation induced by culture age was intensive 

production of carbohydrates (see Figures 11 and 12). However, although there was a slight 

lipid accumulation, these did not correspond with the findings of previous studies showing that 

microalgae have the capability to accumulate from 20 to 60% TFA content per dry weight after 

nitrogen starvation (Breuer et al., 2012). One reason behind the low TFA content in this study 

was explained by the low inorganic carbon supply consisting of 0.03% CO2 provided by air-

bubbling.  

Figure 11 TFA (grey bars) and carbohydrate (white bars) contents of P. tricornutum and P. lutheri
batch-cultivated. Results are expressed as the mean ± standard deviation (n = 3). 
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In addition, significant changes in fatty acid profiles were observed after nitrate-limitation (see 

Figure 12). Both species were showing a significant increase in monounsaturated fatty acids 
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(MUFA) which correlates with a relative decrease in the PUFA. The strongest decreases in 

PUFA and EPA were observed in P. tricornutum. The increase in MUFA content was mainly due 

to the large increase in the 16:1 n-7 fatty acid. 

The results obtained in this study indicate that not only nitrate availability affects the growth 

potential and storage compound accumulations, but another important precursor, most likely 

inorganic carbon availability. Under nitrogen limitation, carbohydrate rather than oil is the 

dominant storage sink for reduced carbon. In both microalgae investigated, inorganic carbon 

availability and nitrogen status are therefore two key metabolic factors controlling oil 

biosynthesis and carbon partitioning between carbohydrates and fatty acids. 

Figure 12 Fatty acid composition of P. tricornutum and P. lutheri during batch cultivation. Results are 
expressed as the mean ± standard deviation (n = 3). 
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4.12. Interaction of light, temperature and nitrogen for 

optimising the co-production of high-value compounds in P. 

purpureum 

4.12.1. Objective 

The microalgal genus Porphyridium within the Rhodophyta is of increasing interest as a source 

of valuable chemical constituents such as phycobiliproteins (PB), sulphated exopolysaccharides 

and LC-PUFA. Despite the chemical richness of Porphyridium spp. and the potential for the co-

production of multiple products, a biorefinery approach has never been fully implemented and 

remains a challenge. Indeed, more intensive research is needed to explore the interactive 

effects of multiple abiotic factors on this algal genus in order to develop multiproduct 

cultivation strategies that retain and enhance the production and functionality of several 

different cell components. 

In this study, the interactive effects of light, temperature and nitrogen regime on 

phycobiliprotein (PB) production, and other bioactives or chemicals such as fatty acids, 

pigments and carbohydrates, were studied during batch-cultivation of P. purpureum, a red 

microalga, containing multiple compounds of commercial interest. 

4.12.2. Culture conditions 

In a first instance, three different regimes (N-replete, N-limited and N-starved conditions) 

were tested using nitrate (NaNO3) as nitrogen source and intermediate growth conditions (i.e. 

continuous light of 100 µmol photons.m-2.s-1, 15°C). After 10 days of cultivation, N-replete and 

N-starved cultures were resupplied with nutrients by dilution with full medium (1 g L−1

NaNO3) in order to assess the recovery capacity of P. purpureum after N-starvation.

P. purpureum was then batch-cultivated for 10 days under different combinations of continuous

light (40-200 µmol photons.m-2.s-1) and temperature (10-30°C) using an initial nitrate

concentration of 1 g.L-1 to avoid N-limitation.

4.12.3. Results

Results indicate that nitrogen-replete modes, such as semi-continuous or continuous regime

represents the most suitable culture strategy for PB, carbohydrate, total fatty acid (TFA) and

eicosapentaenoic acid (EPA) production in P. purpureum. Nitrate-deficiency causes a strong

decrease in growth performance, as well as in its PE, TFA and EPA contents which may be

caused by membrane degradation; but induces carbohydrate accumulation. Nitrate-starved

cells of P. purpureum had the ability to restore PB and TFA contents, and specifically

phycoerythrin (PE) and EPA levels, after medium refreshment, suggesting an almost complete

regeneration of the plastidic membranes and phycobilisomes.

Using response surface methodology (RSM), these results highlight for the first time the

optimally combined light and temperature conditions necessary to promote growth and
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compound production, in particular PB, in P. purpureum batch-cultivated in nitrogen-replete 

medium (Figure 13). 

Figure 13 Total PB, carbohydrate and EPA productivities as a function of irradiance and temperature 
in P. purpureum cultivated under nitrate-replete medium 

A simultaneous increase in light and temperature causes a strong decrease in cellular PB, TFA, 

EPA and pigment contents, suggesting a severe damage and possible disruption of thylakoid 

membranes. The highest PB content (∼2.9% d.w.) was reached under combined low light (30 

µmol m-2 s-1) and low temperature (10 °C). Despite this, maximal PB productivity was obtained 

at 20°C and under low light intensity, reaching up to 33.3 mg L-1 (∼2% d.w.). Under such 

specific growth conditions, P. purpureum biomass also contained substantial amounts of other 

valuable products (i.e., carbohydrates, EPA, Chl. a, zeaxanthin, β-carotene) which could 

therefore be co-extracted, with PB, by applying a biorefinery approach. 

4.13. LC-PUFA-enriched oil production by P. lutheri: Combined 

effects of light, temperature and inorganic carbon 

availability  

4.13.1. Objective 

In most microalgal species, triacyglycerols (TAG) contain mostly saturated and 

monounsaturated fatty acids, rather than PUFA, while PUFA-enriched oil is the form most 

desirable for dietary intake. The ability of some species to produce LC-PUFA-enriched oil is 

currently of specific interest. 

In this work, the role of sodium bicarbonate availability on lipid accumulation and n-3 LC-

PUFA partitioning into TAG during batch cultivation of P. lutheri was investigated. P. lutheri is 

one of the few species reported so far where LC-PUFA are incorporated into TAG under 

specific conditions e.g. on the transition to the stationary phase (Tonon et al., 2002). Then, the 

combined effect of light and temperature on omega-3 LC-PUFA partitioning into TAG was 

examined during bicarbonate-induced oil accumulation. 
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4.13.2. Culture conditions 

In the first experiment, P. lutheri was batch-cultivated under intermediate growth conditions 

(i.e. continuous light of 100 µmol photons.m-2.s-1, 15°C) using F/2-RSE medium supplemented 

with three different initial sodium bicarbonate concentrations. 

In the second part, P. lutheri was batch-cultivated for 18 days under different combinations of 

continuous light (40 and 200 µmol photons.m-2.s-1) and temperature (8-28°C) using a high 

initial sodium bicarbonate concentration of 18 mM which previously promoted omega-3 LC-

PUFA partitioning into TAG. 

4.13.3. Results 

Maximum growth and nitrate uptake exhibit an optimum concentration and threshold 

tolerance to bicarbonate addition (~9 mM) above which both parameters decreased as 

indicated in Figure 14. Nonetheless, the transient highest cellular lipid and TAG contents were 

obtained at 18 mM bicarbonate, immediately after combined alkaline pH stress and nitrate 

depletion (day 9), while oil body and TAG accumulation were highly repressed with low 

carbon supply (2 mM). Despite decreases in the proportions of EPA and DHA, maximum 

volumetric and cellular EPA and DHA contents were obtained at this stage due to 

accumulation of TAG containing EPA/DHA. TAG accounted for 74% of the total fatty acid per 

cell, containing 55% and 67% of the overall cellular EPA and DHA contents, respectively. These 

results clearly demonstrate that inorganic carbon availability and elevated pH represent two 

limiting factors for lipid and TAG accumulation, as well as n-3 LC-PUFA partitioning into TAG, 

under nutrient-depleted P. lutheri cultures. Therefore, accumulation of lipid and triacylglycerols 

containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in 

these species. 

The capacity of some algal species to accumulate TAG containing LC-PUFA, particularly during 

environmental changes, depends on the regulation of various metabolic pathways. In this study, 

we demonstrated for the first time, to our knowledge, that cellular lipid content, oil body 

formation and TAG containing n-3 LC-PUFA accumulation induced by nitrate depletion rely 

mainly on inorganic carbon availability in P. lutheri. Therefore, this study contributes to 

optimised culture strategies applied to develop n-3 LC-PUFA-enriched oil production systems 

using autotrophic microalgae. The findings constitute an important step towards an improved 

understanding of the mechanisms involved in lipid metabolism regulation, and more specifically 

oil accumulation and LC-PUFA partitioning in microalgae. 
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Figure 14 Bicarbonate-induced oil droplet formation (Nile red staining) and triacylglycerol (TAG) 
containing EPA and DHA accumulation in nitrate-depleted cells 

Under both light intensity, the highest growth was observed using temperature between 12-

18°C. P. lutheri growth was highly reduced or completely repressed using low and high 

temperature (8 and 28°C), highlighted by slower nitrate-uptake. Of major interest, highest 

lipid, EPA and DHA content and productivity were obtained under optimal growth conditions 

reaching N-depletion. These can be explained by TAG accumulation in all conditions able to 

reach N-depletion. Moreover, in addition to bicarbonate supplementation, our results (Figure 

15) showed that optimised growth conditions enhanced omega-3 LC-PUFA partitioning into

TAG and oil-containing omega-3 accumulation induced by N-depletion in P. lutheri.

In conclusion, using optimal growth conditions– light and temperature, bicarbonate

supplementation represents a promising strategy to stimulate growth and trigger omega-3

enriched oil production in the haptophyte P. lutheri.



100 

Figure 15 Combined effects of light and temperature on EPA and DHA content and productivity 
during bicarbonate-induced oil accumulation in P. lutheri batch-cultivated 

4.14. Indoor microalgal large-scale production of selected 

microalgae for targeted bioactive production under 

controlled conditions  

4.14.1. Objective 

The main objectives of this task were to assess the culture strategies developed for indoor 

microalgal large-scale production of selected microalgae for targeted bioactive production 

under controlled conditions, and to produce sufficient amounts of bioactive-rich biomass 

necessary for extraction and further bioactivity testing within the NutraMara consortium.  

4.14.2. Cultivation system and conditions 

Indoor large-scale production was performed using 80L semi-closed low-cost flat panel 

photobioreactors (FP-PBRs), similar to the one patented by Boussiba and Zarka, (2005) and 

built by Dr Freddy Guihéneuf on the NUI Galway campus. The new design of FP-PBRs consists 

of a plastic bag located between two iron frames; this brings a substantial cost reduction to 

this type of reactors (Figure 16). 

Culture strategies previously developed have been tested to produce three different bioactive-

rich microalgal biomass: 

• Protein-rich i.e. PB-rich P. purpureum biomass
• Omega-3 LC-PUFA i.e. EPA/DHA-rich P. lutheri biomass
• Omega-3 LC-PUFA i.e. EPA-rich P. tricornutum biomass
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Figure 16 Low cost flat-panel photobioreactors (FP-PBRs) developed to assess large-scale production 
of microalgae under controlled conditions. Batch-cultures of the diatom P. tricornutum (left) and the 
red microalga P. purpureum (right) 

4.14.3. Results 

Culture strategies developed during this work were successfully up-scaled, which allowed the 

production of substantial amounts of bioactive rich-biomass for further bioactive testing within 

the NutraMara consortium.  

4.15. Screening of MAAs in available microalgae and 

investigation of the deleterious effect of UV radiation on 

microalgae  

4.15.1. Objective 

Microalgae depend on solar energy for photosynthesis and are therefore particularly 

susceptible to the deleterious effects of solar ultraviolet radiation (UVR). To counteract these 

deleterious effects, they have evolved a range of UV-protective mechanisms. Amongst them, 

Mycosporine-like amino acids (MAAs), a group of over 20 ultraviolet (UV) absorbing 

compounds are present in a diverse range of aquatic organisms where they act as sunscreens 

to reduce UV-induced damage. MAAs also play a role in protecting against sunlight damage by 

acting as antioxidant molecules scavenging toxic oxygen radicals. 

Due to the role played by MAAs, they have been commercially explored as suncare products 

for protection of skin and other non-biological materials, e.g. as photostabilising additives in 

plastics, paint and varnish. 

In this context, the aim of this subtask was a screening of MAAs in several targeted species (i.e. 

cyanobacteria, diatoms, others) and to investigate the mechanisms and environmental factors 

(i.e. UV-stress) inducing MAAs accumulation in selected species. Meanwhile, the deleterious 

effects of UV-R of microalgae on growth, photosynthesis activity, pigments, and fatty acids 

were investigated. 
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4.15.2. Microalgal species and culture conditions 

Exponential growth phase cultures of eleven microalgal species from various taxonomic groups 

(i.e. Pavlova lutheri, Tetraselmis suecica, Phaeodactylum tricornutum, Leptocylindrus danicus, 

Thalassiosira weissflogii, Dixoniella grisea, Rhodella violacea, Isochrysis galbana, Rhodomonas salina, 

Nannochloropsis oculata and Nodularia harveyana) were exposed to photosynthetically active 

radiation (PAR) or UV-R treatment (PAR + UV-A + UV-B) for five consecutive days. Induced 

species-specific changes in growth and photosynthetic activity were determined during both 

PAR and UV-R exposure, the presence of MAAs was investigated, as well as the fatty acid and 

pigment content and composition. 

4.15.3. Results 

Despite the number of species investigated, none of them showed the presence of substantial 

amount of MAAs even after UV-R treatment. Only the red microalgae D. grisea, the diatom T. 

weissflogii, and the cyanobacteria N. harveyana presented some traces of MAAs but insufficient 

for spectral characterisation. 

Nonetheless, microalgae exposed to UV-R showed a significant decrease in growth, 

photosynthetic activity (i.e. Fv/Fm, see Figure 17 and Chlorophyll a levels, usually associated 

with an increase in carotenoids. Phycobiliproteins in red microalgae and cyanobacteria was 

highly degraded which suggested a strong deterioration of the thylakoid membranes. Lipid and 

LC-PUFA changes appeared to be species-specific. 

These results contributed to a better understanding of the potential deleterious effect of UV-R 

on microalgae, especially during outdoor cultivation. 

Figure 17 Effect of UV-R on the photosynthetic activity (Fv/Fm) of green microalgae N. salina.    
Results are expressed as the mean ± standard deviation (n = 3) 

4.15.4. Conclusions 

In marine microalgae, inorganic carbon availability and nitrogen status are therefore two key 

metabolic factors controlling oil biosynthesis and carbon partitioning between carbohydrates 

and fatty acids. 
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Several different culture strategies were developed and employed to optimise the production 

of specific bioactives and potential co-products in a number of microalgal species for food and 

health applications. 

In P. purpureum, maximal PB productivity is obtained at 20 °C under low light intensity using 

Nitrogen-repleted medium. Under such specific growth conditions, P. purpureum biomass also 

showed to be able to accumulate substantial amounts of other valuable products (i.e. 

carbohydrates, EPA, zeaxanthin, β-carotene) which could therefore be co-extracted, with PBs, 

by implementation of a biorefinery approach. 

Bicarbonate addition can trigger oil containing omega-3 LC-PUFA accumulation in P. lutheri 

batch-cultivated. 

In P. lutheri, optimised light and temperature can enhance omega-3 LC-PUFA incorporation 

into TAG during bicarbonate-induced oil accumulation. 

In Ireland, indoor cultivation using adapted cultivation systems such as flat panel 

photobioreactors (FP-PBRs) under controlled conditions appears to be a pre-requisite for 

bioactive production from microalgae. 

MAAs are not as common or are only detected as traces in most microalgal species. 

UV-R strongly affects the physiology and metabolism in marine microalgae, such effect has to 

be considered when using outdoor cultivation in particular during summer. 

4.16. Fish processing co-product derived compounds 

The NutraMara feasibility study identified a number of fish processing co-products as potential 

sources of high quality protein and substrates for mining of bioactive peptides. Salmon 

trimmings (muscle and skin) were identified as a source of muscle proteins and gelatine, blue 

mussel meat as a source of muscle protein, and blue mussel byssus as source of collagen. Co-

products from processing crab, lobster and prawns were identified as sources of the 

polysaccharide, chitin. Methods developed to extract bioactive compounds from these sources 

are described below. 

4.17. Peptides 

4.17.1. From salmon co-products 

Processing parameters were optimised for the extraction of soluble muscle proteins from 

salmon trimmings. This involved assessing the effect of weight to volume ratio (1:2.5, 1:5.0, 

1:7.5 and 1:10.0), number of sequential extractions, homogenisation, extraction pH (2.5, 3.0, 

3.5, 4.0, 10.0, 10.5, 11.0 and 12.0) and agitation time (5, 10, 15, 30 and 45 min) on the yield of 

protein recovered. Extraction pH and the use of homogenisation were identified as the critical 

parameters associated with the extraction of proteins from salmon muscle.  
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Methods to extract gelatine from salmon trimmings were also developed. A pellet (containing 

salmon skin, bone and membranes) obtained following removal of the soluble salmon muscle 

proteins by centrifugation was the starting point for extraction. The details of the two 

methods used for extraction of gelatine from the pellet are outlined in Figure 18 below. 

Figure 18 Schematic outlining the steps involved in the extraction of gelatine from salmon trimmings 
(Salmo salar) by two different protocols 

4.17.2. From mussels 

The critical parameters identified in extracting salmon protein - extraction pH and the use of 

homogenisation were optimised (extraction pH (10.0, 10.5, 11.0 and 12.0) and 

homogenisation) for the extraction of protein from mussel meat. 

Different food-friendly approaches were assessed to extract collagen from mussel byssus. 

Collagen was extracted at a 1:10 (w:v) ratio byssus:water, at pHs 7.0, 4.0, 3.0, 2.5 and 2.0, and 

extraction at different temperatures (50, 70, 90 and 10°C) during 1, 12, 16 and 24 h. A soluble 

collagen extract was obtained following centrifugation at 4,000 x g for 15 min. Different 

proteolytic enzymes were also assessed for their ability to liberate collagen from mussel 

byssus. These include pepsin, collagenase and a commercial An-PEP preparation (proline 

specific enzyme).  

The protein content in each extract was determined using the Bradford assay (Bradford, 1976) 

while the protein content of the raw material and the final protein isolate was determined 

using a modification of the Kjeldahl procedure (IDF 1993). All protein isolates were 

characterised by sodium dodecyl sulphate polyacrylamide gel electrophoresis by the method 

described by Laemmli (1970).  

The optimised protein extraction protocols were used to extract protein/gelatine/collagen 

from mussel meat, byssus, and salmon trimmings, for use as substrates for the generation of 

protein hydrolysates. 
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4.17.3. Generation of protein hydrolysates from fish processing co-products 

Protein hydrolysates were generated from salmon and blue mussel meat protein, salmon 

gelatine and mussel byssus collagen isolates by using the food grade proteolytic enzymes 

Alcalase 2.4L, Alcalase 2.4L in combination with Flavourzyme 500L, Corolase PP and Promod 

144MG for 1, 2 and 4h. This work determined the most appropriate food-grade proteolytic 

enzyme, marine raw material and hydrolysis duration for generation of marine protein 

hydrolysates with specific biological activity (Cunha Neves et al., 2015; Cunha Neves et al., 

accepted and Cunha Neves et al., in preparation). Physicochemical characterisation (% degree 

of hydrolysis, reverse phase-high performance liquid chromatography (RP-HPLC) and gel 

permeation chromatography (GPC -HPLC) was performed on all hydrolysates as described by 

Spellman et al., (2005) to determine the extent to which the proteins were hydrolysed, the 

molecular mass distribution and hydrophobicity of the peptides within each hydrolysate.  

Results from protein extraction and hydrolysis 
Extraction parameters for optimum recovery of protein from salmon trimmings include 

homogenization of a 1:5 trimmings:water suspension, adjusting to pH 11.0, agitation for 15 min 

at room temperature and centrifugation at 4000 x g (Cunha Neves, 2015 and Cunha Neves et 

al., in preparation). The supernatant obtained following centrifugation contained the soluble 

muscle proteins. From these optimised conditions, 305.09 ± 7.38 mg/g wet weight of soluble 

muscle protein, corresponding to a protein yield of 93% (w/w) was obtained from salmon 

trimmings. The purity of the salmon protein isolate was determined to be 87% (w/w). Critical 

parameters associated with the extraction of soluble muscle proteins from salmon trimmings 

were extraction pH and the inclusion of a homogenisation step.  

The soluble muscle protein extraction method used for salmon trimmings was adapted to 

extract  protein from mussel meat, in which extraction pH and homogenisation conditions 

were optimised (Cunha Neves et al., accepted). The optimum pH for extraction of mussel 

meat proteins was identified as pH 11.0. Furthermore, the inclusion of a homogenisation step 

was required for optimum cell disruption and accessibility of proteins. The yield and purity of 

the mussel meat protein isolate was determined to be 73% and 92% (w/w), respectively.  

The most appropriate method identified to extract collagen from mussel byssus involved direct 

hydrolysis of the mussel byssus with a commercial proline specific enzyme (An-PEP). Using this 

food friendly approach, 138.82 ± 2.25 mg collagen g-1 (d.w.) was recovered.  

The optimised protein extraction protocols described above were used to extract 

protein/gelatine/collagen from salmon trimmings, mussel meat and byssus and used as 

substrates for the generation of protein hydrolysates.  

Protein hydrolysates from salmon and blue mussel muscle protein, salmon gelatine and mussel 

byssus collagen isolates, using food grade proteolytic enzymes Alcalase 2.4L, Alcalase 2.4L in 

combination with Flavourzyme 500L, Corolase PP and Promod 144MG were generated over 

durations of 1, 2 and 4h. Results of physicochemical characterisation (degree/extent of 
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hydrolysis and GPC analysis) showed that in general, hydrolysis was complete after 1h. 

Furthermore, the highest degree/extent of hydrolysis was observed with Corolase PP and a 

combination of Alcalase 2.4L and Flavourzyme 500L, while the lowest was seen with Promod 

144MG. In general, the majority (90-95%) of peptides present in hydrolysates generated with 

Corolase PP and a combination of Alcalase 2.4L and Flavourzyme 500L were <10 kDa , while 

60-80% of peptides in hydrolysates generated with Promod 144MG were <10 kDa. Different

RP-HPLC profiles were obtained for each of the hydrolysates generated.

4.18. Polysaccharides 

4.18.1. Chitin 

Chitosan was generated from prawn (N. norvegicus) by-product consisting of shell and protein 

material. Prawn shell material was heated in boiling sodium chloride (4% NaCl) for 10 min and 

cooled in tap water to remove excess prawn protein material.  Shell was washed extensively 

and freeze–dried. Clean, dry shell was milled, sieved and subsequently demineralised and 

deproteinised using a BioFlo 110 Modular Bioreactor (New Brunswick Scientific, USA). HCl 

(0.25 M) was added to the prawn shell material in a 1:40 w/v ratio. The temperature of the 

reaction was maintained at 40°C for 6 h. Shell material was subsequently drained, washed until 

pH neutral (pH 7.0) using Milli-Qwater, frozen, and freeze–dried to obtain demineralised shell 

powder. Demineralised shell powder was then deacetylated and further deproteinised using 

0.25 M NaOH at a shell to solvent ratio of 1:40w/v.  

Chitosan was prepared by hydrolysis of the acetamide groups of chitin, using a severe alkaline 

treatment. This involved chitin being further deacetylated using 3.0 M NaOH at a chitin to 

solvent ratio of 1:40 w/v. The reaction was maintained at 70°C for 6 h. Chitin was then 

washed until neutral, frozen, and freeze-dried. A final deacetylation step was carried out by 

subjecting chitosan to treatment with 45% NaOH at 100°C for 6 h. The final product, 

chitosan, was washed until neutral using Milli-Q water, frozen, freeze-dried, milled and stored 

for use within the consortium.  

4.19. Aquaculture derived compounds 

4.19.1. Algal compounds through optimised cultivation 

Macroalgae (seaweeds) present a rich source of chemical compounds with bioactive 

properties. A major interest was to develop a better understanding of the dynamics and 

variability of bioactive profiles in seaweeds in the field and under controlled laboratory 

conditions, in order to optimally use these as a source for bioactive compounds.  

Research has shown that the chemical profile of macroalgae can be variable in dependence of 

the abiotic conditions in their environment. A better understanding of plasticity of bioactives in 
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seaweeds in natural and under controlled laboratory conditions can support an optimized 

utilisation of macroalgae as a source of health promoting compounds.  

4.19.2. Introduction 

A healthy diet is becoming more and more important to the general public. This has caused a 

change in consumer behaviour with an increased consumption of healthy foods. The food 

industry has addressed this with numerous and a steadily growing product line of functional 

foods. With a quickly growing market there is also an increasing demand for sources of 

bioactive compounds for use in functional foods.  

Algae contain a wide range of different compounds with multiple potential applications in the 

functional foods sector (Stengel et al., 2011). Besides having numerous effects and physiological 

and ecological functions for the seaweed itself, many of these compounds have shown to have 

bioactive properties (Holdt and Kraan, 2011; Stengel et al., 2011). Within the large inventory of 

seaweed compounds especially fatty acids, pigments including chlorophylls, carotenoids and 

phycobilins are of interest for functional foods.  

It has been long realised that the composition of seaweeds is subject to significant variations in 

accordance to the abiotic conditions defining their environment. Seaweed species inhabit the 

intertidal zone, an environment which is subject to constantly changing conditions including 

levels of light and temperature on different temporal (diurnal, seasonal) and geographic scales 

(Colombo et al., 2006; Mouritsen et al., 2013).  

These natural occurring changes in the chemical composition of seaweeds equally pose 

challenges but also opportunities for the utilisation of seaweeds as a resource for functional 

foods. Currently it is still very difficult to predict the chemical composition of seaweeds with 

regards to sampling time and sampling location. This can cause problems for industry that 

depends on a stable and chemically optimised biomass. On the other hand, the plasticity also 

opens opportunities to improve the chemical composition of seaweeds (Gosch et al., 2015). In 

controlled culture conditions seaweeds can be grown under optimal conditions for the 

production of certain target compounds. This can improve the yield of valuable bioactive 

compounds from seaweed biomass. 

In order to use seaweeds commercially it is important to choose species that have a valuable 

chemical composition rich in bioactive compounds. The target species also need to be present 

in sufficient abundance along the coast that allows for sustainable harvesting or be capable of 

being grown in aquaculture facilities. Meeting these requirements, this study focused on the 

investigation of the three brown seaweed species Laminaria digitata, Ascophyllum nodosum, Fucus 

serratus and one red macroalga, Palmaria palamata.  

The single and synergistic effects of abiotic factors on the biochemical composition of 

seaweeds are still not fully understood. In order to address this scientific gap and to provide 

the base knowledge for an economical and optimized utilisation of Ireland’s seaweed resource 

the project focused on the investigation of the chemical plasticity of seaweeds in dependence 
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of their abiotic growing conditions. This included the assessment of natural chemical variability 

and the exposure of seaweeds to controlled and modified culture conditions. 

4.19.3. Evaluation of natural seasonal and spatial variability in bioactive compounds in 

selected seaweeds  

4.19.3.1. Objectives 

The objective of this work was to assess and evaluate the natural occurring variability of 

bioactive compounds in seaweeds. This included a comparison of seaweed species of different 

taxonomical background, different thallus parts of algae and of different seasonal and spatial 

sampling events.  

4.19.3.2. Material and methods 

To assess the variability of bioactive compounds and for the selection of target species a 

screening of 16 macroalgae species was conducted. Representatives of red (Rhodophyta), 

brown (Phaeophyceae) and green (Chlorophyta) algae were collected at two seasons from 

western Ireland and total fatty acid contents and specific profiles were determined (for details 

see Schmid et al., (2014)).  

For the evaluation of the intra-thallus variability of bioactive compounds, eight brown algae 

species were investigated. Species investigated belonged to the orders Fucales (Fucus serratus 

(L.) Le Jolis, (Fucaceae), Ascophyllum nodosum (L.) Le Jolis, (Fucaceae) and Himanthalia elongata 

(L.) Gray, (Himanthaliaceae)) and Laminariales (Laminaria digitata (Hudson) Lamouroux 

(Laminariaceae), Laminaria hyperborea (Gunnerus) Foslie (Laminariaceae), Alaria esculenta 

(Linnaeus) Greville (Laminariaceae), Saccorhiza polyschides (Lightfoot) Batters (Laminariaceae) 

and Saccharina latissima (L.) Lane (Laminariaceae)). Algal samples were dissected in 

morphological distinct parts and ground to fine powder for subsequent fatty acid and pigment 

analysis. 

To support a better understanding of the variability of bioactive compounds in seaweeds in 

dependence of sampling location and season a seasonal sampling was conducted. Macroalgal 

samples of four species (Laminaria digitata, Ascophyllum nodosum, Fucus serratus and Palmaria 

palmata) were collected in the course of one year and chemical composition was analysed. 

Seaweed samples were collected at low tide every six weeks at three different sites along the 

coast of Galway Bay (Finavarra, Carraroe and Ballyconnely).  

The quantity and composition of total fatty acids (TFA) was analysed using GC-FID (gas-

chromatography coupled with a flame ionization detector). The samples analysis followed the 

protocol described in Schmid et al., (2014). Pigment profiles (Chlorophylls and carotenoids) 

were analysed using HPLC (high-pressure liquid chromatography) following the protocol 

described in Wright et al., (1991) modified after Bidigare et al., (2005). Phycobilin contents 

were analysed after Beer and Eshel, (1985). 
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4.19.4. Results 

Results of the seaweed screening were evaluated with particular focus on TFA contents and 

seaweeds as a source for EPA (see Figure 19). All investigated species showed low levels in 

total fatty acids compared to those achievable in microalgae (see Figure 11). Yet, PUFA levels 

in several macroalgae species were high with percentages of up to 50% of their TFA. 

Particularly P. palmata had an interesting fatty acid profile with high percentages (44%) of EPA 

(see Figure 19). The generally low ratio of omega-6 to omega-3 fatty acids in most species 

analysed indicate potential as food or food supplement to balance the omega-3 deficiency in 

western diets. The samples collected at different seasons revealed variations in TFA and EPA. 

Variations were species specific with similar trends partly in closely related species and 

seaweeds inhabiting similar shore levels. The study highlights the importance of a better 

understanding of seasonal dynamics in valuable fatty acids in macroalgae in order to optimally 

use seaweeds as a source of PUFA. 

Figure 19 Total fatty acid content in % of DW at the two different sampling times in investigated 
brown, red and green macroalgae. Values are expressed as the mean ± standard deviation (n = 3) 

Figure 20 EPA content in investigated brown, red and green macroalgal species. EPA is displayed in 
percentage of DW. Values are expressed as the mean ± standard deviation (n = 3) 

The Laminariales and Fucales species investigated showed a strong biochemical differentiation 

comparing the different thallus parts (for example see Figure 21). In most species there was a 

trend of higher levels of TFA in the more distal parts, e.g. in kelps when comparing the blades 

to the holdfast. A similar pattern was found for the pigments in kelps, generally lower pigment 
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contents occurred in the apical growth region of the Fucales compared to other parts of the 

blade. The omega-3/omega-6 ratio was highest in blades due to an increase in the percentage 

of 20:5 n-3 and 18:4 n-3. When considering seaweeds as a source of PUFA and pigments, kelp 

blades were identified as most preferable source material of all species investigated. A detailed 

description of the achieved results can be found in Schmid and Stengel, (2015). 

Figure 21 Fatty acids (a) and pigments (b) in Alaria esculenta. Different thallus parts investigated are 
indicated in diagram.  (a) Total fatty acids (TFA) and levels of 18:4 n-3 20:4 n-6 and 20:5 n-3 in % of 
DW. (b) Concentrations of chlorophyll a (chl a), chlorophyll c (chl c), fucoxanthin (fx) and β-carotene 
(β-car) in mg g-1 DW. Significant differences (p<0.05) were determined using the Kruskal-Wallis test 

4.19.5. Evaluation of environmental control of bioactive levels and composition through 

experimental exposure  

4.19.5.1. Objective 

The objective of this activity was to evaluate the effects of single and synergistic abiotic factors 

on the biochemical composition of seaweeds under controlled laboratory conditions.  

4.19.5.2. Material and methods 

Four seaweed species (Laminaria digitata, Ascophyllum nodosum, Fucus serratus and Palmaria 

palmata) were exposed to different levels of light and temperature in the laboratory. Culture 

conditions ranged between 10 and 20 ºC and irradiances between 20 and 90 μmol photons m-2 

s-1. Growth rate and photosynthetic activity (ΔF/F’m) using PAM-fluorometry (Pulse amplitude

modulated fluorometry) was measured during experimental exposure.

After experimental exposure the chemical composition of the seaweeds was analysed following 

the protocols described above and employed in the evaluation of natural seasonal and spatial 

variability of bioactive compounds. 
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4.19.6. Results 

The obtained results allowed the identification of the main and combined effects of the 

investigated abiotic factors. The results showed similar patterns, such as lower levels of 

pigments under high light conditions but also species specific responses.  

4.19.7. Bioactive production through targeted algal cultivation  

4.19.7.1. Objective 

The objective of this task was to evaluate and interpret the results from the culture 

experiments for the identification of optimised culture conditions.  

4.19.8. Material and methods 

Results from the culture experiments were used to model the optimal culture conditions. A 

quadratic model was used for calculation of each response variable in detail described in 

Guihéneuf and Stengel, (2015). 

4.19.8.1. Results 

The response of the different seaweed species to the culture conditions was used to model 

optimum culture conditions for different compounds and growth rate. The results highlight 

how optimum condition can vary strongly between target compounds. It is also shown how 

the optimum conditions for certain target compounds can be distinct from optimum growth 

conditions (see Figure 22). For an optimal utilisation of seaweeds from aquaculture both 

factors need to be considered.  

Figure 22 Optimum culture conditions for P. palmata for growth [specific growth rate % d-1] (A), 
phycobilin [mg g-1 DW] (B), TFA [% of DW] (C) and PUFA [% of TFA] (D) production. 

4.19.9. Plasticity of lipid partitioning in Irish seaweeds 

4.19.9.1. Objective 

The results from the seasonal sampling showed distinct patterns of TFA contents comparing P. 

palmata and F. serratus during the seasonal sampling with high levels of TFA in summer in F. 

serratus and low levels in P. palmata. The objective of this task was to better understand which 



112 

underlying processes in the lipid metabolism are causing these differences. A detailed 

investigation of the partitioning of the fatty acids into different lipid classes at the different 

sampling times was conducted to investigate the different patterns.  

4.19.9.2. Material and methods 

Based on the data from the seasonal sampling, two sampling times with particularly high and 

low levels of total fatty acid were selected for samples from F. serratus and P. palmata. A 

detailed lipid class analysis was conducted on the selected samples and the partitioning of lipids 

and the profiles of the single lipid classes were compared. Lipid extraction was conducted 

following the protocol of Bligh and Dyer, (1959). Lipid class separation was conducted using 

TLC (thin layer chromatography) and fatty acid composition of individual classes was analysed 

using GC-FID described in Guihéneuf et al., (2015). 

4.19.9.3. Results 

The study showed how two distinct seaweed species, the brown algae F. serratus (Figure 23) 

and the red seaweed P. palmata (Figure 24) had strongly differing abilities to adapt their lipid 

composition and fatty acid profile in response to environmental changes. Both species showed 

matching changes in their polar lipids, unsaturation levels of fatty acids and the linked pigment 

composition to maintain structural and photosynthetic function of plastidic membranes during 

seasonal changes (i.e. temperature and light availability). Results suggest that it is the ability to 

accumulate TAG that distinguishes between the two species and their tolerance to habitat 

related stressors. This allows F. serratus to prevent damage in times of excess irradiance and to 

divert the energy into TAG accumulation and energy storage. It appears to be a key factor in 

coping with environmental stresses and particularly high irradiance, and allows for a broader 

distribution along the shoreline and supports the exploiting of more variable habitats through a 

better adaptation potential of F. serratus in comparison to P. palmata. 
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Figure 23 Lipid class distribution in F. serratus in % of total lipids. Significant differences (*) were 
determined by Mann-Whitney-U test, p<0.05 
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Figure 24 Lipid class distribution of P. palmata in % of total lipids. Significant differences (*) were 
determined by Mann-Whitney-U test, p<0.05 

TAG FFA
DGDG

MGDG
SQDG DPG PE PG PC

Li
pi

d 
 c

la
ss

 [%
 o

f t
ot

al
 li

pi
ds

]

0

5

10

15

20

25

30

35
May.
Oct.

*
*

*

*

*
*

4.19.10. Discussion 

Results presented from this study provide a detailed overview of the plasticity of bioactives in 

brown and red macroalgae of commercial interest in Ireland. The results show how the 

chemical composition in seaweeds varied within species, and in accordance to sampling 

location and season, and controlled culture conditions.  

The results provide knowledge to industry about the selection of target species, optimal 

sampling times and locations in order to apply high-value algal biomass as a source for 

bioactive compounds for functional foods. 
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4.19.11. Conclusions 

• Results show a strong plasticity of bioactive compounds
• Chemical composition of seaweeds can vary in dependence of sampling location, season

and thallus parts investigated
• Culture experiments show that the chemical composition of seaweeds can be actively

altered through changes in the culture conditions
• Species specific algae responses can be linked to habitat preferences and eco-physiology

of the seaweeds

4.19.12. Farmed rainbow trout 

4.19.12.1. Protein extraction 

Extracting proteins from rainbow trout (Oncorhynchus mykiss) involved blending freeze-dried 

samples of rainbow trout muscle and homogenising 15 g of the sample in 150 mL of 50 mM 

Tris-HCl buffer, pH 8.0, by using a vortex for 2 min. The homogenate was then centrifuged at 

10,000g for 20 min at 4ºC using a Beckman OptimaTM XL-100K ultracentrifuge (Beckman 

Coulter Inc., UK). The supernatant constituted the fraction where all soluble proteins 

(sarcoplasmic proteins) were contained.  

The pellet was resuspended in 150 mL of 50 mM Tris-HCl, pH 8.0, containing 6 M urea and 1 

M thiourea, and homogenised in a vortex for 5 min in order to solubilise the myofibrillar 

proteins. The homogenate was then centrifuged at 10,000g for 10 min, collecting the 

supernatant which constitutes the myofibrilar extract. The residual pellet mainly contains the 

proteins of the connective tissue. After the extraction, myofibrillar protein samples were 

freeze-dried, vacuum packed and stored at -20°C until further use.  

4.19.12.2. Protein hydrolysis 

The enzyme thermolysin was used for the hydrolysis of rainbow trout proteins. The hydrolysis 

process involved rainbow trout (Oncorhynchus mykiss) myofibrillar proteins (15 g) being 

individually added to 500 ml of distilled water in triplicate and heated at 98°C for 15 min to 

inactivate endogenous myofibrillar protein enzymes. Before hydrolysis, the pH of the mixture 

was adjusted and subsequently maintained at 7 by the addition of 0.05 M sulphuric acid and 0.1 

M sodium hydroxide. Thermolysin was dissolved in distilled water at a concentration of 3 

mg/ml and added to the myofibrillar protein mixture in a substrate to enzyme ratio of 100:1 

w/v. Hydrolysis was carried out in a BioFlo 110 Modular Benchtop Fermentor (New 

Brunswick Scientific Co., Inc. Edison, NJ) overnight at 37°C with agitation of 300 rpm. 

Hydrolysis was stopped by heat inactivation at 100°C for 15 min. The hydrolysates were 

freeze-dried, weighed, and vacuum packed and kept at -80°C until further use. 

4.19.12.3. MWCO - Ultrafiltration 

The trout myofibrillar protein hydrolysates were filtered using 10-kDa and 3-kDa molecular 

weight cut off (MWCO) membranes (Millipore, Tullagreen, Carrigtwohill, Co. Cork, Ireland). 

The 10-kDa and the 3-kDa filtrates (termed 10-kDa-UFH and 3-kDa-UFH, respectively) were 

freeze-dried, vacuum packed and stored at -80°C until further use.  
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4.19.12.4. Protein content of rainbow trout myofibrillar protein hydrolysates, filtrates 

and RP-HPLC fractions 

The total protein content of rainbow trout myofibrillar proteins (before hydrolysis), and of the 

freeze-dried hydrolysates, 10-kDa-UFH and the 3-kDa-UFH filtrates was determined using the 

Biorad Protein Assay kit in accordance with the manufacturer’s instructions (Sigma-Aldrich 

Chemie GmbH, Switzerland) and the method of Macart et al., (1982). Bovine serum albumin 

was used as a standard. 

Determination of the ACE-I-inhibitory activities of rainbow trout thermolysin hydrolysates, 

filtrates (10-kDa-UFH and 3-kDa-UFH) and RP-HPLC fractions using the method of Roy et al., 

(2000): ACE-I-inhibitory activity is usually analysed in vitro and implies the determination of 

inhibitory activity by means of a synthetic substrate with amino di- and tri-substituted peptides 

such as Hippuryl-L-Histidyl-L-Leucine (HHL, H1635 Sigma), that was used at a concentration of 

5 mM and dissolved in borate buffer 0.1 M containing 0.3 M NaCl, pH 8.3. The 

spectrophotometric method used corresponds to a modified version of the method of Roy et 

al., (2000). Briefly, 200 μl of HHL buffer was mixed with 20 μl of the positive control 

(Captopril©) at a concentration of 0.015 μg/ml or the inhibitory substance and incubated at 

37˚C for 3 min. The reaction was initiated by addition of 20 μl of ACE enzyme at a 

concentration of 0.05 units/ml and the mixture was incubated at 37˚C for 30 minutes. The 

reaction was stopped by addition of 250 μl of 1M HCl mixed with 1.7 ml of ethyl acetate. The 

mixture was centrifuged at 13,000 rpm for 15 minutes and 1.4 ml of the top layer removed 

using a 1 ml pipette. Solvent was evaporated from the test fractions under nitrogen and re-

dissolved in 1 ml of distilled, deionized water. The absorbance of each fraction was measured 

at 228 nm and the percentage ACE-I-inhibition calculated using the following equation: 

% ACE-I inhibition = 100 – (100 x (C-D)/(A-B)) 

Where, A is the absorbance in the presence of ACE without the ACE inhibitor, B is the 

absorbance without ACE and the ACE-inhibitor, C is the absorbance with ACE and the ACE 

inhibitor and D is the absorbance without ACE and with the ACE-inhibitor. 

Measurement of PAF Acetylhydrolase inhibitory activities of rainbow trout hydrolysates, 

filtrates (10-kDa-UFH and 3-kDa-UFH) and RP-HPLC fractions: PAF acetylhydrolase inhibition 

was assayed using the Cayman Chemical PAF Acetylhydrolase Inhibitor screening assay kit in 

accordance with the manufacturers’ instructions (Cayman Chemical Company, Ann Arbour, 

MI). Briefly, 2-thio PAF was used as a substrate for PAF-AH. Upon hydrolysis of the acetyl 

thioester bond at the sn-2 position by PAF-AH, free thiols are detected using 5,5’-dithio-bis-(2-

nitrobenzoic acid) using a spectrophotometer at A414 nm or A405 nm. Samples were reconstituted 

in dimethylsulphoxide (DMSO) at concentrations of 1 mg/ml and assayed in triplicate. Methyl 

arachidonyl fluorophosphonate (MAFP) was used as a positive control at a concentration of 

250 nM. MAFP has an IC50 value of 250 nM and is a known inhibitor of PAF-AH.  
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Measurement of PEP inhibitory activity in rainbow trout thermolysin hydrolyzates and filtrates 

(10-kDa-UFH and 3-kDa-UFH): Samples were reconstituted in HEPES buffer (50 mM, pH 7.4) 

to a concentration of 100 mg/mL (0.025 g in 250 µL buffer). Bovine calf serum (Sigma Aldrich 

Ireland Ltd., Arklow, Ireland) was used as a source of PEP activity. Z- Gly-Pro- AMC (50 mM) 

(Bachem Holding AG, Bubendorf, Switzerland) was used as the fluorogenic substrate for the 

determination of post-proline cleaving enzyme (prolyl endopeptidase). Berberine (13.3 µM) 

(Sigma Aldrich Ireland Ltd., Arklow, Ireland) was used as a positive inhibitor. HEPES buffer (50 

mM) was used as a negative control.  

Prolyl endopeptidase inhibitory activity (PEP inhibitory activity) was assayed as follows; 20µL of 

bovine serum albumin was added to each microtitre well in a 96 well plate (opaque black, 

clear-bottom; Greiner Bio-One Ltd, Stonehouse, UK). 20µL of each sample to be assayed for 

inhibitory activity or 20µL of berberine (as positive control) or HEPES buffer (Sigma) was 

subsequently added. The assay was initiated by addition of 20µL of Z- Gly-Pro- AMC to all 

wells. The plate was incubated with shaking for 1 hour at 37ºC. The enzyme reaction was 

terminated by addition of 100 µL of acetic acid (3 mM) to each well. All samples and controls 

were run in triplicate. End-point fluorescence measurements were taken at an excitation 

wavelength of 351 nm and an emission wavelength of 430 nm using a Tecan Safire plate reader, 

model IS89 (AQS Manufacturing Ltd., West Sussex, UK).  

The sample background readings were subtracted from the fluorescence readings and the 

degree of inhibition (%) was then calculated using the following equation: 

% PEP inhibition = ((control – sample)/(control))x 100 

RP-HPLC analysis: 3-kDa and 10-kDa ultrafiltrates were further separated using RP-HPLC 

analysis. Freeze-dried samples were dissolved in 5 mL to give a final concentration of 240 mg 

of protein powder per 1 mL of water/acetonitrile (95:5, v/v) with 0.1% trifluoroacetic acid 

(TFA). After filtering through PVDF 0.22 μm membrane syringe filter the sample was injected 

into a Varian Pro Star Polaris HPLC system (Varian, Inc., The Netherlands). The 

chromatographic separation was developed using a Luna C18 column (5mm particle size, 100A, 

100 x 21.20 mm) and a C18 security guard (15 x 21.2 mm) from Phenomenex (Phenomenex 

Inc., Cheshire, UK) at room temperature. Mobile phases comprised solvent A, containing 0.1% 

TFA in acetonitrile (v/v), and solvent B, containing 0.1% TFA in water. The separation 

conditions consisted of 5% of solvent A and 95% of solvent B isocratically for 5 min, followed 

by a linear gradient from 5 to 60% of solvent A over 30 min at a flow rate of 10 mL/min. The 

separation was monitored using a diode array detector at a wavelength of 214 nm, and 10 mL 

fractions were collected and subsequently freeze-dried and stored at -20ºC. 

Peptide identification by Tandem Mass Spectrometry 
Fractions showing the highest levels of bioactivity were analyzed using an electrospray 

ionisation quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer coupled to a nano-ultra 
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performance liquid chromatography system (Waters Corporation, Milford, MA, USA) using 

positive ionisation mode.  

Freeze dried samples were dissolved in water/acetonitrile (90:10, v/v) with 0.1% of formic acid 

and filtered through a 0.22 mm syringe filters. After filtering, 1 μl of the redissolved fractions 

were loaded into a nano-acquity UPLC column BEH130 C18, 1.7 cm particle size, (100mm x 

100mm) preceded by a trapping column Symmetry C18, 5 mm particle size, (180mm x 20mm). 

Mobile phases consisted of solvent A, containing 0.1% FA in water, and solvent B, containing 

0.1% FA in acetonitrile. Trapping of the peptides was achieved under a loading time of 3 min at 

a flow rate of 5 μl/min with 97% of solvent A and 3% of solvent B and then eluted onto the 

analytical column at 250 nl/min. Chromatographic conditions consisted of 95% of solvent A and 

5% of solvent B isocratically for 3 min, followed by a linear gradient from 95 to 50% of solvent 

A over 48 min. 

Mass spectral data were acquired on MSe mode with collision energy for full mass scan of 6V 

and a collision energy ramp of 15-35 V.  In the DDA mode, a 1 s TOF MS scan from m/z 100 

to m/z 1500 was performed. The Q-TOF was calibrated externally using Glu-fibrinopeptide 

(Glu-Fib) for the mass range m/z 100 to1500.  

Database search, confirmation of sequences, and de novo sequencing 
Automated spectra processing and peak list generation was performed using the software 

Protein Lynx Global Server, v2.4 (Waters Corporation, Milford, MA). Database search was 

performed using Mascot interface 2.2 in combination with the Mascot Daemon interface 2.2.2 

(Matrix Science, Inc., Massachusetts, USA), (http://www.matrixscience.com) against the 

UniProt and NCBI non redundant databases. Mascot searches were done with none enzymatic 

specificity and with a tolerance on the mass measurement of 100 ppm in the MS mode and 0.6 

Da for MS/MS ions. Oxidation of methionine was used as variable modification. 

Comparison between the sequences of proteins to determine the protein origin of peptides 

was done using UniProtKB/TrEMBL database. Matches of MS/MS spectra against sequences of 

the database were verified manually using the software mMass v3.11 (Strohalm et al., 2010). 

The identified peptides in the 10-kDa filtrate were compared with the sequences of bioactive 

peptides previously identified and reported in BIOPEP database 

(http://www.uwm.edu.pl/biochemia/). 

4.19.13. Farmed mussels 

Blue mussel (Mytilus edulis L.) farming is Ireland’s largest shellfish sector. Apart from their 

culinary value, these marine bivalves are regarded as a potential source for proteins, lipids, and 

carbohydrates, which may have beneficial effects on human health. Identifying the biochemical 

composition of mussels is relevant in assessing their potential as a source of ingredients for use 

in functional foods. A study was undertaken to evaluate seasonal and spatial variations in the 

composition of blue mussels farmed in Irish waters. In this study, mussels were collected over 

a one-year period from five different locations and at four different times, and their proximate 

http://www.matrixscience.com/
http://www.uwm.edu.pl/biochemia/
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composition (glycogen, total proteins, total lipids and inorganic matter), energy content and 

fatty acid profiles determined. A further dimension to the study was the inclusion of samples of 

mussels - wild grown mussels, undersized mussels and broken specimens from aquaculture.  

4.19.14. Biochemical composition analysis 

For proximate chemical composition studies, pools of each mussel sample were freeze-dried, 

milled and kept in dry conditions until further analysed. Quantitative protein determination 

was performed by the Kjeldahl method (N_6.25), the lipid content was determined 

gravimetrically after Soxhlet extraction using petroleum ether and the amount of inorganic 

material was measured by incinerating the samples to ash in a muffle furnace at 550°C for 16h. 

The energy content was measured by combustion with a bomb calorimeter Parr-6100 (Parr 

Ins. Co., IL, USA) and expressed in MJ/kg. The glycogen content was determined by means of a 

modified phenol–sulphuric acid method (Dubois et al., 1956) after enzymatic hydrolysis of the 

freeze-dried material with α-amyloglucosidase (Murat and Serfaty, 1974). Briefly, 5 mL of the 

enzyme solution (0.3 mg/mL in 100 mM acetic acid) were added to 0.1 g of the freeze-dried 

material and the mixture was allowed to react for 3 h at 50°C. After centrifugation (6000 rpm, 

15 min) and dilution of the supernatant, 0.5 mL of the samples were mixed with 0.5 mL of a 

5% (w/v) phenol solution and 2.5 mL of concentrated sulphuric acid. The absorbance of the 

sample was measured at 490 nm using an Evolution 60S spectrophotometer (Thermo Fisher 

Sci., MA, USA). Glucose was used as a standard. 

4.19.14.1. Results  

The spatial and seasonal variations of glycogen, total lipids, and proteins in samples of mussels 

collected between May 2012 and April 2013 were determined. The quantitative analyses of 

glycogen, revealed elevated levels in spring and summer and lower levels during autumn and 

winter (Figure 25a). Interestingly, this distinct seasonal cycle observed for glycogen (P < 0.001) 

correlated with the average water temperature recorded at the different sampling sites. 

Maximum glycogen values were recorded at the end of summer (season 2), ranging from 

25.11% (DL-AQ) to 29.18% (LH-AQ). The minimum glycogen contents were observed at the 

end of winter (season 4), with values between 4.15% (MO-WA) and 5.05% (GYWI).  
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Figure 25 Seasonal and spatial variations of glycogen (a), total lipid (b), and total protein (c) content 
of blue mussels (M. edulis) collected in Ireland between May 2012 and April 2013. On the main Y-axis, 
percentages are represented in an Ash Free Dry Weight (AFDW) basis (bars). In addition, the 
average water temperature for the different aquaculture sampling sites is represented in the 
secondary Y-axis (curves). Water temperature data was obtained from the Irish Marine Institute. S1: 
May/June 2012; S2: August/September 2012; S3: November/December 2012; S4: February/March 
2013 

The seasonal trend observed in protein contents (Figure 25c) was not as distinct as in the case 

of carbohydrates or lipids. However, global seasonal differences were statistically significant (P 

< 0.001). The lowest protein level was observed in season 1 (May/June 2012), coinciding with 

the main spawning period of blue mussels in Ireland. Moreover, an increase in the total protein 

content was observed in season 2 (August/September 2012) for most of the samples. This may 

be related to the general accumulation of biochemical reserves during that period of time. In 
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all samples investigated, the protein content at the end of winter (season 4) was higher than 

that observed at the end of spring, i.e., season 1 (May/June 2012). 

Figure 26 Fatty acid profile of a wild mussel sample collected during season 1 (May/June 2012) in 
Rusheen Bay, Co. Galway (GY-WI) 

Seasonality stood out as an important factor influencing lipid content in Irish blue mussels (P < 

0.001). As a general trend, a constant increase in the total lipid content was observed from 

May/June 2012 (season 1) to February/March 2013 (season 4), except for the case of the 

sample from Co. Donegal (DL-AQ). The FA profile of the wildly grown blue mussels in Co. 

Galway is shown in Figure 26, where a total of 28 fatty acids (FAs) were identified. The 

presence of PUFAs is notable not only in quantity, but also diversity. Amongst all PUFAs, a high 

proportion of ω-3 long-chain PUFAs, especially EPA and DHA is apparent. Within the group of 

saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), myristic (C14:0), 

palmitic (C16:0) and palmitoleic (C16:1n-7) acids were the most abundant.  

There were distinct interactions between seasonality and sampling site, suggesting that their 

effects cannot be studied independently. The seasonal variations observed for glycogen and for 

some fatty acids appeared to be closely linked to environmental parameters, such as water 

temperature and food/phytoplankton availability, while the fluctuations observed in lipid or 

protein content depended mostly on the reproductive cycle of the mussels.  

The most significant seasonal variations have been observed for glycogen, the main 

carbohydrate with storage reserve functions. The highest accumulation of glycogen was 

observed during spring and summer while a depletion was mainly observed during autumn and 

winter. A clear relationship between water temperature and glycogen content in mussel meat 

was observed for the five aquaculture samples. Smoother trends have been noticed for lipids 

and proteins. In the case of the energy content, the seasonal trend observed is opposite to 

that observed for inorganic matter.  

In terms of geographical variations, the biochemical fluctuations found were significant, but not 

as distinct as in the case of the collection season. Thus, it appears the nutritive value of Irish 

blue mussels is not dependent on the collection site, but primarily on the harvesting time. Gas 
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Chromatography analyses emphasised the prominent presence of PUFAs in blue mussels and 

the correlation between EPA and DHA levels with the main phytoplankton species in the 

production areas. 

That Irish blue mussels are a rich source of proteins is of nutritional relevance. Moreover, 

their fatty acid profile is characterised by elevated levels of health beneficial ω-3 PUFAs, 

especially EPA and DHA, plus a high ω-3/ω-6 ratio. From a nutritional point of view, it might 

be concluded that the optimum season for mussel collection and marketing is the end of 

summer as the samples collected during this season showed the highest carbohydrate content, 

the highest DHA values and interesting EPA values.  

Undersized and broken mussels had a similar biochemical composition as the corresponding 

aquaculture sample collected in the same area. Hence, in addition to cultured mussels, the 

exploitation of aquaculture by-products such as waste mussel meat for the extraction and 

investigation of high quality proteins, lipids, and carbohydrates might be of economic value.  

4.19.15. Abalone 

Bioactive peptides are known to play an important role in metabolic modulation and regulation 

(Najafian, 2012). They have been isolated from a myriad of sources previously but the 

importance of marine invertebrates as a source of novel bioactive substances is growing 

(Barrow and Shahidi, 2008; Aneiros and Garateix, 2004). Recently, two peptides with 

antibacterial activity from the abalone Nordotis discus discus were reported (Park et al., 2012). 

Against this background, and considering an opportunity to add value to Ireland’s emerging 

Abalone aquaculture sector, NutraMara initiated work to generate thermolysin hydrolysates of 

abalone (Pacific abalone Haliotis discus hannai Ino) myofibrillar proteins and MWCO 3-kDa and 

10-kDa fractions, and assess these for their abilities to inhibit renin and the serine proteases

Factor Xa and PAF-AH. The Pacific abalone is cultured in Ireland.

4.19.16. Protein extraction

Whole abalone samples (including shell) were defatted by being soaked in 100 % ethanol

(Sigma, Ireland) at 4˚C for 5 days to decant.  The samples were then removed from ethanol

and the fat decanted. The foot and adductor muscle of adult abalone were removed from the

abalone shell, washed with distilled, de-ionized water and subsequently freeze-dried at -80 ˚C

for 4 days. Freeze-dried muscle was subsequently used as the substrate for protein fraction

preparation using the method described below in Figure 27.
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Figure 27 Schematic of steps taken in isolating bioactive peptides from abalaone 
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4.19.17. Enzymatic hydrolysis 

Thermolysin hydrolysates (X3) of the abalone muscle myofibrillar proteins were prepared 

using a New Brunswick (New Brunswick Scientific co., Inc., Edison, NJ) 1 L bioreactor with 

temperature and pH control. Abalone myofibrillar proteins (15 g) were dispersed in distilled 

Romil HPLC grade water in triplicate and heated at 98°C for 15 min to inactivate endogenous 

myofibrillar protein enzymes. Before hydrolysis with thermolysin, the pH of the mixture was 

adjusted and subsequently maintained at 7 by the addition of 0.1 M sodium hydroxide (NaOH). 

Thermolysin was dissolved in distilled water at a concentration of 3 mg/ml and added to the 

myofibrillar protein mixture in a substrate to enzyme ratio of 100:1 w/v. Hydrolysis was 

carried out overnight at 37°C with agitation of 300 rpm and stopped by heat inactivation at 

100°C for 15 min. The hydrolysates were freeze-dried, weighed, vacuum packed and stored at 

-80°C until further use.

4.19.18. MWCO-Ultrafiltration

Abalone myofibrillar protein hydrolysates were filtered using 10-kDa and 3-kDa molecular

weight cut off (MWCO) membranes (Millipore, Tullagreen, Carrigtwohill, Co. Cork, Ireland).

The 10-kDa and the 3-kDa ultra-filtrates and permeates (termed 10-kDa-UFH and 3-kDa-UFH,

respectively) were freeze-dried, vacuum packed and stored at -80°C until further use.
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4.19.19. Protein content of abalone myofibrillar protein hydrolysates and MWCO 

3-kDa (3-kDa-UFH) and 10-kDa (10-kDa-UFH) ultrafiltration fractions

The total protein content of abalone myofibrillar proteins (before hydrolysis), and of the 

freeze-dried hydrolyzates, 10-kDa-UFH and the 3-kDa-UFH filtrates and permeates was 

determined using the QuantiPro BCA assay kit in accordance with the manufacturers’ 

instructions (Sigma-Aldrich Chemie GmbH, Switzerland). Bovine serum albumin was used as 

the protein standard. 

4.19.20. Renin inhibitory bioassay of abalone thermolysin hydrolysates and 

MWCO 3-kDa-UFH and 10-kDa-UFH fractions 

This assay was carried out according to the manufacturers’ instructions (Renin Inhibitor 

screening assay kit, Catalog number 10006270, Cambridge BioSciences, United Kingdom).  All 

abalone hydrolysates and 3-kDa and 10-kDa-UFH fractions were assayed at a concentration of 

1 mg/ml in triplicate. The known specific renin inhibitor, Z-Arg-Arg-Pro-Phe-His-Sta-Ile-His-

Lys-(Boc)-OMe (Sigma Aldrich, Dublin, Ireland), was used as a positive control. Percentage 

inhibition was calculated using the following equation,  

% renin inhibition = (100% Initial Activity (AF)-Inhibitor (AF)/100% Initial Activity (AF)) x 100), where 

AF is the average fluorescence.  

Initial activity is the assay performed without the presence of an inhibitor. Data were 

compared using the students’t-test and considered significantly different if P<0.05.   

Measurement of PAF Acetylhydrolase inhibitory activities of abalone thermolysin 
hydrolysate and the MWCO 10-kDa-UFH and 3-kDa-UFH fractions 
PAF acetylhydrolase inhibition was assayed using the Cayman Chemical PAF Acetylhydrolase 

Inhibitor screening assay kit in accordance with the manufacturers’ instructions (Cayman 

Chemical Company, Ann Arbour, MI). Methyl arachidonyl fluorophosphonate (MAFP) was 

used as a positive control at a concentration of 250 nM. MAFP has an IC50 value of 250 nM 

and is a known inhibitor of PAF-AH. The percentage inhibition for each sample was 

determined using the following equation, 

% PAF-AH inhibition = 100 % initial activity – Inhibitor sample value / 100 % initial activity value X 

100. 

4.19.21. Measurement of Factor Xa inhibitory activities of abalone thermolysin 

hydrolysate and the MWCO 10-kDa-UFH and 3-kDa-UFH fractions 

Factor Xa inhibition was assayed using the SensoLyte® Rh110 Factor Xa Assay Kit in 

accordance with the manufacturers’ instructions (AnaSpec., Inc., Fremont, CA 94555). This kit 

provides a method for screening Factor Xa inhibition using a fluorogenic substrate. Upon FXa 

protease cleavage, this substrate generates the Rh110 (rhodamine 110) fluorophore which has 

a bright green fluorescence that can be detected at excitation/emission of 490nm/520nm. 

Abalone hydrolysate and MWCO fractions were reconstituted in dimethylsulphoxide (DMSO) 
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at concentrations of 1 mg/ml and assayed in triplicate.  The positive control supplied in the kit 

was used at the recommended concentration.  

4.19.22. Water activity (aw) 

The water activities of the freeze-dried abalone full thermolysin hydrolysate, the MWCO 10-

kDa-UFH and the 3-kDa-UFH powders, were assessed using an AquaLab instrument CX-2, 

MM/80 (Decagon, 2565 NE Hopkins, Court Pullmann Wa 99163). The equipment was 

calibrated using a solution of 0.5 M KCl (AquaLab WP4 Dewpoint Potential Meter, Decagon 

Devices, Inc.) with a water activity value (aw) of 0.984. 

4.19.23. Removal of polyethylene glycols from abalone hydrolysates, filtrates and 

permeates using a titanium dioxide (TiO2) cleanup procedure 

Polyethylene glycols (PEGs) were removed from total abalone myofibrillar protein thermolysin 

hydrolysates, 10-kDa-UFH and the 3-kDa-UFH filtrates and permeates using the PierceTM 

TiO2 Phosphopeptide Enrichment and clean-up kit (Thermo Scientific, Rockford, USA) 

according to the method of Zhao and O’Connor (2007). After cleanup, all protein samples 

were freeze-dried prior to MS analysis. 

4.19.24. Peptide identification 

The full abalone myofibrillar protein thermolysin hydrolysate and the MWCO 10-kDa and 3-

kDa –UFH fractions were analysed by electrospray ionisation quadrupole time-of-flight (ESI-Q-

TOF) mass spectrometer coupled to a nano-ultra performance liquid chromatography system 

(Waters Corporation, Milford, MA, USA) using positive ionisation mode. Samples were 

dissolved in MilliQ purified water at a concentration of 1 mg/ml. 5 μl of the 10 and 3-kDa 

MWCO filtrates were loaded independently on to a nano-acquity UPLC column BEH130 C18, 

10 cm, 1.7 cm) preceded by a trapping column Symmetry C18, 2cm, 5 cm). Trapping of the 

peptides was achieved with 4 μl/min with solvent A (0.1% HCOOH in water) and then eluted 

onto the analytical column at 300 nl/min. Separation of the peptides were performed in a linear 

gradient from 3% to 85% solvent B (0.1% HCOOH in acetonitrile) during 110 min. Mass 

spectral data were acquired on MSe mode for the 10 and 3-kDa filtrates. The collision energy 

for full mass scan was 5V and the collision energy ramp of 15-35 V was used for the MSe data 

acquisition mode.  In the DDA mode, a 1 s TOF MS scan from m/z 100 to m/z 1600 was 

performed, followed by 3-8 s product ion scans from 50 to 1600 m/z on the most intense ions. 

The Q-TOF was calibrated externally with a MS/MS fragment ions of Glu-fibrinopeptide (Glu-

Fib) for the mass range m/z 100 -1600. The Glu-Fib peptide was also used as a lock mass. 

4.19.25. Database search and confirmation of sequences 

Database searchers and peak list generation to identify proteins and peptides contained in the 

abalone myofibrillar protein, thermolysin hydrolysates and MWCO fractions was performed 

using the software Peaks Mass Spectrometry Software 6.0 (BioMar, Inc., USA). Searches were 

done with no enzymatic specificity allowing one missed cleavage and a tolerance on the mass 
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measurement of 1.2 Da in the MS mode and oxidation of His-Trp were used as variable 

modifications. 

4.20. Results 

The aim of this work was to screen protein and peptide fractions from muscle proteins of the 

abalone Haliotis discus hannai Ino for inhibitory activities against each of the three enzymes; 

renin, PAF-AH and Factor Xa in vitro. Haliotis discus hannai Ino abalones were chosen as the 

potential source of heart health peptides, as antimicrobial and antioxidant peptides were 

previously identified in this species.  

4.20.1. Protein content of abalone myofibrillar muscle thermolysin hydrolysates, 

MWCO 10-kDa-UFH and 3-kDa -UFH fractions 

The protein content of the 10-kDa-thermolysin MWCO permeate was 16.465 (±1.527) g 

proteins / g dried sample while the protein content of the 3-kDa-UFH thermolysin permeate 

was 17.203 (±) g proteins / g dried sample. Values for the 10-kDa-UFH retentate and 3-kDa-

MWCO retentate are shown in Figure 28 below.  

Figure 28 Protein concentration of abalone myofibrillar protein thermolysin hydrolysates and 
MWCO fractions using the BCA Bioassay kit 
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4.20.2. PAF-AH inhibitory activities of the 10-kDa-UFH and the 3-kDa-UFH fractions 

generated from abalone thermolysin hydrolysates 

When assayed for PAF-AH inhibitory activity, the MWCO 10-kDa-UFH and the 3-kDa-UFH 

fractions generated from abalone myofibrillar protein thermolysin hydrolysates were 

reconstituted in DMSO at concentrations of 1 mg/ml and tested in triplicate. PAF-AH 

inhibitory activity values were less than 20 % for abalone extracts and fractions, when assayed 

at a concentration of 1 mg/ml. The myofibrillar protein extract from abalone inhibited PAF-AH 

by 17.897 % (+ 2.26) at a concentration of 1mg/ml. The MWCO 10-kDa-UFH permeate 

fraction and the 3-kDa-UFH permeate fraction inhibited PAF-AH by 17.636 % (+3.52) and 

16.757 % (+3.55) respectively compared to 60.24 % (+0.22) PAF-AH inhibition by MAFP, the 
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positive control, which was assayed at a concentration of 250 nM. All PAF-AH inhibition values 

are shown in Figure 29. 

Figure 29 Percentage PAF-AH inhibitory activities of Abalone myofibrillar protein thermolysin 
hydrolysate and MWCO ultrafiltrates 
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4.20.3. Renin inhibitory activities of the MWCO 10-kDa-UFH and the 3-kDa-UFH 

fractions from abalone myofibrillar protein thermolysin hydrolysates 

The full abalone myofibrillar protein thermolysin hydrolysate, the 10-kDa-UFH and the 3-kDa-

UFH fractions were reconstituted in DMSO (1 mg/ml) and tested for their renin inhibitory 

activities. All fractions inhibited renin and inhibition values ranged from 86.03 % (+0.108) at a 

concentration of 1mg/ml for the abalone myofibrillar protein thermolysin hydrolysate to 

95.428 % (+0.108) at a concentration of 1mg/ml for the 10-kDa-UFH permeate fraction. All 

renin inhibitory values are shown in Figure 30. These renin inhibition values compare 

favourably with values reported in the literature previously (FitzGerald et al, 2012; Li and 

Aluko, 2010; Takahashi et al., 2008). 

Figure 30 Percentage renin inhibitory values for Abalone myofibrillar protein thermolysin 
hydrolysate and MWCO ultrafiltrates 
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4.20.4. Factor Xa inhibitory activities of the 10-kDa-UFH permeate and the 3-kDa-UFH 

permeate fractions from abalone myofibrillar protein thermolysin hydrolysates 

The full abalone myofibrillar protein thermolysin hydrolysate, the 10-kDa-UFH and the 3-kDa-

UFH thermolysin fractions were reconstituted in DMSO (1 mg/ml) and tested for their Factor 

Xa inhibitory activities. All fractions inhibited Factor Xa and inhibition values ranged from 

68.12 % (+21.94) at a concentration of 1mg/ml for the abalone myofibrillar protein thermolysin 

hydrolysate 3-kDa-permeate fraction to 95.69 % (+3.52) at a concentration of 1mg/ml for the 

full abalone myofibrillar protein thermolysin hydrolysate.  All Factor Xa inhibitory values are 

shown in Figure 31 and compare favourably with values reported in the literature previously 

such as the commercially available Apixaban and Betrixaban (Dunwiddie et al, 1989; Lim-Wilby 

et al., 1995; Eriksson et al., 2009; Jordan et al., 1990) and with the internal positive control used 

in the Factor Xa assay kit. 

Figure 31 Factor Xa inhibition values obtained with Abalone thermolysin hydrolysates and MWCO 
filtrates 
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4.20.5. Water activity (aw) of the abalone myofibrillar protein thermolysin hydrolysates, 

10-kDa-UFH and 3-kDa-UFH fractions

The water activity (aw) values of the abalone myofibrillar protein thermolysin hydrolysate, the 

10-kDa thermolysin filtrate and the 3-kDa thermolysin filtrate were 0.435 aw (± 0.080), 0.465

aw (± 0.045) and 0.476 aw (± 0.051) respectively. These water activity values compare

favourably with typical aw values of meat products and are low enough to prevent growth of

pathogens such as Escherichia coli (aw 0.93), Salmonella species (aw 0.91-0.95), Listeria sp. (aw

0.93) and most moulds and yeast (aw 0.80-0.90) (Mathlouthi, 2001).

4.20.6. Peptides identified in abalone (Haliotis discus hannai Ino) myofibrillar protein

thermolysin hydrolysates, 10-kDa-UFH and 3-kDa-UFH using ESI nano-spray MS 

and FT-ICR/Orbitrap 

In total, 66 proteins (data not shown) were identified in the full abalone myofibrillar protein 

extract hydrolysate, 191 proteins in the 10-kDa-UFH fractions (data not shown) and 114 
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proteins in the 3-kDa-UFH fractions.  Table 18 lists the peptides identified within the 10-kDa-

UFH of abalone (Haliotis discus hannai Ino) myofibrillar protein thermolysin hydrolysate. 

Figure 32 shows the MS/MS spectrum of pro-peptides identified in the 3-kDa-UFH filtrate 

fraction generated in this study. These pro-peptides were not identified in the database 

BIOPEP (http://www.uwm.edu.pl/biochemia/accessed 10th November 2012) or in other 

peptide databases such as SwePep (http://www.swepep.org) and PepX. 

These sequencing results show that the peptides identified in the bioactive full hydrolysate, the 

10-kDa-UFH and in the 3-kDa-UFH fractions were generated from many of the main

paramyosin and tropomyosin proteins found in invertebrate (abalone) tissue, such as arginine

kinase, Actin A1α-chains, and the fibrous proteins, including collagen and elastin and others

(http://pepx.switchlab.org/). Identified pro-peptides (Figure 32) ranged from 9 amino acids

(HHHGEEFSI) in length to 17 amino (KRAENDDGHQEEQGAEF) in length. Pro-peptides

identified in the 10-kDa-UFH are shown in Table 18.

Table 18 Peptides identified within the 10-kDa-UFH of abalone (Haliotis discus hannai Ion) 
myofibrillar protein thermolysin hydrolysate 

Peptide number MWCO fraction Peptide sequence Calculated Mass Amino acid length
1 10-kDa-UFH AQTPKNSMEGTKVG 1447.63 14
2 10-kDa-UFH RGHTSDYRF 1138.22 9
3 10-kDa-UFH YRDHERSGTGSDHIV 1728.81 15
4 10-kDa-UFH KDPYPGAMV 977.15 9
5 10-kDa-UFH TEEYSDERQSAQDL 1670.69 14
6 10-kDa-UFH RKGMTGTSEDAALI 1449.66 14
7 10-kDa-UFH HHHGEEFSI 1092.14 9
8 10-kDa-UFH EPLHDL 722.8 6
9 10-kDa-UFH RKADFV 734.85 6

10 10-kDa-UFH QKQDEKSMGEI 1292.43 11
11 10-kDa-UFH GQWAPESEASEKKV 1545.67 14
12 10-kDa-UFH APPVTRSL 840 8
13 10-kDa-UFH SRLDDKNQYEGL 1437.53 12
14 10-kDa-UFH AGMLPVLW 886.12 9
15 10-kDa-UFH FTTEHI 746.83 6
16 10-kDa-UFH TRVVKSSVDGYDM 1456.64 13
17 10-kDa-UFH GEVIPVTHSVG 1094.23 11

http://www.uwm.edu.pl/biochemia/accessed%2010th%20November%202012
http://www.swepep.org/
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Of all the identified pro-peptides, the peptide HHHGEEFSI with a molecular mass of 1092.14 

was found in both the 10-kDa-MWCO and the 3-kDa-MWCO fractions and the peptides 

KRAENDDGHQEEQGAEF and SRLDDKNQYEGL were identified in both the 10-kDa and 

the full abalone thermolysin hydrolysates. The pro-peptides identified in this study were not 

identified previously in the literature or in bioactive peptide databases including BIOPEP 

(http://www.uwm.edu.pl/biochemia/ accessed 10th November 2012). However, some of the 

pro-peptide sequences may share homologies with a number of peptides previously 

reported as having antioxidant and ACE-I inhibitory activities. 

The aw values reported for the dried hydrolysate product show that the hydrolysate could 

be used as an ingredient in soups or as a condiment as the aw values reported do not support 

the growth of pathogenic and spoilage bacteria. This work demonstrates that Abalone is a 

potential source of heart health propeptides with Factor Xa and renin inhibitory activities. 

The hydrolysate and/or MWCO filtrates have potential for use as an ingredient for the 

manufacture of a natural condiment or sauce with heart health effects.  

4.21. The peptide database 

During the project a database containing details of marine-derived bioactive proteins, 

peptides and amino acids from macro- and microalgal, fish and shellfish sources with a range 

of biological activities was generated. The final version of the database contains 94 protein, 

574 peptide and 52 amino acid entries. Of these entries, 39 peptides and 12 amino acids 

arose from NutraMara funded research/non-NutraMara funded research. Peptides with 

activities associated with in vitro cardioprotection (renin, platelet activating factor 

acetylhydrolase and acetylcholinesterase inhibition), anti-diabetic (dipeptidyl peptidase IV 

inhibition and glucagon-like peptide-1 protection) and antioxidant and in vivo antihypertensive 

activity were derived from red macrolagal Palmaria palmata proteins. Two peptides with in 

vitro cardioprotective (angiotensin converting enzyme inhibition) and antioxidant activity 

were derived from Thai fermented shrimp paste (Mesopodopsis orientalis/Acetes indicus/ Acetes 

japonicus/Acetes erythraeus). Five peptides with metal chelating activities were mined from 

Alaska Pollack skin collagen hydrolysates while peptides with in vitro cardioprotective 

(angiotensin converting enzyme inhibition), anti-diabetic (dipeptidyl peptidase IV inhibition) 

and antioxidant were derived from Atlantic salmon (Salmo salar) trimming muscle proteins 

and gelatine. Amino acids with angiotensin converting enzyme and anti-diabetic inhibition and 

antioxidant were also derived from Atlantic salmon (Salmo salar) trimming muscle proteins 

and gelatine. 
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5. SCREENING AND PROFILING BIOACTIVE

COMPOUNDS

5.1. Introduction 

With many organisms having evolved to live in extreme conditions and adapt to 

environmental changes, the marine environment is recognised as a rich source of 

biodiversity. Naturally occurring bioactive compounds obtained from marine organisms have 

been shown to offer considerable scope for use as functional food ingredients. Marine 

organisms are known as a rich source of bioactive compounds such as lipids, minerals, 

vitamins, proteins, polysaccharides, pigments and compounds with antioxidant properties. 

Compounds as these have shown promise as potential ingredients in functional foods, whilst 

some, such as the omega-3 polyunsaturated fatty acids are associated with beneficial health 

effects. 

The NutraMara research programme extracted a wide range of bioactive compounds from 

fish, algae and discards from the fish processing industry. However, the challenge to be 

overcome in basing food ingredients on these compounds is to demonstrate their potential 

by proving they have a health benefit. This has involved screening marine bioactive 

compounds against various bioassays, and employing different methods including model 

systems, cell cultures and “omic” approaches to determine the characteristics of compounds 

which demonstrated in-vivo potential to contribute positively to human health.   

The NutraMara feasibility study and market feedback resulted in the identification of specific 

health effects as targets for marine bioactives including, prebiotic, anti-microbial, anti-

infective, anti-obesity, anti-inflammatory, anti-cancer and the effect of some marine 

compounds on mineral absorption and glucose metabolism. In most cases the research 

involved using standard, proven bioassays; however, there were instances when it was 

necessary to develop specific bioassays.   

In the context of developing ingredients for use in functional foods it is necessary to 

demonstrate the efficacy of the bioactive component(s). This is a critical step in the process 

of providing a sufficiently strong scientific basis in order to support and justify a health claim 

related to the intake of a functional food.  Developing a scientific understanding of the mode 

of action of a compound identified as a potential functional ingredient is a vital step in the 

approval of such claims. Some of the investigations of bioactive ingredients by the 

NutraMara consortium included investigating the molecular mode of action of marine origin 

bioactive compounds. A variety of extrinsic factors can influence the efficacy of functional 
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compounds, including; the stability and bioavailability of bioactive compounds in food 

matrices; the physical and chemical form of the food compound; the effect of the total diet 

on the compound; food processing effects; and a range of environmental factors. The impact 

of different processing methods on the bioactivity of functional compounds was assessed for 

a small number of bioactives extracted from samples of seaweeds. 

5.2. Cellular and metabolic studies 

The use of cellular and metabolic approaches formed a sizable proportion of the screening 

activities within the NutraMara programme. Compounds derived from algae, fish and fish 

processing discards were all screened. 

5.3. Screening for anti-inflammatory potential 

A widely used in-vitro model for studying human gut immunity to inflammation is the human 

intestinal epithelial cell model (Caco-2) bioassay. This assay was optimised and used to 

screen NutraMara samples for anti-inflammatory properties. This bioassay requires the 

bioactive compound to be soluble in water. The Caco-2 cells were induced by tumour 

necrosis factor alpha (TNFa) to produce inflammatory cytokine (interleukin 8 – IL8) in the 

presence of NutraMara bioactives extracted from various seaweed species. The IL-8 

secreted by the cell was measured using an ELISA kit. .  

A total of 171 samples of seaweed extracts were evaluated for anti-inflammatory properties 

in vitro and 54 samples were identified to have positive hits (see Table 19 and Table 20)  

Table 19 In vitro screening for anti-inflammatory bioactivity – whole extract 

Species Sample ID Extract Hit 
A. nodosum 84 Cold water Yes 
A. nodosum 84 Ethanol 80% Yes 
A. nodosum 84 Hot water Yes 
Palmaria palmata 141 Cold water No 
Palmaria palmata 141 Ethanol 80% No 
Palmaria palmata 141 Hot water No 
Alaria esculanta 36 Cold water No 
Alaria esculanta 36 Ethanol 80% No 
Alaria esculanta 36 Hot water Yes 
Codium fragile 130 Cold water No 
Codium fragile 130 Ethanol 80% No 
Codium fragile 130 Hot water No 
F. serratus 55 Cold water No 
F. serratus 55 Ethanol 80% Yes 
F. serratus 55 Hot water No 
F. spiralis 123 Cold water No 
F. spiralis 123 Ethanol 80% Yes 
F. spiralis 123 Hot water Yes 
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F. vesiculosus 51 Cold water Yes 
F. vesiculosus 51 Ethanol 80% Yes 
F. vesiculosus 51 Hot water No 
Himanthalia elongata 82 Cold water No 
Himanthalia elongata 82 Ethanol 80% No 
Himanthalia elongata 82 Hot water Yes 
Laminaria digitata 37 Cold water No 
Laminaria digitata 37 Ethanol 80% No 
Laminaria digitata 37 Hot water No 
Laminaria hyperborea 136 Cold water Yes 
Laminaria hyperborea 136 Ethanol 80% No 
Laminaria hyperborea 136 Hot water Yes 
P. canaliculata 115 Ethanol 80% Yes 
P. canaliculata 115 Hot water No 
P. canaliculata 115 Hot water No 
Chondrus crispus 128 Cold water No 
Chondrus crispus 128 Ethanol 80% No 
Chondrus crispus 128 Hot water Ins 
Saccharina latissima 113 Cold water No 
Saccharina latissima 113 Ethanol 80% No 
Saccharina latissima 113 Hot water No 
Ulva intestinalis 180 Cold water No 
Ulva intestinalis 180 Ethanol 80% No 
Ulva intestinalis 180 Hot water No 

Table 20 In vitro screening for anti-inflammatory bioactivity – molecular weight fractions 

Species/Extract Sample ID Extraction Fraction Hit 
A. nodosum 84 Cold H2O < 3.5 kDa No 
A. nodosum 84 Cold H2O 3.5-100 kDa Yes 
A. nodosum 84 Cold H2O > 100 kDa Yes 
A. nodosum 84 EtOH/H2O(80:20) < 3.5 kDa No 
A. nodosum 84 EtOH/H2O(80:20) 3.5-100 kDa Yes 
A. nodosum 84 EtOH/H2O(80:20) > 100 kDa Yes 
A. nodosum 84 EtOH/H2O(80:20) ethyl acetate No 
F. spiralis 123 Cold H2O < 3.5 kDa No 
F. spiralis 123 Cold H2O 3.5-100 kDa Yes 
F. spiralis 123 Cold H2O > 100 kDa No 
F. spiralis 123 EtOH/H2O(80:20) < 3.5 kDa No 
F. spiralis 123 EtOH/H2O(80:20) 3.5-100 kDa Yes 
F. spiralis 123 EtOH/H2O(80:20) > 100 kDa Yes 
F. spiralis 123 EtOH/H2O(80:20) ethyl acetate No 
P. canaliculata 115 Cold H2O < 3.5 kDa No 
P. canaliculata 115 Cold H2O 3.5-100 kDa Yes 
P. canaliculata 115 Cold H2O > 100 kDa Yes 
P. canaliculata 115 EtOH/H2O(80:20) < 3.5 kDa Yes 
P. canaliculata 115 EtOH/H2O(80:20) 3.5-100 kDa Yes 
P. canaliculata 115 EtOH/H2O(80:20) > 100 kDa Yes 
P. canaliculata 115 EtOH/H2O(80:20) ethyl acetate No 
Laminaria digitata 155 Cold H2O <3.5KDa No 
Laminaria digitata 155 Cold H2O 3.5-100KDa No 
Laminaria digitata 155 Cold H2O >100KDa Yes 
Laminaria digitata 155 EtOH/H2O(80:20) <3.5KDa No 
Laminaria digitata 155 EtOH/H2O(80:20) 3.5-100KDa No 
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Laminaria digitata 155 EtOH/H2O(80:20) >100KDa Yes 
F. serratus 156 Cold H2O <3.5KDa No 
F. serratus 156 Cold H2O 3.5-100KDa Yes 
F. serratus 156 Cold H2O >100KDa Yes 
F. serratus 156 EtOH/H2O(80:20) <3.5KDa No 
F. serratus 156 EtOH/H2O(80:20) 3.5-100KDa Yes 
F. serratus 156 EtOH/H2O(80:20) >100KDa Yes 
F. vesiculosus 51 Cold H2O <3.5KDa No 
F. vesiculosus 51 Cold H2O 3.5-100KDa Yes 
F. vesiculosus 51 Cold H2O >100KDa Yes 
F. vesiculosus 51 EtOH/H2O(80:20) <3.5KDa No 
F. vesiculosus 51 EtOH/H2O(80:20) 3.5-100KDa Yes 
F. vesiculosus 51 EtOH/H2O(80:20) >100KDa Yes 

5.3.1. Screening for gut anti- inflammatory potential 

An in vitro evaluation of anti-inflammatory properties identified a number extracts from 

seaweed with highly potent anti-inflammatory bioactivity. A conventional approach to 

further assess their potential would be to conduct a large-scale animal trial. As an alternative 

screening strategy, an ex-vivo evaluation technique to screen for anti-inflammatory properties 

of these seaweed bioactives was developed. This approach used an ex-vivo tissue challenge 

experiment using a porcine colon to evaluate the anti-inflammatory bioactivity of whole 

seaweed extracts and seaweed MW fractions previously found to have anti-inflammatory 

bioactivity in the Caco-2 cell line. A total of 15 whole seaweed extracts and 14 MW extracts 

were tested in the ex-vivo porcine colon excised from six different weaned pigs. The effect of 

seaweed variety and extraction methods on the ex-vivo anti-inflammatory properties is 

shown in Table 21. Of the 15 whole seaweed extracts, 10 had anti-inflammatory properties 

ex-vivo. 

Table 21 Screening for anti-inflammatory bioactivity (ex-vivo) 

Species Sample ID Extract Hit 
F. spiralis 123 Cold water Yes 
F. spiralis 123 Ethanol 80% Yes 
F. spiralis 123 Hot water Yes 
F. serratus 55 Ethanol 80% Yes 
A. nodosum 84 Cold water Yes 
A. nodosum 84 Ethanol 80% Yes 
A. nodosum 84 Hot water Yes 
F. vesiculosus 51 Cold water Yes 
F. vesiculosus 51 Ethanol 80% Yes 
F. vesiculosus 51 Hot water Yes 

Based on their high anti-inflammatory activity in vitro (Caco2 cell line) five seaweeds; 

Ascophyllum nodosum, Fucus serratus, Fucus spiralis, Fucus vesiculosus and Palmaria palmata were 

screened in the ex-vivo assay (live tissue model). An ex-vivo experiment was designed to 
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examine the effect of different extraction methods (cold water, hot water or ethanol) of five 

different varieties of seaweeds.  

To examine their anti-inflammatory potential in porcine colon tissue when challenged with 

lipopolysaccharide (LPS), six inflammatory-marker genes (IL8, IL6, IL1B, TNF, IL17A and 

TLR4) were evaluated and the qPCR data analysed. In contrast to the low level of 

expression of IL-8,IL-6, and TNFA genes in the colonic tissue at 0 h, LPS treatment increased 

(P < 0.05) the expression of IL-8, IL-6, and TNFA genes to 2.38 ± 0.86, 1.90 ± 0.66, and 1.90 

± 0.57 fold, respectively. The pro-inflammatory response induced by the LPS was suppressed 

by the extracts of Ascophyllum nodosum. Ascophyllum nodosum extract reduced (P < 0.05) the 

expression of IL-8, IL-6, and TNFA genes to 0.99 ± 0.53, 0.75 ± 0.33, and 1.01 ± 0.17 fold, 

and Fucus ssp extracts reduced (P < 0.05) the expression of the corresponding genes to 0.70 

± 0.32, 0.69 ± 0.38, and 1.15 ± 0.25 fold, respectively. These results indicate that the 

extracts of Ascophyllum Nodosum and Fucus ssp seaweeds have potential to suppress the pro-

inflammatory response induced by the bacterial LPS in the pig colon. 

5.4. Screening for anti-obesity potential 

A cell bioassay was established to screen compounds for their anti-obesity potential and 

optimised to screen samples generated within the NutraMara programme. This bioassay 

used mouse 3T3-L1 adipocyte model, a model that is widely used as an in vitro model of 

mammalian adipogenesis – a process through which excessive fat is deposited in obese 

individuals. This bioassay requires the bioactive compound to be soluble in water. Mouse 

3T3-L1 pre-adipocytes were allowed to differentiate in presence of extracts and lipid 

accumulation was quantified by free glycerol/triglyceride estimation at the end of the 

differentiation process. A total of 171 samples of whole seaweeds extracts were evaluated 

for anti-obesity properties in vitro and 45 samples were identified to have positive hits (see 

Table 22 and Table 23).  

Table 22 Screening for anti-obesity properties – in vitro 

Species Sample ID Extract Hit 
Alaria esculanta 036 Hot water Yes 
A. nodosum 084 Cold water Yes 
A. nodosum 084 Ethanol 80% Yes 
A. nodosum 084 Hot water Yes 
Chondrus crispus 128 Cold water Yes 
Chondrus crispus 128 Hot water Insoluble 
Fucus serratus 055 Ethanol 80% Yes 
Fucus spiralis 123 Ethanol 80% Yes 
Fucus spiralis 123 Hot water Yes 
Fucus vesiculosus 051 Cold water Yes 
Fucus vesiculosus 051 Ethanol 80% Yes 
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Himanthalia elongata 082 Hot water Yes 
Laminaria hyperborea 136 Cold water Yes 
Laminaria hyperborea 136 Hot water Yes 
Pelvetia canaliculata 115 Ethanol 80% Yes 
Pelvetia canaliculata 115 Hot water Yes 

Table 23 Screening for anti-obesity bioactivity in-vitro - molecular weight fractions 

Species Sample ID Extraction Fraction Hit 
Fucus spiralis 123 Cold H2O < 3.5 kDa Yes 
Fucus spiralis 123 Cold H2O 3.5-100 kDa Yes 
Fucus spiralis 123 Cold H2O > 100 kDa Yes 
Fucus spiralis 123 EtOH/H2O(80:20) < 3.5 kDa Yes 
Fucus spiralis 123 EtOH/H2O(80:20) 3.5-100 kDa Yes 
Pelvetia canaliculata 115 Cold H2O 3.5-100 kDa Yes 
Pelvetia canaliculata 115 EtOH/H2O(80:20) < 3.5 kDa Yes 
Pelvetia canaliculata 115 EtOH/H2O(80:20) 3.5-100 kDa Yes 
Pelvetia canaliculata 115 EtOH/H2O(80:20) > 100 kDa Yes 
Ascophyllum nodosum 084 Cold H2O 3.5-100 kDa Yes 
Ascophyllum nodosum 084 Cold H2O > 100 kDa Yes 
Ascophyllum nodosum 084 EtOH/H2O(80:20) < 3.5 kDa Yes 
Ascophyllum nodosum 084 EtOH/H2O(80:20) 3.5-100 kDa Yes 
Laminaria digitata 155 EtOH/H2O(80:20) 3.5-100KDa Yes 
Laminaria digitata 155 EtOH/H2O(80:20) >100KDa Yes 
Fucus serratus 156 Cold H2O >100KDa Yes 
Fucus serratus 156 EtOH/H2O(80:20) >100KDa Yes 
Fucus vesiculosus 051 Cold H2O <3.5KDa Yes 
Fucus vesiculosus 051 Cold H2O 3.5-100KDa Yes 
Fucus vesiculosus 051 Cold H2O >100KDa Yes 
Fucus vesiculosus 051 EtOH/H2O(80:20) <3.5KDa Yes 
Fucus vesiculosus 051 EtOH/H2O(80:20) 3.5-100KDa Yes 
Fucus vesiculosus 051 Cold H2O <3kDA Yes 

5.5. Screening for cell viability and cytotoxicity 

Cell viability and cytotoxicity of the mouse 3T3-L1 pre-adipocyte cells (anti-adipogenic 

assay) and human Caco-2 cells (anti-inflammatory assay) were assessed in response to 

bioactives extracted from marine sources including, fish processing discards and seaweeds. 

In this process, cells were plated in a 96 well cell culture plate (Greiner Bio-One Gmbh, 

Frickenhausen, Germany) at an initial plating density of 6 x 105 cells/ml. The cells were 

allowed to first reach full confluence and then kept at a fully confluent state for 24 hrs 

before treating with the bioactive. On the day of treatment, cells were washed with sterile 

phosphate buffer saline (Sigma-Aldrich) and incubated with serum and antibiotic free media 

containing the bioactive at final concentrations of 1000 µg/ml and incubated for 24 and 48 

hrs. Cell viability test was performed on the cell monolayer using the 3-(4,5-dimethyl-2-yl)-

2,5-diphenyltetrazolium bromide) (MTT) (Sigma-Aldrich) test. Cell cytotoxicity was 

performed on 25 µl cell lysate using Tox-7 kit (Sigma-Aldrich). 
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5.6. Screening for pre-biotic potential 

The gastrointestinal tract plays host to a complex and diverse microbial ecosystem, which 

can affect host health. Diet is a major determinant of gut microbiota (GM) structure and 

function, and as such offers an approach to modify the gut microbiota to improve health and 

well-being and reduce risk of disease. One such dietary strategy is prebiotics. There is 

accumulating evidence to suggest that prebiotics have potential to improve a number of 

health parameters including bone health and weight management. Although poorly 

understood, one mechanism whereby the GM may improve these health benefits is the 

production of short chain fatty acids through fermentation of polysaccharides within the 

colon. Macroalgae have been suggested as suitable candidates to mine for potential 

prebiotics owing to the richness of atypical polysaccharides within some macroalgal species.  

Extracts from Laminaria digitata were the subject of in vitro and in vivo studies. The in vitro 

study (2 sample extracts) assessed the effects of a crude extract and a depolymerised 

extract on the composition and activity of human faecal bacterial populations. The faecal 

fermentations were run in triplicate, with three healthy donors selected for each run. The 

composition was assessed by spread plating of culturable bifidobacteria and lactobacillus 

species and a more in depth analysis of all bacteria was attained by 454 pyrosequencing. The 

activity of the faecal populations was assessed by gas chromatography and also by 

colourmetric methods. Fructooligosaccharides (FOS) was used as a positive control and 

cellulose as a negative control. Both extracts failed to stimulate culturable bifidobacteria and 

lactobacillus populations in comparison to cellulose. Sequencing the 24 hour samples 

revealed that both crude and deploy extracts increased the abundance of Lachnospiraceae, 

while only the crude extract increased Porphyromonadaceae populations and decreased 

Streptococcus populations.  

The in vivo studies comprised two animal studies, conducted to assess whether the extracts 

can have positive effects on health outcomes including bone, body composition and lipid 

metabolism.  

The first study assessed the potential health effects of supplementing the Laminaria digitata 

extract at 5% to mice maintained on a standard chow diet. The inclusion of the seaweed 

extract had an impact on the GM of mice. It significantly altered 27 bacterial genera 

compared to non-supplemented control animals. The extract also decreased the pH of the 

caecum (P < 0.001) and increased caecal tissue mass (P < 0.001), both of these effects on the 

caecum are considered to contribute towards a prebiotic effect. Furthermore, the seaweed 

extract also modulated bone remodelling in adult mice in a manner which could be 

considered beneficial by increasing a marker for bone formation, osteocalcin (P = 0.049) and 

decreasing a marker of bone resorption, TRACP-5b (P = 0.024). In addition the inclusion of 



138 

the seaweed extract also resulted in reduced body weight (P = 0.038), energy intake (P = 

0.038), serum cholesterol (P = 0.025) and serum leptin (P = 0.049), highlighting the potential 

of the extract as an anti-obesity functional food ingredient. 

The second study assessed the effects of supplementing the extract at 5% to a diet induced 

obese mouse model. The inclusion of the extract altered the GM by altering the Firmicutes 

Bacteroidetes ratio in a manner which is associated with weight loss. The extract also 

reduced the percentage of fat tissue (P = 0.006), increased the respiratory exchange ratio 

during the day (P = 0.034) and night (P = 0.014), and also increased energy expenditure 

during the night period (P = 0.008). Serum cholesterol (P = 0.003), leptin (P = 0.001) and 

lipopolysaccharide binding protein (P < 0.001) were all reduced, indicating an anti-obesity 

effect. As with the former mouse study, caecal tissue mass (P < 0.001) was increased and 

caecal pH (P < 0.001) was decreased with the supplementation of the extract suggesting the 

putative beneficial effects reported could be through modulation of the GM.  In addition, the 

two extracts tested significantly increased the production of acetate (P<0.001), propionate 

(P<0.001) and butyrate (P<0.001) as well as total SCFA (P<0.001) in comparison to controls.  

Two further studies were carried out using polysaccharide rich extract prepared from Fucus 

serratus and Chondrus crispus in order to evaluate prebiotic activity using an in vitro faecal 

fermentation model. During the Fucus serratus study, a 1.5 fold increase was observed in the 

production of total SCFAs, particularly the production of propionate (2.3-fold increase) and 

acetate (1.4-fold increase). There was also an associated significant difference (P<0.05) in the 

ratio of propionate production, rising from 15% in the control to 24 % during the Fucus 

serratus fermentation. However, there was no significant change in levels of butyrate 

production. High throughput DNA sequencing analysis revealed that the Fucus serratus 

extract had no notable effect on the abundance of members of the genera Bifidobacterium 

and Lactobacillus. However, there were notable increases in several propionate-producing 

members of the microbiota such as the genus Parabacteroides, the family Veillonellaceae and 

the family Erysipelotrichaceae, which is peripherally related to the butyrate-producing 

superfamily Lachnospiraceae. 

During the Chondrus crispus fermentation study, significant increases (P<0.05) were recorded 

in the production of total short-chain fatty acids and in particular, the biologically important 

SCFAs, acetate and propionate. However, there was no significant alteration in the molar 

ratio of SCFA production in comparison with the control or impact on the production of 

butyrate. High-throughput DNA sequencing revealed that there was no notable impact on 

the relative abundance of the major probiotic genera, the bifidobacteria and lactobacilli. The 

results of this study revealed that fermentation of depolymerised polysaccharides from 
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Chondrus crispus have only a minimal stimulatory effect on the in vitro microbial population 

and would not be considered prebiotic by the current definition of the term. 

The fermentation of Fucus serratus polysaccharides resulted in a significant alteration in the 

molar ratio of SCFA formation in favour of the production of propionate. Propionate is been 

positively associated with enhancing satiety. Increasing propionate production by the colonic 

microbiota through dietary intervention would be an attractive prospect in preventing 

overeating and maintaining good host health. 

5.7. Screening for antimicrobial potential 

Food related illness is a common and often preventable problem that affects approximately 

30% of individuals in industrialised countries every year. Antimicrobial agents, such as 

preservatives and organic acids, have been used to inhibit food-borne pathogens and prolong 

the shelf life of processed goods but resistance to some traditional antimicrobials is 

spreading quickly. Many naturally occurring compounds found in edible and medicinal plants, 

herbs and spices have been shown to possess antimicrobial activities but the search for new 

antimicrobial to date has mainly focused on the terrestrial environments. Algae have proven 

to be a rich source of novel bioactive compounds. The long evolution of marine plants, 

compared with their terrestrial counterparts, has resulted in the generation of a huge 

diversity of genes, species etc. This diversity coupled with the ability of these plants to adapt, 

compete and survive in extreme environmental conditions has made marine organisms 

potentially an almost unlimited base for applied research. Moreover, they possess the ability 

to synthesise unique chemical structures, many of which have potent bioactive activity. Ten 

ethanol extracts, derived from Irish brown seaweeds, were examined for antimicrobial 

activity against a selection of food-borne pathogens. Extracts from the seaweeds Fucus 

vesiculosus, Fucus serratus Fucus spiralis, Ascophyllum nodosum and Pelvetia canaliculata 

significantly inhibited (p<0.05) the growth of Listeria monocytogenes 5788 at 24 h at a 

concentration of extract of 2 mg/ml. The Fucus vesiculosus extract was chosen for further 

antimicrobial evaluation. Molecular weight fractions of Fucus vesiculosus were tested against 

several strains of L. monocytogenes. It was found that the anti-listerial activity was 

concentrated in the 0-3 kDa and the 3-100 kDa molecular weight fractions, with the 3-100 

kDa exhibiting the highest activity of all. Antimicrobial activity was found to be positively 

correlated with levels of phenolic content. Seaweed extracts exhibiting anti-listerial activity 

could potentially be developed into agents used to control food spoilage and food-borne 

illness especially, based on these results, caused by the pathogenic bacterium L. 

monocytogenes. 
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5.8. Screening for anti-infective potential 

The over reliance on antibiotics and inappropriate use by both health care workers and the 

public has resulted in the emergence of antibiotic-resistant bacterial strains, which has in 

turn led to a reduction in effectiveness of antimicrobial therapy. As a consequence, the 

normal human gut microbiota can be altered in cases allowing for the enrichment of 

antibiotic resistant bacteria which further complicates treatment. Resistance makes the 

development of novel strategies to prevent and treat bacterial infections crucial. Therapies 

which target bacterial virulence properties (e.g. adhesion, colonization, invasion and the 

production of toxins) have the advantage of combating the infection without selecting for 

resistant bacteria and also not causing harmful effects on the host microbiota. Anti-adhesion 

therapy aims to reduce contact between host tissues and pathogens. This is done either by 

preventing the adhesion in the first place or reversing adhesion after it has occurred. 

Galactooligosaccharides (GOS) have been demonstrated to mimic molecular receptors and 

can competitively inhibit bacterial adherence to the intestine. Here, polysaccharide rich 

extracts prepared from the brown seaweed Fucus serratus and the red seaweed Chrodus 

crispus were investigated for their anti-infective potential against strains of Staphylococcus 

aureus, Salmonella enterica, Listeria monocytogenes and Escherichia coli using the human colonic 

carcinoma cell line, Caco-2 as a model system. CaCo-2 cells were grown as previously 

described in literature. The polysaccharide extracts were both prepared at a concentration 

of 5 mg/ml using DMEM (FBS 2%, NEAA 1%) and sterilized using 0.45 µm filters. The 

extracts were pre-incubated with the target bacteria for one hour at 37°C. Following the 

pre-incubation, old media was removed from the seeded 12 well plate and each well was 

washed with PBS (x3). One millilitre of the extract/bacterial cells mixture was added to each 

well and the plate was then incubated at 37°C for 2 hours. The plate was taken from the 

incubator and the extract/bacterial media was removed. Each well was then washed with 

PBS (x4) to remove all non-adherent bacteria with 500µl of Triton X being added to each 

well. The plate was then replaced in the 37°C incubator for 45 minutes. After 45 minutes, 

the contents of each experimental well was collected in individual, sterile, clean Eppendorf’s 

and serial dilutions were carried out in MRD and plated on to BHI agar. The plates were 

then incubated in an inverted position at 37°C for 24 hours. It was found that neither the 

Fucus serratus or Chondrus crispus extract had a significant effect (p<0.05) on the levels of 

recoverable bacteria in comparison with the control condition. This indicates that 

polysaccharide extract produced by dilute hot-acid extraction offers poor anti-infective 

potential against major food-borne pathogens such as Staphylococcus aureus, Salmonella 

enterica, Listeria monocytogenes and Escherichia coli. 
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5.9. Screening for anti-diabetic potential 

Hydrolysis of dietary starch is the major source of glucose in the blood, with α-amylase and 

α-glucosidase being the key enzymes involved in starch breakdown and intestinal absorption, 

respectively. It is believed that inhibiting these enzymes can significantly decrease the 

postprandial increase of blood glucose level after a mixed carbohydrate diet, offering a 

strategy in the management of hyperglycaemia linked to type II diabetes.  

This study explored the potential role of seaweed extracts for diabetic care. Extracts (cold 

water and ethanol) of 15 species of Irish seaweeds; Alaria esculenta, Ascophyllum nodosum, 

Fucus serratus, Fucus spiralis, Fucus vesiculosus, Himanthalia elongata, Laminaria digitata, Laminaria 

hyperborea, Pelvetia canaliculata and Saccharina latissima, Chondrus crispus, Gracilaria gracilis, 

Palmaria palmate, Codium fragile and Ulva intestinalis were screened for potential α-amylase 

and α-glucosidase inhibitory activity, with extracts of interest subsequently tested for their 

effect on Caco-2 cell function. The undifferentiated Caco-2 human colon cancer cell line was 

chosen as it is a reliable model for cultured colonocytes, is well characterized, and is widely 

used for biochemical and nutritional studies. 

The initial screening process resulted in extracts from five brown seaweed species 

Ascophyllum nodosum, Fucus serratus, Fucus spiralis, Fucus vesiculosus and Pelvetia canaliculata 

being chosen for further evaluation and the pharmacological inhibitor, acarbose, included as 

a positive control. The extracts of interest were then examined at lower concentrations 

(1000–10 lg/ml for α-amylase inhibition, 1000–1 lg/ml for α-glucosidase inhibition) using a 

modified protocol, whereby the enzyme was added at the final stages of the experiment. For 

α-amylase inhibition, the IC50 values for cold water extracts of Ascophyllum nodosum, Fucus 

serratus, Fucus spiralis, Fucus vesiculosus and Pelvetia canaliculata were 53.6, 86.1, 282.7, 63.5 

and 66.1 lg/ml, respectively. Four of the cold-water extracts had a similar inhibitory effect as 

the positive control, with concentrations of 1000 and 100 lg/ml significantly (P < 0.01) 

inhibiting α-amylase activity (Figure 33A). However, the cold-water extract of Fucus spiralis 

was not an effective inhibitor. As shown in Figure 33, ethanol extracts of Ascophyllum 

nodosum (IC50 44.7 lg/ml), Fucus serratus (IC50 70.6 lg/ml), Fucus vesiculosus (IC50 59.1 lg/ml) and 

Pelvetia canaliculata (IC50 51.0 lg/ml) also had the same inhibitory profile as acarbose. The IC50 

for α-amylase inhibition of the ethanol Fucus spiralis extract was 109.0 lg/ml.  



142 

Figure 33 Inhibitory effect of cold water (A) and ethanol (B) extracts on α-amylase activity. Data 
represent the mean (±SE) of at least three independent experiments (aP < 0.01, bP < 0.05 relative 
to control, cP < 0.01, dP < 0.05 relative to acarbose, ANOVA followed by Dunnett’s Multiple 
Comparison test). An, Ascophyllum nodosum; Fs, Fucus serratus; Fsp, Fucus spiralis; Fv, Fucus 
vesiculosus; Pc, Pelvetia canaliculata 

These investigations of α-glucosidase inhibition, identified that all extracts abolished α-

glucosidase activity at 1000, 100 and 10 lg/ ml (data not shown). Even at 1 lg/ml, cold water 

extracts of Ascophyllum nodosum, Fucus serratus, Fucus vesiculosus and Pelvetia canaliculata 

significantly (P < 0.01) inhibited α-glucosidase activity over 30 min relative to the control 

(Figure 34A). With the exception of Pelvetia canaliculata, comparable levels of inhibition were 

also found with the ethanol extracts (Figure 34B). Further, the Fucus vesiculosus extract was 

identified as the strongest α-glucosidase inhibitor regardless of the extraction method used.  
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Figure 34 Inhibitory effect of 1 lg/ml cold water (A) and ethanol (B) extracts on α-glucosidase 
activity. Data represent the mean (±SE) of at least three independent experiments (aP < 0.01, bP < 
0.05 relative to control, cP < 0.01, dP < 0.05 relative to 10 lg/ml acarbose, ANOVA followed by 
Dunnett’s Multiple Comparison test). An, Ascophyllum nodosum; Fs, Fucus serratus; Fsp, Fucus 
spiralis; Fv, Fucus vesiculosus; Pc, Pelvetia canaliculata 

The IC50 values for α-glucosidase inhibition of the cold water and ethanol extracts of Fucus 

vesiculosus were 0.32 and 0.49 lg/ml, respectively, making it amongst the most potent 

seaweed extract studied to date. Indeed, with IC50 values for α-glucosidase inhibition at <2 

lg/ml, the physiological relevance of all the cold water and ethanol extracts is quite strong. 

The presence of the extracts in the blood at these concentrations is attainable, and so 

makes their α-glucosidase inhibitory capabilities an attractive and realistic approach to 

diabetes management. 

The results of this study demonstrate the efficacy of brown seaweed extracts, in particular 

Fucus vesiculosus and Pelvetia canaliculata, to inhibit enzymes involved in intestinal 

carbohydrate digestion and assimilation. Due to their availability and strong inhibitory 

properties, these algal extracts have potential for use in functional food applications aimed at 

lowering glycaemic response. Additionally, the extracts are capable of inhibiting α-amylase 

and α-glucosidase at non-toxic levels, and cold water and ethanol extraction are desirable 

for food products because of the absence of solvent residues.

5.10. Screening for anti-cancer potential 

The aetiology of colorectal cancer, the third most prevalent cancer in the world, is linked to 

several risk factors, including age, genetic factors and diet. Seaweed consumption has been 
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negatively correlated with colorectal cancer risk within Asian populations, and the anti-

cancer properties of certain seaweed species have also been demonstrated within in vitro 

and animal models.  

The anti-cancer potential of the seaweeds was investigated as a source of pharmaceutical 

agents in breast cancer cells and the subsequent anticancer activity of the seaweeds in colon 

cancer cells before and after gastrointestinal digestion was investigated in relation to its anti-

cancer activity as a dietary constituent. 

The anti-cancer activity screening was carried out using the MTT assay with a range of 

aqueous (hot and cold water), ethanolic and methanolic extractions from Fucus serratus, 

Fucus vesiculosus, Ascophyllum nodosum, Laminaria digitata, Palmaria palmata, Chondus crispus 

and Ulva intestinalis at concentrations between 32.5-500 µg/ml. Cold water (FVE) and 

ethanolic (FVC) extractions of  Fucus vesiculosus emerged as the extracts with potent anti-

cancer activity in metastatic cancer cells (MDA-MB-231). The anti-cancer activity of <3 kDa 

phlorotannin fraction and 3-100 kDa fraction of both FVE and FVC were subsequently 

investigated using the real-time proliferation assay, the MTT assay and the Annexin V 

apoptosis assay. The <3 kDa phlorotannin fraction and 3-100 kDa fraction of FVC and FVE 

all harboured the capacity to significantly reduce cell proliferation of MDA-MB-231 cells in a 

dose dependant manner (33.3-500 μg/ml). MTT assays showed that apoptosis is induced in 

MDA-MB-231 cells following exposure to 125µg/ml Fucus vesiculosus fractions. Subsequent 

flow cytometry analysis confirmed that MDA-MB-231 cells undergo early apoptosis when 

treated with either the <3 kDa phlorotannin fraction or the 3-100 kDa fraction. Low 

molecular weight ethanolic fraction (<3kDa), rich in phlorotannins, was the most effective in 

reducing cell proliferation (IC50 67.5 μg/ml) and inducing apoptosis. Transcriptional profiling 

of apoptosis related genes revealed down regulation of anti-apoptotic modulators BLC2 and 

BCL-X and upregulation of pro-apoptotic markers BAK and BAX, indicating induction of the 

intrinsic apoptosis pathway in MDA-MB-231 cells following treatment with Fucus vesiculosus 

extracts. The data suggests that aqueous and ethanolic Fucus vesiculosus extracts have the 

capacity to reduce breast cancer proliferation and induce the intrinsic apoptosis machinery 

in MDA-MB-231 cells, with low molecular weight phlorotannin-enriched fractions 

harbouring the most promising anti-cancer activity. 

A second study was initiated to examine the anti-cancer potential of selected Irish seaweed 

species, namely Ascophyllum nodosum, Laminaria digitata, Palmaria palmata and Ulva intestinalis 

using in vitro cell models of colon cancer. In order to account for the compositional changes 

occurring during gastrointestinal digestion, seaweed samples were subjected to in vitro 

simulation of gastric and pancreatic digestion. The chemopreventive properties of crude and 
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digested seaweed treatments were tested using cell models, representing the key stages of 

colorectal cancer initiation, promotion and invasion. 

Of the seaweed species included in the study, Ascophyllum nodosum had the highest 

polyphenol-content and antioxidant power, both reduced by >60% after in vitro 

gastrointestinal digestion. Yet, digested Ascophyllum nodosum extracts had a strong anti-

genotoxic activity, connected to up-regulation of a detoxifying enzyme GSTk-1. All crude and 

digested treatments had anti-proliferative effects in all cell types, inducing a necroptotic, 

mitochondrial cell death pathway with the up-regulation of AIF, JNK, Bax and PTEN. 

Digested extracts simultaneously induced the inflammatory or stress-related PI3K pathway, 

inhibiting the expression of Caspase-8 and p53. The invasion and migration of metastatic 

HT115 cells was inhibited by Palmaria palmata treatments both pre- and post-digestion, the 

up-regulation of an anti-invasive tissue inhibitor of metalloproteinases TIMP-2 was observed.  

Figure 35 Proposed bioactivity of the Irish seaweed prior and post gastrointestinal digestion 
simulation 

This work has demonstrated, for the first time, how a simulated gastrointestinal digestion 

significantly affects the bioactivity and composition of seaweed homogenates. The Irish 

seaweed species were shown to have anti-proliferative, anti-genotoxic and anti-metastatic 

activity in in vitro models of colorectal cancer, however pro-inflammatory activity of digested 

treatments was also observed.  

5.11. Screening for platelet-activating factor (PAF) 

acetylhydrolase inhibition 

Platelet-activating factor (PAF) is a biologically active phospholipid that is known to have a 

negative effect on cardiac health. In addition to the activation of platelets, other biological 

effects include decreases in cardiac output and increased hypotension in humans. Lipids 

found in species of five seaweeds - Alaria esculenta, Ascophyllum nodosum, Fucus dichitus, 
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Pelvetia canaliculata, Fucus spiralis and Ulva intestinalis were investigated to assess their 

potential as PAF acetylhydrolase inhibitors.  

PAF acetylhydrolase inhibition was assayed using the Cayman Chemical PAF Acetylhydrolase 

Inhibitor screening assay kit in accordance with the manufacturers’ instructions (Cayman 

Chemical Company, Ann Arbour, MI). Briefly, 2-thio PAF was used as a substrate for PAF-

AH. Upon hydrolysis of the acetyl thioester bond at the sn-2 position by PAF-AH, free thiols 

were detected using 5,5’-dithio-bis-(2-nitrobenzoic acid) using a spectrophotometer at A414 

nm or A405 nm. Samples were reconstituted in dimethylsulphoxide (DMSO) at concentrations 

of 1 mg/ml and assayed in triplicate. Methyl arachidonyl fluorophosphonate (MAFP) was used 

as a positive control at a concentration of 250 nM. MAFP has an IC50 value of 250 nM and is 

a known inhibitor of PAF-AH. The percentage inhibition for each total lipid extract was 

determined using according to 

% PAF – AH inhibition = ((100% initial activity value – inhibitor sample value)/(100% initial activity 

value)) x 100 

Pelvetia canaliculata had the highest percentage total crude lipids per dry weight (0.503 g) 

followed by Ulva intestinalis (0.40 g), Ascophyllum nodosum (0.372 g), Fucus spiralis (0.393 g), 

Fucus dichitus (0.30 g) and Alaria esculenta (0.20 g).  

Total lipid extracts generated from Pelvetia canaliculata using the method reported above 

were found to inhibit PAF-AH by 60.08 % (+/- 24.93) when assayed at a concentration of 1 

mg/ml compared to the positive control MAFP which inhibited PAF-AH by 97.37 % when 

assayed at a concentration of 134 nM. Total lipids extracted from Alaria esculenta inhibited 

PAF-AH by 58.29 (+/- 3.85) when assayed in vitro at a concentration of 1 mg/ml. Figure 36 

shows the percentage PAF-AH inhibition of each of the total seaweed lipid extracts when 

assayed at a concentration of 1 mg/ml. 

Figure 36 PAF-AH inhibitory activities of total lipid extracts from Irish and Newfoundland 
seaweeds 
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5.12. Screening for antioxidant potential 

The antioxidant potential of methanolic extracts of brown seaweeds was assessed using four 

bioassays, Total Phenol Content, Ferric Reducing Antioxidant Power (FRAP), β-carotene 

bleaching and the DPPH scavenging assays.  Ascophyllum nodosum, Pelvetia canaliculata, and 

Fucus serratus contained the highest phenol concentrations while Fucus vesiculosus and Fucus 

serratus exhibited the highest FRAP activities. Fucus vesiculosus and Ascophyllum nodosum were 

the most effective extracts at scavenging DPPH radicals and preventing β-carotene bleaching.  

The antioxidant activity of the seaweed extracts was also evaluated in Caco-2 cells. All 

extracts significantly (P < 0.05) increased glutathione (GSH) content of cells after 24 h. 

Caco-2 cells were also pre-treated with seaweed extract for 24 h followed by exposure to 

hydrogen peroxide (H2O2). Antioxidant enzyme activity (catalase (CAT) and superoxide 

dismutase (SOD)) was assessed and DNA damage was measured using the comet assay. 

Pelvetia canaliculata was the most effective at preventing H2O2-mediated SOD depletion in 

Caco-2 cells while Fucus serratus exhibited the best DNA protective effects.   

The ability of brown seaweed extracts from Ascophyllum nodosum, Laminaria hyperborea, 

Pelvetia canaliculata, Fucus vesiculosus and Fucus serratus to protect against tert-butyl 

hydroperoxide (tert-BOOH) induced stress in Caco-2 cells was also investigated. Oxidative 

stress was determined by measuring alteration in the enzymatic activity of catalase (CAT) 

and superoxide dismutases (SOD) and cellular levels of glutathione (GSH). Laminaria 

hyperborea, Pelvetia canaliculata and Fucus serratus significantly protected against tert-BOOH 

induced SOD reduction but did not protect against the reduction in CAT activity or the 

increased cellular levels of GSH. The ability of Fucus serratus and Fucus vesiculosus to protect 

against H2O2 and tert-BOOH induced DNA damage was also assessed. The DNA protective 

effects of the two seaweed extracts were compared to those of three metal chelators; 

deferoxamine mesylate (DFO), 1, 10-phenanthroline (o-phen) and 1,2-Bis (2-aminophenoxy) 

ethane-N,N,N’,N’-tetraacetic acid tetrakis (BAPTA-AM).  Fucus serratus and Fucus vesiculosus 

significantly protected (P < 0.05) against H2O2 (50 µM) induced DNA damage but not tert-

BOOH induced damage. 

The antioxidant activities of extracts from Ascophyllum nodosum (AN), Fucus vesiculosus (FV) 

and Fucus serratus (FS) prepared using different solvents were assessed in Caco-2 cells. The 

extracts were prepared using 100% H2O (AN100, FV100, FS100), 60% ethanol (AN60e, FV60e, 

FS60e), 80% ethanol (AN80e, FV80e, FS80e) or 60% methanol (AN60m, FV60m, FS60m) combined with 

an accelerated solvent extraction (ASE®) technique. The cellular antioxidant status was 

determined by measuring catalase (CAT) and superoxide dismutase (SOD) activity and 

glutathione (GSH) content. The protective effects of the extracts against H2O2 and tert-

BOOH-induced DNA damage were assessed using the comet assay. AN100 and AN80e 
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significantly protected (P < 0.05) against H2O2-induced DNA damage. AN60e, AN80e, FS100, 

FS80e and FV60m protected against tert-BOOH -induced DNA damage. Extracts prepared from 

AN, particularly those prepared using 80% aqueous ethanol, appeared to have the greatest 

antioxidant potential, based on their ability to protect against oxidant-induced DNA damage. 

5.13. Investigation into the molecular mode of action of marine 

derived bioactives 

5.13.1. Anti-adipogenic mode of action of chitosan at cell level 

Chitosan is a derivative of chitin, a natural polymer that is found in exoskeletons of 

crustaceans - shrimp, lobster and crab: and chitooligosaccharides result from the hydrolysis 

of chitosan. Four chitooligosaccharides (COS) with different Molecular weights (MW) 

(<1000, 1-3,000, 3-5,000 and 5-10,000 Da) were evaluated in this study to determine their 

effects on cell health and inhibition of adipogenesis in vitro. The 3T3-L1 pre-adipocyte cells 

were induced to differentiate in presence or absence of COS at day 8 of induction of 

differentiation, lipid accumulation, free glycerol release and gene expression were measured.  

Results indicated that the effect of COS on cell health was dependent on the MW, 

concentration and incubation time. Where the COS with high, MW 5-10,000 Da tended to 

have a high cell viability and low cytotoxicity profiles. During the adipogenesis process, COS 

had MW and concentration dependent inhibitory effects on lipid accumulation and free 

glycerol release. The highest level of inhibition of adipogenesis was observed with MW 5-

10,000 Da that caused 36.1, 43.7, 58.0 and 82.4% inhibition of lipid accumulation at 600, 

1200, 2400 and 4800 mg/ml, respectively. Quantitative gene expression data suggested that 

COS mediated inhibition of adipogenesis involved an up-regulation of interleukin 6 (IL6) and 

prostaglandin-endoperoxide synthase-2 (PTGS2) genes and down regulation of a panel of 

genes involved in lipid biosynthesis. These results suggest that COS has the potential to be a 

functional food against adipogenesis in humans. 

5.13.2. Anti-inflammatory mode of action of chitosan at cell level 

The objectives of this study were two-fold, firstly to evaluate the effect of 

chitooligosaccharide (COS) on expression of a specific panel of cytokine genes involved in 

inflammation and secondly, to delineate the signal transduction pathway underlying the COS 

mediated inflammatory response. Human intestinal epithelial-like (Caco-2) cells were treated 

with COS (5000-10,000Da) and expression of a panel of eighty-four cytokine genes was 

analyzed by quantitative real-time PCR. COS induced up-regulation of a total of 11 genes 

including CCL20 and IL8 and concurrent down-regulation of 10 genes including pro-

inflammatory mediators CCL15, CCL25 and IL1B. To further establish the signal 

transduction pathway of COS mediated response in Caco-2 cells, two major inflammatory 
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signal transduction pathways (NF-kB and AP-1) were investigated. COS had inhibitory effect 

(P<0.01) on TNF-α induced NF-kB binding activity while stimulatory effect (P<0.001) on AP-

1 binding activity. COS also inhibited the expression of RELA (P<0.01) and IKBKB (P<0.01) 

genes of NF-kB pathway while stimulating the expression of JUN (P<0.05) gene of AP-1 

pathway. In conclusion, COS elicits an acute inflammatory cytokine response in Caco-2 cells 

and hence it has the potential to stimulate the immune system in the gut epithelium. 

5.13.3. Anti-inflammatory mode of action of seaweed extract derived from 

Ascophyllum nodosum 

A number of extracts from different seaweed species demonstrated highly potent anti-

inflammatory properties during in vitro screening. Three extracts (cold water, hot water and 

80% ethanol) from one of these species, Ascophyllum nodosum, was the subject of an 

investigation of the molecular mode of action. Three different molecular weight (MW) 

fractions were screened in the Caco-2 inflammation assay and MW fractions with high anti-

inflammatory bioactivity chosen for further evaluation in the ex-vivo porcine colonic tissue. 

Table 24 shows the differentially expressed immune genes in porcine colonic tissue treated 

with 80% ethanol extract of Ascophyllum nodosum versus LPS challenged control tissue. A 

number of pro-inflammatory gene markers were inhibited by 80% ethanol extract of 

Ascophyllum nodosum in colonic explant.  

Table 24 List of differentially expressed genes in porcine colonic tissue ex-vivo as induced by the 
80% ethanol extract of Ascophyllum nodosum 

Genes Fold up (+)/down (-) 
Toll like receptor 4 (TLR4) -56.32
Lysozyme (LYZ) -21.14
Interleukin 17A (IL17A) -12.45
Prostaglandin-endoperoxide synthase 2 (PTGS2) -9.51 
Nuclear factor of kappa light polypeptide gene enhancer in B-cells -8.24 
Toll like receptor 6 (TLR6) -8.13 
Interleukin 17F (IL17F) -7.92 
NF-kappa B repressing factor  (NKRF) -7.14 
Interleukin 8 (IL8) -5.79 
Chemokine (C-X-C motif) ligand 10 (CXCL10) -5.73 
Interleukin 6 receptor (IL6R) -5.70 
Intercellular adhesion molecule 1 (ICAM1) -5.69 
Toll like receptor 7 (TLR7) -4.92 
Chemokine (C-X-C motif) ligand 2 (CXCL2) -4.68 
Interleukin 6 (IL6) -4.21 
TRAF family member associated NFKB activator (TANK) -4.09 
Toll like receptor 8 (TLR8) -3.97 
v-akt murine thymoma viral oncogene homolog 1 (AKT1) -3.79
Interferon (alpha, beta and omega) receptor 1 (IFNAR1) -3.42
Complement component 5 (C5) -3.41
Interleukin 10 (IL10) -3.27
Mitogen-activated protein kinase kinase kinase 8-like (MAP3K8) -3.05
Chemokine (C-X-C motif) ligand 11 (CXCL11) -3.03
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Chemokine (C-C motif) ligand 2 (CCL2) -3.02
Macrophage migration inhibitory factor  (MIF) -2.94
Interleukin 4 receptor (IL4R) -2.87
MHC class 1 related antigen 2 (MIC2) -2.62
Vascular cell adhesion molecule 1 (VCAM1) -2.52
Colony stimulating factor 1 (CSF1) -2.41
Interleukin 21 (IL21) -2.23
Mitogen activated protein kinase 9 (MAPK9) -2.09
Toll like receptor 1 (TLR1) +4.92
Interleukin 23A (IL23A) +4.15
Interferon alpha 1 (IFNA1) +3.35
Apolipoprotein A-I  (APOA1) +2.29
S100 calcium binding protein A3 (S100A9) +2.01

The three different MW fractions of 80% ethanol extract of Ascophyllum nodosum were also 

evaluated for their anti-inflammatory effect in gene expression ex-vivo. There are groups of 

common and unique genes up-regulated by all the three MW fractions and these are 

presented in Table 25 while the groups of common and unique genes down-regulated by all 

the three MW fractions are presented in Table 26.  

Table 25 List of genes up regulated in porcine colonic tissue ex-vivo by different molecular weight 
fractions of 80% Ethanol extract of Ascophyllum nodosum 

Genes Molecular weight (kDa) 
<3.5 3.5- >100

Cluster 1: Common genes (affected by all MW fractions) 
Toll like receptor 1 (TLR1) 7.85 10.10 6.32 
Interferon alpha 1 (IFNA1) 5.81 5.31 6.61 
Apolipoprotein A-I  (APOA1) 3.30 11.09 6.50 
Interleukin 1 receptor associated kinase 1 (IRAK1) 3.34 8.64 4.90 
Transforming growth factor beta 1 (TGFB1) 2.70 6.43 3.01 
Interleukin 16 (IL16) 2.36 6.15 2.07 
Cluster 2: Unique genes (affected by each MW fraction) 
CD 80 molecule (CD80) 5.74 - 4.62
Interferon regulatory factor 3 (IRF3) 3.06 4.42 - 
Interleukin 23A (IL23A) - 5.57 2.41 
Tumour necrosis factor receptor superfamily, member 1B - 3.91 - 
V-rel avian reticuloendotheliosis viral oncogene homolog A (RELA) - 3.91 - 

Table 26 List of genes down regulated in porcine colonic tissue ex-vivo by different molecular 
weight fractions of 80% Ethanol extract of Ascophyllum nodosum 

Genes Molecular weight (kDa) 
<3.5 3.5-100 >100

Cluster 3: Common genes (affected by all MW fractions) 
Lysozyme (LYZ) -41.31 -48.37 -51.38
Interleukin 8 (IL8) -14.42 -31.91 -33.53
Prostaglandin-endoperoxide synthase 2 (PTGS2) -8.34 -3.81 -6.28
Nitric oxide synthase 2, inducible (NOS2) -7.67 -4.95 -9.11
Toll like receptor 6 (TLR6) -7.14 -3.25 -5.37
Chemokine (C-C motif) ligand 20 (CCL20) -6.60 -5.35 -4.32
Chemokine (C-X-C motif) ligand 10 (CXCL10) -5.03 -2.29 -3.79
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Interleukin 6 (IL6) -4.50 -2.05 -3.39
Chemokine (C-X-C motif) ligand 11 (CXCL11) -4.09 -2.64 -2.84
Intercellular adhesion molecule 1 (ICAM1) -2.61 -2.51 -4.64
Chemokine (C-X-C motif) ligand 9 (CXCL9) -2.56 -3.08 -2.17
Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 -2.05 -2.63 -2.36
Cluster 4: Unique genes (affected by each MW fraction) 
Chemokine (C-X-C motif) ligand 10 (CXCL2) -4.10 - -3.09
Interleukin 17A (IL17A) -3.67 - -2.12
Interleukin 5 (IL5) -3.58 - -2.70
Toll like receptor 8 (TLR8) -3.48 - -2.62
Mitogen-activated protein kinase kinase kinase 8-like (MAP3K8) -3.24 - -2.44
Colony stimulating factor 1 (CSF1) -3.10 - -2.14
Interferon (alpha, beta and omega) receptor 1(IFNAR1) -3.00 - -2.26
Tumour necrosis factor alpha (TNFA) -2.26 - -2.21
Chemokine (C-C motif) ligand 2 (CCL2) -2.37 - -
Mitogen activated protein kinase 9 (MAPK9) - -3.35 - 
Mitogen activated protein kinase 8 (MAPK8) - -2.36 - 
TNF receptor-associated factor 4 (TRAF4) - -2.87 - 
v-akt murine thymoma viral oncogene homolog 1 (AKT1) - - -2.53 
TRAF family member-associated NFKB activator (TANK) - - -2.36 

The evaluation of three MW fractions ex-vivo indicated that a) the immuno-modulatory 

bioactivity of the 80% ethanol extract is also shown by each of the MW fractions and b) each 

of the MW fractions also alter the expression of unique immune genes.  

This ex-vivo experiment demonstrated that Ascophyllum nodosum ethanol extract and its MW 

fractions can be utilised to alter immune genes in porcine colonic tissue. These results 

demonstrate that extracts of Ascophyllum nodosum can effectively inhibit the pro-

inflammatory signalling pathways in porcine gut, which provides opportunities to utilise this 

anti-inflammatory seaweed extract in the treatment of chronic pro-inflammatory diseases of 

the intestinal gut in human. 

5.14. An evaluation of the effects of marine bioactive 

compounds on fatness and anti-obesity potential in the 

pig model 

Chitosan, a natural polysaccharide comprising copolymers of glucosamine and N-

acetylglucosamine, has been shown to have anti-obesity properties. The effect of 1000 ppm 

Irish prawn shell chitosan on dietary intake, body weight gain and fat deposition of animals at 

a starting weight of 70kg was investigated in a randomised trial. The aim was to investigate 

the anti-obesity effect of chitosan (1000ppm) on animals at a body weight that represented a 

normal healthy human being.  

Two dietary treatments were designed, firstly a basal control diet, high in protein and 

carbohydrate, similar to the vast majority of European diets and secondly, the same diet with 
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an inclusion of 1000ppm of chitosan - equivalent to approximately 3g per day of chitosan. 

Both diets were offered in meal form. The diets were fed for sixty-nine days ad libitium.  

5.14.1. Animal selection and management 

Forty gilts (female pigs that had not farrowed) were selected from a commercial pig unit and 

blocked on the basis of live weight and housed in groups of 10 in partially slatted pens. They 

were individually fed and given ad libitum access to food and water. The house temperature 

was controlled at 21ºC for the duration of the experiment. The pigs were weighed at the 

beginning of the experiment (day 0) and every seven days to the end of the experiment (day 

69). The pens were equipped with single-space computerised feeders, which recognised 

when each individual animal entered the feeder. After each animal had fed and withdrawn 

from the trough, difference between the pre- and post-visit trough weight was collected 

automatically and with other data (animal identification number, date and the time of entry 

and exit) unique to each animal stored; allowing individual dietary intake to be calculated. 

Automated data collection also captured feeding behaviour (feeding time, feeding duration, 

amount consumed per visit) of each animal. 

5.14.2. Biological analysis  

Blood samples (10 ml) were taken from each animal every seven days to facilitate adipokine 

and hormone (leptin, IL-6 and CRP) quantification. All the animals were sacrificed on day 69 

of the experiment. Samples were taken from the duodenum, jejunum, ileum and colon for 

nutrient transport assessment; allowing for the extraction of RNA, cDNA synthesis and 

qPCR analysis to establish where nutrients were being broken down in the gut and the 

potential effect of chitosan on this process. 

Research has already shown that gut microbiota can vary in obese and non-obese individuals; 

hence colon samples were taken to assess the microbiota present in the control and 

chitosan groups.  

Measurements of fat thickness 6 cm from the edge of the split back, at the level of the third 

and fourth last rib, were taken 48 hr after slaughter using the Hennessy grading probe. Fat 

samples from the abdominal region and the back of each animal allowed for gene expression 

work. Three samples of brain (periventricular nucleus, arcuate nucleus and the lateral 

hypothalamic area) were taken from each pig since each of these regions are highly 

correlated with satiety and hunger, and provide RNA to investigate genes associated with 

hunger such as PPARG and NPY.  
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5.14.3. Results 

Dietary intake, body weight and carcass characteristics 
Pigs offered the chitosan diet had lower dietary intake (P< 0.01), body weight gain (P< 0.05) 

(P< 0.01) and lower final body weight (P< 0.05), compared to pigs offered the basal diet. 

Chitosan inclusion had no effect on feed conversion ratio (P>0.05). Animals offered chitosan 

had lower depths of back fat and total carcass fat compared to the basal group (P< 0.05). 

Lean meat percentage was higher in chitosan-supplemented pigs (P<0.01) compared to the 

basal group.  

Coefficient of apparent ileal digestibility and coefficient of total tract digestibility  
Pigs offered the chitosan diet had decreased CAID of DM and GE (P< 0.05) compared with 

the control group. Pigs offered the chitosan diet had reduced CATTD of GE and N 

compared to the control group (P< 0.05).  

Serum leptin 
There was a time effect (P<0.05) and treatment effect (P<0.05) on serum leptin 

concentrations. Serum leptin concentrations were higher in pigs offered the chitosan diet 

compared to the basal treatment group (P< 0.05). There was no interaction between time 

and treatment on serum leptin concentrations (P> 0.05).  

Nutrient transporter gene expression 
The gene expression of FABP2 was down-regulated in the ileum of animals supplemented 

with chitosan compared to the basal group (P< 0.05). The gene expression of GLUT5 was 

up-regulated in the jejunum of chitosan-offered animals compared to the control group 

(P<0.05). No supplementation effect was observed on the gene expression of nutrient 

transporters in the duodenum (P> 0.10). 

Digestive enzyme gene expression 
There was no effect of dietary supplementation on digestive enzyme gene expression in the 

duodenum, jejunum and ileum (P> 0.10). 

Microbiology  
Pigs offered chitosan had decreased gene copy number (GCN) of Lactobacillus spp. in both 

the caecum (P< 0.05) and colon (P< 0.001), and increased GCN of Bifidobacterium in the 

caecum (P <0.05) compared to the control group. Animals offered chitosan had decreased 

GCN of Firmicutes in the colon compared with the control group (P< 0.05). There was no 

dietary supplementation effect on Bacteroidetes and Enterobacteriaceae population in either 

the caecum or colon (P> 0.10).  
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Volatile fatty acids concentration 
Total VFA concentration was increased in the colon of chitosan-supplemented animals 

compared with the control group (P<0.05). Chitosan-supplemented animals had an increased 

proportion of acetate in the colon compared to the control group (P<0.05). 

Hypothalamic regulators of appetite 
Dietary chitosan up-regulated Orexin (HCRT) and Growth hormone receptor (GHR) gene 

expression in the arcuate nucleus (ARC) (P <0.05) when compared to the control group. 

Dietary chitosan resulted in an up-regulation of Peroxisome proliferator activated receptor 

gamma (PPARG) gene expression in the paraventricular nucleus (PVN) (P<0.01) when 

compared to the control animals. Dietary chitosan had a tendency to increase both 

Neuromedin B (NMB) (P=0.09) and Insulin receptor (INSR) (P=0.07) in the PVN when 

compared to the control group. There was no effect of diet on hypothalamic regulators of 

appetite in the lateral hypothalamic area (LHA) (P>0.05).  

Gut appetite hormones 
Dietary supplementation of chitosan decreased Neuropeptide Y (NPY) gene expression in 

the jejunum when compared to the control group (P<0.05). There was no effect of dietary 

supplementation of chitosan on the remaining genes analysed (P >0.05).  

5.14.4. Summary 

Dietary supplementation of prawn derived chitosan resulted in reduced feed intake and body 

weight in a pig model. This effect may be orchestrated through multiple responses both 

within the intestinal tract and bloodstream including; decreased nutrient digestibility, 

decreased nutrient transporter expression, increased serum leptin and altered gut 

microflora. 

5.15. An evaluation of the potential of marine compounds to 

contribute to enhanced pig performance 

A complete randomised design experiment was conducted to investigate the effects of 

supplementing different molecular weights (MW) of chitooligosaccharide (COS) on pig 

performance, selected microbial populations and nutrient digestibility post-weaning. Three 

hundred and ninety six weaned piglets (24 days of age, 7.3 kg ± (S.D) 1.7 kg live-weight) 

were blocked on the basis of live-weight and were assigned to one of 6 dietary treatments 

(twenty two replicates/treatment) for a 33-day experimental period. The dietary treatments 

were; (1) control diet (0 ppm COS), (2) control diet plus < 1 kDa COS, (3) control diet plus 

3-5 kDa COS, (4) control diet plus 5-10 kDa COS, (5) control diet plus 10-50 kDa COS and

(6) control diet plus 50-100 kDa COS. The COS was included at 250 ppm in the diets.

There was no significant effect of dietary treatment on piglet performance during the starter
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period (days 0-18) (P>0.05). However, there were quadratic responses in both daily gain 

(P<0.05) and gain to feed ratio (P<0.05) to the increased MW of COS inclusion during the 

weaner period (days 18-33) with all COS supplemented treatments improving daily gain and 

gain to feed ratio compared to the control. There was a quadratic response in faecal scoring 

to the increased MW of COS inclusion from day 0-7 (P<0.001), day 7-14 (P<0.001) and 

during the overall experimental period (P<0.01) with all the COS supplemented treatments 

having an improved faecal score compared to the control. During the weaner period, there 

was a cubic response in lactobacilli and E.coli populations as the MW of COS increased 

(P<0.05). The 5-10 kDa and 10-50 kDa COS increased lactobacilli populations compared to 

the control while lactobacilli populations decreased at 50-100 kDa. The 5-10 kDa, 10-50 

kDa and 50-100 kDa COS decreased E.coli populations compared to the control. There was 

a cubic response in the apparent total tract digestibility of dry matter (DM) (P<0.01), organic 

matter (OM) (P<0.01), ash (P<0.01), nitrogen (N) (P<0.01), and gross energy (GE) (P<0.01) 

to the increased MW of COS inclusion during the weaner period. The 5-10 kDa COS had a 

higher apparent total tract digestibility of DM, OM, ash, N and GE in comparison to the 

control, while the apparent total tract nutrient digestibility of these nutrients decreased at 

10-50 kDa. The current results indicate that the MW ranges of 5-10 kDa and 10-50 kDa

COS decreased E.coli numbers while increasing nutrient digestibility of the diets.

A second experiment (complete randomised design) was conducted to investigate the

effects of supplementing different molecular weights of chitooligosaccharide on performance,

intestinal morphology, selected microbial populations, volatile fatty acid concentrations and

the immune status of the weaned pig.  Twenty-eight piglets (24 days of age, 9.1 (± s.d. 0.80)

kg live weight) were assigned to one of four dietary treatments for 8 days and then

sacrificed. The treatments were  (1) control diet (0 ppm COS) (2) control diet plus 5-10

Kda COS  (3) control diet plus 10-50 Kda COS and  (4) control diet plus 50-100 Kda COS.

The COS was included in dietary treatments at a rate of 250 mg/kg. Tissue samples were

taken from the duodenum, jejunum and ileum for morphological measurements. Digesta

samples were taken from the colon to measure lactobacilli and E. coli populations and digesta

samples were taken from the caecum and colon for VFA analysis. Gene expression levels for

specific cytokines were investigated in colonic tissue of the pig. Pigs fed the 10-50 Kda COS

had a higher villous height (P<0.05) and villous height/crypt depth ratio (P<0.05) in the

duodenum and the jejunum compared to the control treatment.  Pigs fed the 5-10 Kda COS

had a lower lactobacilli population (P<0.05) and E. coli population (P<0.05) in the colon

compared to the control group. The inclusion of COS at all MW in the diet significantly

reduced faecal scores compared to the control treatment (P<0.01). Pigs offered the 5-10

Kda COS had significantly lower levels of acetic acid and valeric acid compared to the
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control group (P<0.05). Supplementation of different MW of COS had no significant effect 

on pig performance or on the expression of the cytokines TNF-α, IL-6, IL-8, and IL-10 in the 

gastro-intestinal tract of the weaned pig. The current results indicate that the lower 

molecular weight of 5-10 Kda COS possessed strong antibacterial activity while the higher 

molecular weight of 10-50 Kda was optimum for enhancing intestinal structure. The COS 

supplementation exerted no deleterious effects on immune function or growth performance 

of the pigs while reducing the incidence of diarrhoea.   

Reliable alternatives to in-feed antibiotics need to be identified and chitooligosacharide may 

be a possible substitute. It was observed in the current experiment that the MW ranges of 

5-10 kDa and 10-50 kDa COS decreased E.coli numbers while increasing nutrient digestibility

of the diets.

5.16. Comparison of the anti-inflammatory effects of seaweed 

extracts and novel milk hydrolysates 

The anti-inflammatory effects various seaweed species extracts generated within the 

NutraMara programme were compared with the anti-inflammatory effects of novel milk 

hydrolysates derived from milk protein substrates generated within the Food for Health 

Ireland Project.  

5.16.1. Materials and methods 

Preparation of seaweed solubility extracts 
A selection of 14 species of seaweed was harvested from the west coast of Ireland. Samples 

were washed, stored at –18 ºC, subsequently freeze-dried and ground into powder using a 

Waring blender. Samples were stored in vacuum-packed bags at –80 ºC before extraction. 

Solubility extraction of ground seaweed samples was performed with either cold water 

(CWE), hot water (HWE) or ethanol (80%): water (20%) (EE) as solvent following the solid-

liquid extractions procedure described by Tierney et al., (2013a). Molecular weight fractions 

(<3.5 kDa, 3.5-100 kDa and >100 kDa) were generated for a proportion of interesting 

extracts.  All extracts and fractions were freeze-dried and the dried extracts were stored at 

-80ºC until used for further analysis.

Preparation of milk hydrolysates 
The hydrolysis of milk substrates was carried out following the method of either 

Nongonierma et al., (2012) for enzymatic hydrolysis, Simpson et al. (2004) for microbial 

fermentation or Kuchroo et al. (1982) for isoelectric precipitation of colostrum. The 

hydrolysates (50 L) generated using different hydrolysis techniques were spray dried, 

subsequently further concentrated (to ca 40 % total solids) before spray drying again. 
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Hydrolysates were subjected to microfiltration (MF) using a GEA Model F unit (GEA Process 

Engineering A/S, Skanderborg, Denmark).  

The permeate stream prepared above was then subjected to ultrafiltration (UF) using the 

same GEA model F unit fitted with two Koch KMS HFK™-328 spiral wound membranes (96 

x 965 mm, Koch Membrane Systems, Wilmington, MA, US). The 5 kDa permeate stream 

was finally processed on the GEA model F plant fitted with two Alpha Laval UF-ETNA spiral 

wound membranes (95 x 965mm, Alpha Laval AB, Lund, Sweden). The 0.14 µm and 5 kDa 

retentate streams described above were dehydrated in a pilot scale Anhydro Lab 3 spray 

drier (SPX Flow Technology A/S, Soeborg, Denmark) at an inlet temperature range of 185 – 

190°C and outlet of 85–90°C. The 1 kDa retentate and permeate were further 

concentrated (to ca 40 % total solids) before spray drying, as outlined above. 

In vitro anti-inflammatory assay 
Caco-2 cells (American Type Culture Collection, ATCC, Manassas, VA, USA) 105 cells/ml 

were seeded in a 24-well cell culture plate containing Dulbecco’s Modified Eagle Medium 

(DMEM) (Invitrogen Corp., San Diego, CA, USA) supplemented with 10% (v/v) fetal bovine 

serum (Invitrogen Corp.), 1% (v/v) non-essential amino acids, 1% sodium pyruvate and 

penicillin (100U)/streptomycin (100µg/ml) (All sourced from Sigma–Aldrich Corp., St. Louis, 

MO, USA). Plates were incubated for 8–10 days in 5% CO2 at 37 ºC. Before treatment, the 

growth media was removed and the cells were washed with sterile phosphate buffer saline 

(PBS) and incubated for 3 h in serum and antibiotic free media. To induce a pro-

inflammatory response, cells were treated with 10 ng/ml TNF-α. The anti-inflammatory 

bioactivity of milk hydrolysates and seaweed preparations were tested through co-treatment 

of cells with each sample at a final concentration of 1mg/ml and TNF-α. Following 24 h 

incubation, the media was harvested and the concentration of IL-8 in the supernatants was 

measured using a human IL-8 sandwich ELISA (R&D Systems Europe, Ltd., Abingdon, UK).  

Ex-vivo challenge of colonic tissues 
A section of the pig colon (Large White x Landrace; n= 6 pigs) was dissected along the 

mesentery immediately post-slaughter. The faecal material was removed and the tissue 

section was washed with sterile PBS. The overlying smooth muscle layer was removed and a 

colonic section of approximately 1.25 cm x 1.25 cm were transferred into 1 ml DMEM in a 

12-well cell culture plate containing 10 µg/ml bacterial lipopolysaccharide (LPS) (Escherichia

coli serotype O111:B4, Sigma Aldrich, St. Louis, MO) in the presence or absence of 1 mg/ml

of each sample.
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RNA extraction 
Total RNA was extracted from 25 mg colonic tissue samples using GenElute Mammalian 

Total RNA Miniprep Kit (Sigma-Aldrich Corp.) according to the manufacturer’s instructions. 

Total RNA was subjected to DNAse I (Sigma-Aldrich Corp.) treatment, followed by further 

purification using a phenol-chloroform extraction method. The quality and quantity of the 

total RNA were assessed in a NanoDrop-ND1000 Spectrophotometer (Thermo Fisher 

Scientific Inc. MA, USA). The cDNA synthesis was performed with 1 µg of total RNA using a 

first strand cDNA synthesis kit (Qiagen Ltd. Crawley, UK) following the manufacturer's 

protocol.  

Quantitative Real-Time PCR (qPCR) 
For milk hydrolysates, qPCR was carried out to quantify the following targets; interleukins 

(IL-1α, IL-1ß, IL-4, IL-6, IL-8, IL-10, IL-17A, IL-21), interferon (IFN- γ), tumour necrosis factor 

(TNFα), transforming growth factor (TGF- β) and forkhead box P3 (FOXP3). For seaweed 

extracts, qPCR was carried out for a panel of 96 genes involved in the immune signalling 

pathways in pig using a customized PCR array in a 7300 Real time PCR system (Applied 

Biosystems). Results are expressed as fold change compared to LPS stimulated cells.  

5.16.2. Results 

Inhibition of IL-8 production in TNFα induced Caco-2 cells by seaweed extracts and milk 
hydrolysates 
All samples were screened for their ability to inhibit IL-8 production in a TNFα induced 

Caco-2 cells. All Caco-2 cells were treated with TNFα, which stimulated the cells to produce 

IL-8 at a concentration of 110 ± 6.60 pg/ml over a 24 h period (control). Depending upon 

the effect on IL-8 concentration, the milk hydrolysates were divided into either highly anti-

inflammatory, moderately anti-inflammatory, no effect or pro-inflammatory groups. Seventy-

seven seaweed extracts were evaluated and of these, 53% of samples were associated with a 

highly anti-inflammatory effect, 5 % with an anti-inflammatory effect, 13% with no effect and 

29 % with a pro-inflammatory effect. One hundred and seven milk hydrolysates were also 

evaluated, out of which 22 % of samples were associated with a highly anti-inflammatory 

effect, 18 % with an anti-inflammatory effect, 43% with no effect and 17 % with a pro-

inflammatory effect. There was a higher percentage of anti-inflammatory results among the 

seaweed extracts (58 %) compared to the milk extracts (40 %). 

Cold water extract (CWE), ethanol (80 %) extract (EE), and hot water extracts (HWE) of 

Fucus vesiculosus and Ascophyllum nodosum were further analysed. Co-treatment with CWE 

and EE of F. vesiculosus resulted in a reduction of IL-8 concentration by 72% (P<0.05) and 

70% (P<0.05) respectively, relative to control. However, co-treatment with HWE of F. 

vesiculosus had no effect on IL-8 concentration. Co-treatment with CWE, EE or HWE of A. 
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nodosum resulted in a reduction of IL-8 concentration by 53% (P<0.05), 38% (P<0.05) and 

33% (P<0.05) respectively, relative to control. 

Milk sodium caseinate (NaCAS) and NaCAS enzyme hydrolysates (EH) generated by low (8 

%) and high (16 %) degrees of hydrolysis along with their associated 5kDa retentate 

(5kDaR), a 1 kDa retentate (1kDaR) and a 1 kDa permeate (1kDaP) fractions were also 

further investigated. Co-treatment with NaCAS, EH-8 %, or 5kDaR resulted in a reduction 

of IL-8 concentration by 31.1% (P<0.05), 31% (P<0.05) and 32.7% (P<0.05) respectively, 

relative to control.  The greatest reduction in IL-8 concentration was observed following co-

treatment with the 1kDaR-8 %, 1kDaP-8 %, 5kDaR-16 % and EH-16 %, which resulted in the 

reduction of IL-8 concentration by 68.7% (P<0.01), 66.15 (P<0.01), 59% (P<0.01) and 56.6% 

(P<0.01) respectively, relative to control. 

Anti-inflammatory effects of seaweed extracts and milk hydrolysates in LPS stimulated 
porcine colonic explants 
The (CWE) of F. vesiculosus and (EE) of A. nodosum and three of its molecular weight 

fractions (<3.5 kDa, 3.5-100 kDa and >100 kDa), had a significant effect on the expression of 

LPS-induced inflammatory mediators (PTGS-2, C5, LYZ), cytokines (IL17A, IL10, IL8), 

chemokines (CXCL2, CXCL10), cell adhesion molecules (ICAM1, VCAM1), toll like receptors 

(TLR4, TLR6, TLR7, TLR8) and components of the NF- κB (NFKB1, TANK, NKRF) pathway. The 

(CWE) of F. vesiculosus and (EE) of A. nodosum and three of its molecular weight fractions 

(<3.5 kDa, 3.5-100 kDa and >100 kDa), all reduced the expression (> 2 fold) of PTGS-2, LYZ, 

IL8, CXCL2, CXCL10, ICAM1, TLR6 and NFKB1. The treatment of porcine colonic tissues with 

(CWE) of F. vesiculosus and (EE) of A. nodosum, its 3.5-100 kDa and >100 kDa fractions was 

associated with down-regulation (> 2 fold) of TLR4, TLR8 and TANK relative to LPS 

challenged tissues. In contrast to the milk hydrolysates, treatment of porcine colonic tissues 

with (CWE) of F. vesiculosus and (EE) of A. nodosum, its <3.5 kDa and >100 kDa fractions was 

associated with down-regulation of IL17A, relative to LPS challenged tissues. Co-treatment 

of porcine colonic tissues with (CWE) of F. vesiculosus and (EE) of A. nodosum, and its <3.5 

kDa fraction were associated with down-regulation of C5, while treatment with (CWE) of F. 

vesiculosus and (EE) of A. nodosum, and its 3.5-100 kDa fraction were associated with down-

regulation of TLR7, relative to LPS challenged tissues. The treatment of porcine colonic 

tissues with (CWE) of F. vesiculosus and (EE) of A. nodosum was associated with reduced 

expression of VCAM1 and NKRF. 

Of the milk hydrolysates analysed, co-treatment of colonic tissues with EH-8%, 5kDaR-8% 

and 1kDaR-8% was associated with a down-regulation of IL-1α and TNFα expression relative 

to LPS challenged control. Similarly, the co-treatment of tissues with 5kDaR-16% was also 

associated with a down-regulation of IL-1α expression. Co-treatment with 5kDaR-8%, 
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5kDaR-16% and 1kDaR-8% hydrolysates was associated with a down-regulation of IL-1β and 

IL-8 expression. Co-treatment of colonic tissues with NaCAS was associated with an up-

regulation of IL-8 expression relative to LPS challenged control. Co-treatment with milk 

hydrolysates also had significant effects on IL-10, IL-17A and TGF-β expression relative to 

unchallenged tissues. The treatment of porcine colonic tissues with EH-8%, 5kDaR-8%, 

1kDaR-8% and 1kDaP-8% were associated with a down-regulation of IL-10 expression 

relative to unchallenged tissues. Co-treatment with NaCAS and 5kDaR-16% was associated 

with an increase in IL-17A expression relative to unchallenged tissues. The co-treatment with 

EH-8%, 5kDaR-8%, 5kDaR-16% and 1kDaR-8% hydrolysates were associated with a down-

regulation of TGF-β expression in colonic tissues relative to unchallenged tissues.  

The effects of seaweed extracts and milk hydrolysates and their fractions are summarised in 

Figure 37. 

Figure 37 The anti-inflammatory activity of seaweed extracts, milk hydrolysates and their fractions 
in in vitro TNFα  stimulated Caco-2 cell culture models 

5.16.3. Conclusion 

This comparison of seaweed extracts and milk hydrolysates identified a number of extracts 

that contained anti-inflammatory potential within both the seaweed sources from 

NutraMara (Bahar et al., 2016 a,b; Egan et al., 2016) and the milk sources from Food for 

Health Ireland (Mukhopadhya et al., 2014; 2015). The cold water extract of Fucus vesiculosus 

and ethanol extract of A. nodosum and three of its molecular weight fractions (<3.5 kDa, 3.5-

100 kDa and >100 kDa), have strong anti-inflammatory bioactivity in porcine colonic tissue 

ex vivo, that is comparable to the bioactivity of milk NaCAS and NaCAS enzyme 

hydrolysates (EH) generated by low (8 %) and high (16 %) degrees of hydrolysis as well as 

their associated 5kDaR and 1kDaR retentates. Further characterisation and quantification of 

the bioactive molecules within the extracts from these two different sources is of significant 

potential interest and they are unlikely to be similar compounds but all worthy of further 

exploration for human and animal health. 
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5.17. Human intervention trials 

The health benefits of marine based foods, or foods containing novel isolated marine bio-

actives were identified within the NutraMara consortium in dietary intervention studies. 

Marine derived compounds identified as having promising bioactive potential were assessed 

in dietary intervention studies to validate their bioactivities in vivo. A human dietary 

intervention study was designed, which also involved the incorporation of test ingredients 

into different food matrices; pork meat and bread, and subsequent assessment of the foods 

effect in vivo. 

5.18. Effect of marine polysaccharides in pig meat 

5.18.1. Source of the pork 

Pork meat was prepared from sixteen cross breed pigs (Large White × Landrace consisting 

of 12 males and 12 females, average live weight ~ 14.51 kg) randomly assigned to one of two 

treatments (n=8) and fed ad libitum for 21 days pre-slaughter following a completely 

randomised experimental design. The control group of pigs were fed with a basal diet.  

The second group of pigs were fed with the basal diet plus a spray-dried seaweed extract 

containing laminarin and fucoidan (LAM/FUC) at an inclusion rate of 5.37 kg/tonne of feed. 

Inclusion rates being based on the laminarin and fucoidan content of the spray-dried 

LAM/FUC. The treatment group received diets containing laminarin (500 mg/kg feed) and 

fucoidan (420 mg/kg feed). The pigs from both groups were slaughtered and butchered at 

the end of the feeding period.  

5.18.2. Pork processing and packaging 

M. longissimus dorsi muscles were trimmed of visible fat and connective tissue and minced

twice through a plate with 4 mm holes (Model P114L, Talsa, Valencia, Spain). Pork mince

was packaged into 325 g raw weight portions. Minced pork was formed into pork patties. All

pork products were labelled as either Control or LAM/FUC based on the feeding regime

described above.

5.18.3. Recruitment of participants

Healthy participants from across Northern Ireland were recruited between July 2011 and

August 2011 through email, leaflets and posters. Participants who expressed an interest

completed a screening questionnaire to assess their eligibility and those who qualified were

invited to participate in this double-blind, randomized placebo controlled human dietary

intervention study. Participants were excluded if they regularly consumed seaweed (>5

g/week) or antioxidant supplements;  those on prescribed medication, have had a history of

autoimmune disease or diabetes, taking non-steroidal anti-inflammatory drugs, immune

suppressant drugs, echinacea or other immune stimulating herbs, developed a cold or other
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upper respiratory tract infection during the course of the study or were unwilling to comply 

with the study protocols and those who were pregnant or had a BMI of < 18.5 or > 30 

kg/m2. In addition participants who did not regularly consume pork or pork products were 

excluded in order to minimise the risk of non-compliance. Eligible participants provided 

written informed consent before taking part in the study. This research was approved by the 

Research Ethics Committee of Ulster University (REC/11/0080) and conducted in 

accordance with the Declaration of Helsinki.  

5.18.4. Intervention 

Participants (n=40) were randomly assigned to either the treatment group (meat from pigs 

fed LAM/FUC mix, n=20) or placebo group (meat from pigs fed standard feed, n=20) using 

an online randomization software (www.randomisation.com). LAM/FUC and placebo pork 

meat were labelled and coded with a participant ID according to the randomisation 

sequence output by an independent researcher not involved in the design or the analysis of 

the study to ensure that the study was double-blinded to both researcher and participants. 

During the study, participants were required to consume three pork burgers (125g raw 

weight each) and pork mince (325 g raw weight) per week for four consecutive days. Taking 

into account cooking, which results in approximately 32% reduction in weight (Matthews, 

Garrison, 1975), the provided pork comprised participants’ total weekly red meat intake 

(476g) and did not exceed the limit of 500g cooked weight red meat per week as 

recommended by the World Cancer Research Fund Research (2007). Participants were 

advised not to consume other red meat products during the intervention study to ensure 

they remained within the recommended limits for weekly red meat consumption, but were 

advised to otherwise follow their normal dietary behaviour. Pork meat was stored at –20°C 

prior to delivery to the participants in a thermos cool bag with two large frozen ice packs. 

Participants were provided with instructions on how to prepare and cook the meat for 

consumption at home. Participants were supplied with a diary to record their consumption 

of pork to provide an indication of study compliance. 

Participants were invited to the human intervention studies unit at Ulster University at 

baseline and post-intervention. Height and weight were measured to determine Body Mass 

Index (BMI) at baseline and post-intervention. Body weight (kg) was recorded without 

footwear or heavy clothing and was measured to the nearest 0.1 kg using portable scales 

(Seca; Brosch Direct Ltd, Peterborough, United Kingdom). Standing body height (m) was 

measured to the nearest 0.1 cm using a calibrated stadiometer (SECA, Model 220, 

Germany). Blood pressure was measured using an Omron 705CP electronic blood pressure 

monitor (Medisave, Dorset, UK) from both arms of each participant and the arm with the 

highest reading for each individual was subsequently used as the reference arm for the post-
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intervention appointment. A trained phlebotomist obtained fasting blood samples between 

7am and 9am from participants by venepuncture for the baseline and post-intervention 

appointment. The blood was processed within 3 hrs and serum, plasma and lymphocyte 

samples were aliquoted and stored at -80 ºC until analysed.  

5.18.5. Lymphocyte cell isolation 

Lymphocytes were isolated using Leucosep tubes containing Ficoll-Paque Plus separation 

medium (Greiner Bio-One, Germany) according to manufacturers’ instructions. Briefly, 

whole blood was diluted 2:1 with RPMI 1640 medium (Gibco, Life Technologies Ltd, Paisley, 

UK) and layered onto the separation column. After centrifugation at 1000 g for 10 minutes, 

brake rate zero, lymphocytes’s were separated from other blood components.  After 

removal, lymphocytes were washed in RPMI 1640 medium and harvested by centrifugation 

at 250 g for 10 minutes. The pellet was reconstituted in freezing medium (90 % foetal bovine 

serum, 10 % glycerol) and stored as aliquots at -80°C until analysis. 

5.18.6. Lymphocyte comet assay 

Peripheral blood lymphocytes previously isolated and stored at -80°C, were thawed and 

screened for single strand DNA breaks (SBs) using the single cell gel electrophoresis 

(Comet) assay. Endogenous and H2O2-induced DNA damage was assessed by pre-treating 

lymphocytes with either phosphate buffered saline (PBS) or 150 µM H2O2 for 5 minutes at 

4°C before analysis of DNA SBs as described previously (Singh et al., 1988). An additional 

modification to this described method was included to enable assessment of oxidised purine 

bases using the enzyme formamidopyrimidine DNA glycosilase (FPG) as described by Collins 

et al (1993). Briefly, after embedded cells are lysed, slides used to assess oxidative purine 

damage were washed in FPG buffer (0.02 mmol/L Tris-HCL, 0.4MNaCL, 1 mmol/L EDTA, 

and 0.5 mg/mL BSA, pH 7.5) for 3x5 minutes at room temperature. Following washing 40µl 

of FPG (16 U/ml) was applied to each gel and the slides were incubated at 37°C for 45 

minutes. Slides were stained with ethidium bromide prior to analysis with Komet 5.0 

software (Kinetic Imaging Ltd, Liverpool, UK). Percentage tail DNA was scored for 50 cells 

per gel and data for each sample given as a mean of duplicate measures for statistical 

analysis. 

5.18.7. Ferric Reducing Ability of Plasma (FRAP) assay 

The antioxidant potential of plasma samples was measured using the Ferric Reducing Ability 

of Plasma (FRAP) assay performed using the automated ILAB 650 Clinical Chemistry 

Analyser (Instrumentation Laboratory, Warrington, Cheshire, UK).  Reagents for this assay 

were prepared as described previously (Benzie and Strain, 1996).  A total of 300 µl freshly 

prepared FRAP reagent was used to record a reference blank at 593nm following which a 

total of 10 µl of the sample diluted in 30 µl distilled water was added.  Absorbance was 
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recorded every 17.5 seconds, and the change in absorbance at 593nm after 4 minutes in 

relation to the change in absorbance at 593nm of a Fe2+ standard solution was calculated. 

Results are expressed as µmol Fe2+/L. 

5.18.8. C-reactive protein 

C-reactive protein (CRP) levels in serum were assessed using the ILAB 650 Clinical

Chemistry Analyser using Quantex CRP plus reagent and buffer (BIOKIT, S.A., Barcelona,

Spain). Each sample was measured in duplicate and results presented as mean values in mg/L.

5.18.9. Lipid status

Plasma triacylglycerols (GPO-PAP colorimetric end-point assay), HDL cholesterol and total

cholesterol (CHOD-PAP colorimetric end-point assays) were measured using the ILab 650

chemistry analyser. LDL cholesterol was calculated using the Friedewald formula (LDL-

cholesterol = total cholesterol – HDL-cholesterol – (TAG/2.2)).

5.18.10. Dietary analysis

Dietary intake was assessed in each participant by means of a prospective 4-d semi-

quantitative food diary at baseline. Comprehensive verbal and written instructions were

given to all participants on the method of recording data, and participants were encouraged

not to modify their usual dietary habits. Food portion sizes were estimated by the

participant by using household measures and were later quantified by using published food

portion size data. The food-composition database Weighted Intake Software package (WISP,

version 3; Tinuviel Software, Anglesey, UK) based on McCance and Widdowson’s

Composition of Foods was used to estimate dietary nutrient, including fibre intake.

5.18.11. Statistical analysis

The statistical software package, SPSS version 20.0 (Chicago, IL, USA) was used for all data

analysis. The dataset were checked for normality using Shapiro-Wilk test and transformed,

where appropriate, to acquire normality and the homogeneity of variance determined using

Levene’s test of equality of error variances. Descriptive statistics (means ± SDs) were

determined for all variables and differences in baseline characteristics between the 2 groups

were analysed using independent t-tests. Analysis of covariance (ANCOVA) (with baseline

values as covariates) was used to assess between group differences over time (time x

treatment interaction effects) controlling for age, sex, BMI and smoking status.

5.18.12. Results

The consumption of pork from LAM/FUC fed pigs by humans for 4 weeks in this human

intervention study was shown to have no effect on oxidative or inflammatory markers as

noted with a minimal change in serum FRAP score or CRP, respectively. The consumption

of pork from the LAM/FUC fed pigs resulted in a significantly greater reduction in serum
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triglycerides compared to those who consumed pork from pigs fed a standard diet (17.2% 

compared to a 5.5% reduction in the control group; P=0.039).  
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6. SCALE-UP AND DELIVERY OF BIOACTIVES

6.1. Introduction 

Extrinsic factors are known to influence the functionality and bioavailability of bioactive 

compounds. Throughout the food production chain there are many environmental, chemical, 

biological and processing factors that influence the bioavailability of functional ingredients 

and other food components. And during consumption, these compounds are further 

influenced by their passage through the digestive system. 

Irrespective of the origin of the functional ingredient, gaining insight to such influences is 

crucial in the development of functional foods. Whilst the challenge of creating a commercial 

functional food was outside the scope of the NutraMara consortium, significant effort was 

directed towards understanding some of these extrinsic factors and developing capabilities 

to address them. However, the multi-disciplinary approaches of the NutraMara programme 

provided the climate within which to create an awareness of the broad factors that affect 

the health value of the functional ingredient and of the options to incorporate these 

ingredients within food products.  

Factors identified as affecting the functionality of ingredients, some of which were 

investigated within the consortium include the form of the original compound; the nature of 

the food matrix; interactions between the compound and other ingredients; methods 

employed during processing and production; storage conditions; absorption within the gut 

and variations, including genetic variation within the population. The interactions of foods 

and ingredients outside the body are complex; the range of physicochemical processes, and 

the metabolism of individual consumers add further to the overall complexity of developing 

functional foods. 

Various factors associated with the production of functional ingredients and their 

incorporation into foods can alter the appearance and texture of the end product. In 

addition to being demanding regarding the safety of food products, the discerning consumer 

is concerned with how foods look and taste. These factors have been found to greatly 

contribute to the market success of foods. Trained sensory panels are widely used in 

assessing food products and their contributions inform food product development activities. 

6.2. Carriers for functional ingredients 

6.2.1. Manufacture of dairy products fortified with seaweed-derived ingredients 

In addition to the inherent functionality of some food products, there are foods that are 

attractive for their potential to act as carriers for added functional ingredients. Dairy 
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products fit into this category, and have already demonstrated this capacity in products that 

incorporate PUFAs, probiotic bacteria and plant stenols.   

To outline the effects of seaweed extracts on the quality and shelf-life of milk and yoghurt, 

Ascophyllum nodosum (100% water (AN100), 80% ethanol (AN80e)) or Fucus vesiculosus (60% 

ethanol (FV60e)) seaweed extracts were added to milk (0.25% and 0.5% (w/w)).  AN80e and 

FV60e (0.25 and 0.5%) milk had higher (P < 0.05) “-a*” and “b*” values.  FV60e (0.25%) and 

phloroglucinol (Phl) (0.5%) milk had lower (P < 0.05) lipid oxidation. Milk microbiology was 

not affected by the addition of seaweed extract.  A trained sensory panel compared all the 

combinations of milk and extracts, finding the control and AN100 milk the most acceptable.  

Yoghurt is a widely consumed food product and frequently enriched with health promoting 

functional ingredients.  Brown seaweeds (Ascophyllum nodosum and Fucus vesiculosus) contain 

a range of bioactive compounds (e.g. antioxidants) with numerous reported health benefits. 

Seaweed extracts were prepared from Ascophyllum nodosum (100% H2O (AN100), 80% 

ethanol: 20% H2O (AN80e)) and Fucus vesiculosus (60% ethanol: 40% H2O (FV60e)) using a 

solid-liquid extraction technique.   

This element of the research programme manufactured yoghurt containing AN100, AN80e 

and FV60e (0.25% and 0.5%) extracts. Yoghurt quality and shelf-life parameters, stability and 

bioactivity (pre and post in vitro digestion) of seaweed extracts in yoghurt were examined 

during 28 days storage at 4°C.  Greenness (-a*) was lower (P < 0.05) in yoghurts containing 

AN100 (0.25 and 0.5%). Yellowness (b*) was higher (P < 0.05) higher in yoghurts enriched 

with AN80e (0.5%) and FV60e (0.25% and 0.5%). Lipid oxidation was lower (P < 0.05) in 

yoghurts containing AN80e (0.5%) and FV60e (0.5%). Proximate composition, pH, 

microbiology and whey separation in yoghurt were unaffected by seaweed extract addition. 

Yoghurt modulus was higher in yoghurt controls compared to extract-enriched yoghurts. 

Sensory evaluation by the taste panel identified the control and AN100 (0.25% and 0.5%) 

yoghurts as the most acceptable products.  

6.3. Moving from laboratory to pilot scale production 

6.3.1. Development of commercial process 

Research activities carried out at a laboratory scale are important early-stage tools in the 

technical assessment and scaling of new techniques for the development of commercially 

viable processes. The translation of batch type processes carried out in controlled 

conditions in the laboratory, to pilot scale production and further into a continuous 

commercial operating plant presents new challenges for those involved in the development 

of functional ingredients.  
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Typical of the processing challenges within the NutraMara programme was the assessment 

of new technologies and the development of protocols to enhance productivity in 

processing marine materials. One such novel process is Accelerated Solvent Extraction 

(ASE®) or pressurised liquid extraction (PLE); an automated extraction technique that uses 

elevated temperatures and pressures to achieve extractions in very short periods of time. 

Many of the organic solvents used in traditional extractions boil at relatively low 

temperatures and this is a limitation to methods such as Soxhlet. If sufficient pressure is 

exerted on the solvents during the extractions, temperatures above the boiling point can be 

used. Using ASE® all of the advantages of working at elevated temperatures can be realised 

even with solvents with relatively low boiling points. Elevated pressure also enhances the 

extraction process and allows the extraction to proceed at a faster pace (Pablo et al., 2009). 

The difference between laboratory scale and pilot scale processes are clear in Figure 37 

below. 

Figure 37 Laboratory and pilot scale extraction system 

Accelerated Solvent Extraction Armfield FT111 Rapid Extractor 

Laboratory scale

Pilot plant scale

ASE was used in the NutraMara programme to generate extracts with potential for use as 

health beneficial ingredients. The Armfield Rapid Extractor FT111 5L (Figure 37) was used to 

up-scale positive extraction results achieved using ASE. Lipid and phlorotannin containing 

extracts were generated using the protocols developed as part of the NutraMara 

programme and outlined in Table 27. Examples of the use of ASE in extracting compounds 
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from marine materials using the protocols developed within the research programme are 

described below. 

Table 27 Extraction protocols developed using ASE 

C000 ASE A000 M8 MH ASE® Water (100 %)
C001 ASE A001 M9 MH ASE® EtOH:H2O (80:20)
C002 ASE A002 M10 MH ASE®ETOH:H2O (60:40)
C003 ASE A003 M11 MH ASE® Acetone (100%)
C004 ASE A004 M12 MH ASE® Hexane (100 %)
C002 ASEMeOH A005 M13 MH ASE® MeOH:H2O (60:40%)
C002 ASEMeOH A006 M14 MH ASE® MeOH:H2O (70:30)
CH001 chitin/chitosan CH001 M15 MH chitin/chitosan extraction method
CH002 chitin/chitosan CH002 M16 MH chitin /chitosan extraction method
CH003 chitin/chitosan CH003 M17 MH chitosan extraction using enzymes
H1 - Fermentation with Viscozyme H001 M18 MH Fermentation of seaweed with viscozyme
P1 - protein extraction method P001 M19 MH Protein extraction of myofibrillar proteins from muscle tissue
P2 - protein extraction method P002 M20 MH Protein extraction method for seaweed proteins (i.e. P. palmata)
C006 ASE A006 M21 MH ASE®70% methanol: 30% water
Rapid extraction C001 A007 M22 MH Rapid extraction with EtOH:H2O (80:20)
Rapid extraction C006 A008 M23 MH Rapid extraction with MeOH:H2O (70:30)
Rapid extraction A009 M24 MH Rapid extraction with water (100 %)
ASE extraction of lipids A012 M25 MH ASE® methanol:chloroform (2:1)

C000 ASE JA000 M26 JV ASE® MeOH:H2O (70:30)
C001 ASE JA001 M27 JV ASE® EtAcO
C002 ASE JA002 M28 JV ASE® H2O 
ASE extraction of lipids A012 M29 JV ASE® methanol:chloroform (2:1)

6.3.2. ASE Extraction of phlorotannins  

Extraction of phlorotannins was carried out by Accelerated Solvent Extraction (ASE®) in 

which a sample (2.5 g) of freeze-dried algal mass was mixed with diatomaceous earth and 30 

g of silica (Merck grade, 60 Å, Sigma Aldrich, St Louis, USA) and loaded into 33 ml sample 

cells. The automated extraction method used 70 % acetone in water and a pressure of 103.5 

bar. The extraction time consisted of 3 cycles of 5 minutes, heat time 5 min, flush volume 50 

%, purge time 60 s, static cycles 4, solvent Acetone:water 70:30 (v/v). 

The recovered fractions were subsequently centrifuged at 3000 X g for 10 minutes to 

remove residual solids (SIGMA 2-16KL, Sigma Zentrifugen, Ostende am Hartz, Germany). 

Aliquots of supernatants from each extract were dried under nitrogen (20 psi) using a 

TurboVap (Caliper LifeSciences, Runcorn, UK) and subsequently freeze dried for 24 hrs to 

eliminate residual water. Yields of phlorotannins on a dry weight basis are shown in Figure 

38. Cytoseria nodacaulis and Fucus vesiculosus gave the greatest percentage yield on a dry

weight basis.
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Figure 38 Percentage dry weight crude phlorotannin extracted generated from seaweed species 
using ASE® method 11 (70:30 acetone:water v:v) 
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6.3.3. ASE® extraction of macro-algal lipids 

Accelerated Solvent Extraction (ASE®) was used to extract lipids from samples of macro-

algae. Oil was extracted from each seaweed species in triplicate using an automated Dionex 

200 accelerated solvent extraction system. In this process, 2.5 g of freeze-dried algal mass 

was mixed with diatomaceous earth and 30 g of silica before loading into 33 ml sample cells. 

The extraction conditions were: 5 min preheat, 103.5 bar pressure, 120⁰C, heat time 5 min, 

flush volume 50 %, purge time 60 s, static cycles 4, solvent chloroform:methanol 2:1 (v/v). 

Yields of lipids are shown in Figure 39 below. 

Figure 39 Percentage dry weight lipid extracted/generated from seaweed species using ASE® 
method 11 (70:30 acetone:water v:v) 
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6.3.4. ASE extracts from Fucus serratus and Ascophyllum nodosum  

Extracts from samples of each seaweed species were generated in triplicate using an 

automated Dionex 200 accelerated solvent extraction system. In this method, 2.5 g of 

freeze-dried algal mass was mixed with diatomaceous earth and 30 g of silica before loading 

into 33 ml sample cells. The extraction conditions were: 5 min preheat, 103.5 bar pressure, 
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120⁰C, heat time 5 min, flush volume 50 %, purge time 60 s, static cycles 4, solvent water 

100%. 

6.4. Large scale extractions using the Armfield Rapid 

extractor (5 Litre capacity) 

To demonstrate the potential of using ASE methods at a larger scale, an Armfield FT111 

rapid extractor was used to extract constituents from relatively large samples. Three 

methods were developed to up-scale the extraction of promising extracts with identified 

bioactivities from ASE phlorotannin seaweed derived extracts - from Pelvetia canaliculata and 

a betaine rich-extract from Ulva intestinalis. A phlorotannin rich extract was generated from 

1 kg of Pelvetia canaliculata using the Armfield FT111 rapid extractor. The solvents used in 

this process were 70 % acetone in water and the extraction programme was: temperature 

38.7˚C, TP1: 5 minutes, TP0: 6 minutes, cycles: 3 TTOT: 33 minutes. 

Large-scale extraction using the Armfield rapid extractor allows for the fast, efficient solid-

liquid extraction of active constituents from seaweeds and microalgae. The use of high 

pressure and a combination of both static and dynamic extraction phases allow a rapid 

extraction of the bioactive materials with minimum degradation to the quality of bioactive 

ingredient, while the solvent is passed through the material providing a forced percolation 

and agitation. However, scale up of extraction protocols involving highly flammable solvents 

predominantly those involving batch processes as in the case of ACE remain problematic. 

The application of high temperature and pressure during large-scale extraction involves the 

excessive use of organic solvents. The disposal of large quantities of organic solvent poses 

environmental hazards, in addition to significant health and safety risks. Alternative, more 

benign methods remain to be developed. 

6.5. Impact of processing on functional ingredients 

In general, extraction techniques can have negative effect on functionality of bioactive 

ingredients. The optimisation of extraction conditions is critical to minimise the impact of 

the process on the bioactivity of functional ingredients. The use of optimised conditions for 

different variables known to influence extraction performance could significantly enhance the 

recovery or extraction yield of target compounds. Pilot investigations of processing 

conditions on the stability of marine extracts were completed within the NutraMara work 

programme. 

6.5.1. The stability of seaweed extracts under storage conditions 

Seaweed extracts (ASE®) prepared from Ascophyllum nodosum, Fucus vesiculosus and Fucus 

serratus using 100% H2O were dissolved in 0.1 M potassium phthalate (pH 4, pH 5.5) and 0.1 
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M potassium dihydrogen phosphate (pH 7.0) buffers at a concentration of 2 mg/ml. 

Incubates were stored in vials at three storage temperatures (-200C, 40C, 250C) for a 

duration of 12 weeks. Antioxidant activity (stability) was assessed using in vitro antioxidant 

assays (total phenol content (TPC) and DPPH free radical scavenging activity). All extracts 

displayed similar levels of in vitro antioxidant activity under the experimental conditions 

employed indicating stability of the extracts against pH and storage temperature. The 

antioxidant activity of all seaweed extracts was assessed in 25% pork muscle homogenates at 

concentrations of 1 and 5 mg/ml.  Antioxidant activity was assessed using the 2-thiobarbturic 

acid (TBA) assay after 1 and 4 hours storage at 4°C. Antioxidant activity increased with 

seaweed extract concentration and antioxidant potency followed the order: Fucus vesiculosus 

> Fucus serratus > Ascophyllum nodosum. These results demonstrate the potential for using

seaweed extracts as functional antioxidant ingredients in pork meat products.

6.5.2. The effect of dietary seaweed polysaccharides on pork quality

A seaweed extract containing laminarin (L) and fucoidan (F) (L/F) was manufactured from

brown seaweed (Laminaria digitata) in spray-dried (L/F-SD) and wet (L/F-WS) forms. The

effect of supplementation of pig diets with L/F-SD and L/F-WS (L, 500 mg/kg feed; F, 420

mg/kg feed) for 21 days pre-slaughter, on quality indices of fresh (longissimus thoracis et

lumborum (LTL)) steaks was examined. Susceptibility of porcine liver, heart, kidney and lung

tissue homogenates to iron-induced (1 mM FeSO4) lipid oxidation was also investigated.

Dietary supplementation with L/F did not increase plasma total antioxidant status (TAS). In

LTL steaks stored in modified atmosphere packs (80% O2: 20% CO2) (MAP) for up to 15

days at 4ºC, muscle pH, surface colour (CIE ‘L*’ lightness, ‘a*’ redness and ‘b*’ yellowness

values) and microbiology (psychrotrophic and mesophilic counts, log CFU/g pork) were

unaffected by dietary L/F. In general, levels of lipid oxidation (TBARS, mg MDA

(malondialdehyde)/kg pork) followed the order: C > LF-SD > L/F-WS. A statistically

significant reduction in lipid oxidation (P < 0.05) was observed in LTL steaks from 75% of

pigs (n = 6) fed L/F-WS compared to controls. Iron-induced lipid oxidation increased in liver,

heart, kidney and lung tissue homogenates over the 24 hr storage period and dietary L/F-WS

reduced lipid oxidation to the greatest extent in liver tissue homogenates. These results

demonstrate the potential for incorporating marine-derived bioactive antioxidant

components into muscle foods via the animal’s diet.

A spray-dried seaweed extract containing laminarin (L, 9.3%) and fucoidan (F, 7.8%) (L/F

extract) from brown seaweed (Laminaria digitata) was added directly to minced pork

(longissimus thoracis et lumborum) (LTL) at levels of 0.01%, 0.1% and 0.5% (w/w). Fresh and

cooked minced pork patties were stored in modified atmosphere packs containing 80% O2:

20% CO2 and 70% N2:30% CO2, respectively, for up to 14 days at 4°C. The L/F extract
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reduced the surface redness (‘a*’ values) of fresh patties as a function of concentration. The 

L/F extract (0.5%) exerted the greatest lipid pro-oxidant activity in fresh patties. The L/F 

extract (0.5%) significantly decreased (P < 0.05) lipid oxidation in cooked patties. The L/F 

extract had no effect on the microbiological status, pH, water holding capacity (WHC) or 

cook loss of patties. Pork patties containing 0.01% L/F were preferred by sensory evaluation 

panellists.   

To develop further insights into the incorporation of seaweed at various levels into meat 

products during animal rearing, feeding trials of the polysaccharides laminarin and fucoidan 

were carried out. A taste panel was employed to assess the visual characteristics of cooked 

pork. The effect of level (450 or 900 mg laminarin (L) and fucoidan (F) /kg feed) and duration 

(3 or 6 wks) of feeding a seaweed (Laminaria digitata) extract containing L/F on the quality of 

pork (longissimus thoracis et lumborum (LTL)) stored in modified atmosphere packs and on 

organ lipid stability was examined. Mechanisms of L/F antioxidant activity in LTL were 

evaluated.  Plasma total antioxidant status, LTL pH, colour, microbiology and ‘eating quality’ 

sensory analysis were unaffected by dietary L/F. ‘Visual’ sensory descriptors (purchasing 

appeal and overall visual acceptability) were enhanced (P < 0.05) in L/F450 - 3 LTL. Lipid 

oxidation was lower (P < 0.05) in L/F450 - 3 and L/F900 - 3 LTL and reduced in L/F900 - 6 

kidney homogenates. In cooked minced pork, lipid oxidation was not reduced by dietary L/F.  

Saturated fatty acids were lower (P < 0.05) in L/F900 - 6 LTL. Results indicated L/F in pig 

diets for 3 weeks enhanced pork quality.   

6.5.3. The effect of seaweed based fish feed on farmed salmon quality  

The availability of sustainable feedstock is amongst the various challenges in moving to 

sustainable aquaculture. Typically, fish feed relies on the use of manufactured fishmeal, some 

processes and materials used in its production can have negative environmental impacts and 

be demanding of energy inputs. Developing fish feeds that incorporate seaweeds offers a 

potential alternative feedstock.   

The effect of using two seaweeds Ulva rigida (UR) and Palmaria palmata (PP) in farmed 

Atlantic salmon (Salmo salar) diets was investigated during the NutraMara research 

programme. The effect of supplementation of salmon diets with Ulva rigida (0, 5, 10 and 15% 

UR) or synthetic astaxanthin (positive control, PC) for 19 weeks pre-slaughter on quality 

indices of fresh (raw) salmon fillets was examined. Susceptibility of salmon 

fillets/homogenates to oxidative stress conditions (cooking/iron-ascorbate induced 

oxidation) was also measured.  In salmon fillets stored in modified atmosphere packs (60% 

N2:40% CO2) (MAP) for up to 15 days at 40C, Ulva rigida increased surface ‘-a*’ greenness 

and ‘b*’ yellowness values in a dose-dependent manner resulting in a final yellow/orange flesh 

colour. Proximate composition, pH and lipid oxidation (fresh, cooked and fillet 
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homogenates) were unaffected by dietary addition of Ulva rigida. On day 12, 5% UR 

psychrotrophic total viable cell counts were significantly lower than the controls. Salmon fed 

5% UR did not influence ‘eating quality’ sensory descriptors (texture, odour, oxidation 

flavour and overall acceptability) in cooked salmon fillets (180°C for 12 min) compared to 

0% UR. Results indicated Ulva rigida may prove to be a functional ingredient in salmon feed 

to enhance salmon fillet quality. 

The effect of salmon diet supplementation with Palmaria palmata (0, 5, 10 and 15%) or 

synthetic astaxanthin (positive control, PC) for 16 weeks pre-slaughter on quality indices of 

fresh salmon fillets was examined. Susceptibility of salmon fillets/homogenates to oxidative 

stress conditions was also measured. In salmon fillets stored in modified atmosphere packs 

(60% N2 : 40% CO2) for up to 15 days at 40C, Palmaria palmata increased surface ‘-a*’ 

greenness and ‘b*’ yellowness values in a dose-dependent manner resulting in a final 

yellow/orange flesh colour.  In general, the dietary addition of Palmaria palmata had no effect 

on pH, lipid oxidation (fresh, cooked and fillet homogenates) and microbiological status. 

‘Eating quality’ sensory descriptors (texture, odour and oxidation flavour) in cooked salmon 

fillets were not influenced by dietary Palmaria palmata.  Salmon fed 5% PP increased overall 

acceptability compared to PC and 0% PP. Dietary Palmaria palmata was ineffective at 

providing red coloration in salmon fillets however pigment deposition enhanced fillets with a 

yellow/orange colour. Carotenoids from Palmaria palmata may prove to be a natural pigment 

alternative to canthaxanthin in salmon feeds.  

6.6. Bioavailability of compounds 

6.6.1. Bioactivity of seaweed-enriched bread 

The feasibility of introducing bioactive hydrolysates and peptides isolated from Palmaria 

palmata into a baked product was explored along with the potential bioavailability of 

seaweed derived hydrolysed proteins and peptides. Bread formulations were tested with the 

incorporation of 4% of the Palmaria palmata hydrolysate in a blend of 70% wheat: 30% 

buckwheat. Breads containing 4% Palmaria palmata hydrolysate demonstrated significantly 

higher renin inhibitory activity than that of the control bread (P<0.01). The Palmaria palmata 

papain protein hydrolysate bread inhibited renin by 11.21% (± 0.77) when tested at a 

concentration of 1mg/ml compared to the positive control, which was higher than the 

buckwheat bread formulation that had a renin inhibitory value of 9.546% (± 0.48). 

Combining the buckwheat and seaweed protein hydrolysate in bread formulation increased 

the renin inhibitory activity to the bread to 14.92 % (± 1.88) as shown below in Figure 40. 
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Figure 40 Renin inhibitory assay of the control, control + hydrolysate, buckwheat and buckwheat + 
hydrolysate breads. Values are mean ± S.E.M. (n=3). *P<0.05, **P<0.01 and ***P<0.001 compared 
with control 

6.6.2. Bioactivity of seaweed-enriched milk and yoghurt 

Ascophyllum nodosum (100% water (AN100)), 80% ethanol (AN80e)) or Fucus vesiculosus (60% 

ethanol (FV60e) seaweed extracts were added to milk and yoghurt (0.25% and 0.5% (w/w)). 

The antioxidant activity of the seaweed extracts was measured on the basis of the 

scavenging activity of the stable 1, 1- diphenyl 2-picrylhyorazyl (DPPH) and found to be 

stable in milk.  

Milk and digestates exhibited DPPH and FICA activities, and did not affect cellular 

antioxidant activity or protect against DNA damage. The antioxidant activity (DPPH) of 

seaweed extracts in yoghurt was stable during storage. In vitro antioxidant activity was higher 

(P < 0.05) in FV60e (0.5%) yoghurt pre- (DPPH and FICA assays) and post in vitro digestion 

(DPPH assay). Ferrous ion chelating activity (FICA assay) was higher (P < 0.05) in all 

yoghurts post-digestion. Yoghurt and yoghurt digestates did not alter the antioxidant status 

(catalase (CAT), superoxide dismutases (SOD) and glutathione (GSH) assays) or protect 

against H2O2-induced DNA damage in Caco-2 cells.    

6.6.3. Bioactivity of seaweed extracts in pork 

The antioxidative potential of laminarin (L), fucoidan (F) and an L/F seaweed extract was 

measured using the DPPH free radical scavenging assay in 25% pork (longissimus thoracis et 

lumborum (LTL)) homogenates (TBARS) (3 and 6 mg/mL) and in horse heart oxymyoglobin 

(OxyMb) (0.1 and 1 mg/mL). The DPPH activity of fresh and cooked minced pork LTL 

containing L (100 mg/g; L100), F100 and L/F100,300, and bioaccessibility post in vitro 

digestion (L/F300), was assessed. Theoretical cellular uptake of antioxidant compounds was 

measured in a transwell Caco-2 cell model. Laminarin displayed no activity and fucoidan 

reduced lipid oxidation but catalysed OxyMb oxidation. Fucoidan activity was lowered by 
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cooking while the L/F extract displayed moderate thermal stability. A decrease in DPPH 

antioxidant activity of 44.15% and 36.63%, after 4 and 20 h respectively, indicated theoretical 

uptake of L/F antioxidant compounds. Results highlight the potential use of seaweed extracts 

as functional ingredients in pork. 

6.7. Processing methods for the recovery of bioactives from 

seaweeds 

6.7.1. Introduction 

Irish seaweeds were the source of the majority of bioactives investigated in the NutraMara 

work programme. Bioactive compounds recovered from this source included 

polysaccharides, polyphenols, lipids, carotenoids, and proteins. The research involved only 

the use of seaweeds collected from wild sources, and processing and extraction methods 

varied according to the species under investigation and compounds of interest.  

This section provides details of some of the commercial scale extraction methods used in 

the production of commercially available compounds. Process flow diagrams illustrate the 

number of processing steps and the complexity of typical extraction methods. Prior to 

extraction, seaweeds typically undergo a pre-treatment designed to remove any sand, salt or 

other debris. The economic feasibility of extraction methods is linked to factors such as 

desired throughput, yield, purity and end use of the extract.  

6.7.2. Process to extract agar 

Agar is a polysaccharide widely used as a gelling agent and a medium for culture of bacteria. 

Two genera account for the majority of world-wide agar production – Geliuium spp. and 

Gracilaria spp. Figure 41 illustrates the typical extraction process. 
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Figure 41 Agar extraction process 

6.7.3. Process to extract carrageenan 

This seaweed derived polysaccharide is widely used by the food industry in processed food 

products such as meats, cheese, confectionary, iced creams, etc. as a thickening and 

emulsifying agent. Chondrus crispus was once the  main source of carrageenan, however, most 

of the world's supply now comes from other red seaweed species including Kappaphycus 

alvarezii, Eucheuma denticulatum, Gigartina skottsbergii, Sarcothalia crispata. Figure 42 shows a 

typical process flow chart for carrageenan production.  

Figure 42 Carrageenan extraction process 
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6.7.4. Process to extract alginate 

Most species of brown seaweeds contain alginates. This polysaccharide is used as an 

emulsifier or a thickening agent in various food and industrial products. In Ireland, the wild 

harvest of Ascophyllum nodosum is used as a source of alginates. Figure 43 shows a typical 

process for alginate production.  

Figure 43 Alginate extraction process 
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7. NUTRAMARA TECHNICAL SUPPORT

7.1. Introduction 

Results from the 5-year research programme support national policy and commercial goals 

to maximise the sustainable use of marine biomaterials in the production of functional foods 

and functional ingredients. The NutraMara research programme has to date generated 80 

peer-reviewed publications across a range of marine functional foods research related areas. 

These publications provide open access to knowledge generated within the NutraMara 

programme. Additionally, partners in the NutraMara consortium have developed 

considerable scientific and technological know-how, which can be accessed directly from 

individual research institutions. Much of this knowledge is proprietary and is only accessible 

via a technology transfer agreement.  

A technology portfolio developed as part of the NutraMara outreach and technology 

transfer activity provides “technology-updates” and describes the expertise and services 

available from members of the NutraMara consortium.   

7.2. Technology updates 

NutraMara published 19 technology updates to coincide with the 2015 NutraMara 

Conference. These wide-ranging insights are relevant to interested parties in industry, 

academia, government departments, state agencies and funding agencies. They provide a 

summary of results and describe opportunities from the research programme. The title of 

each update is given in Table 28 below and the full update is included in the Appendix 3.  

Table 28 Technology updates available from NutraMara 

Update  Institution 

Seaweed Inclusion in Fish Food  NUIG 

Extraction, Purification and Characterisation of Biofunctional Peptides from Marine Processing Co-

Products  

UL 

Marine Sourced Peptides for Glycemic Management  UL 

Mining, Extraction and Purification of Proteins and Peptides from Macrolagae  UL 

Extraction of Nitrogenous Compounds from Macroalgae  UL 

Irish Seaweed Polysaccharides for Gut Health  Teagasc 

Chitosan Generation and Characterisation from Shell  Teagasc 

Novel Proteins and Peptides from Seaweeds  Teagasc 

Seaweed Derived Glycine Betaine and DMSP  Teagasc 

The Anti-inflammatory Effect of Algal Lipid Extracts  Teagasc 

The α-amylase and α-glucosidease Inhibitory Effects of Irish Seaweed Extracts Teagasc 

The Potential of Yoghurt as a Functional Food Matrix for an Omega-3 PUFA-rich Algae Extract  Teagasc 
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Pork Meat Enhanced with Seaweed Polysaccharides  UCC 

Seaweed Polysaccharides as Functional Ingredients in Pork Meat: Mechanistic Studies  UCC 

Brown Seaweed Extracts as Potential Functional Ingredients in Dairy Products  UCC 

Bioavailability and Bioactivity of Phenolic Enriched Extracts from Brown Seaweed  UU 

Anticancer Properties of Marine Bio-Actives  UU 

The Incorporation of Seaweed into Commonly Consumed Foods – Bread UU 

The Incorporation of Seaweed into Commonly Consumed Foods – Pork UU 

7.3. Service offers from partner institutions 

Service offers from NutraMara partner institutions describe specific areas where a research 

group is available to undertake work related to the use of marine bioresources in foods and 

as functional and other ingredients. In many cases, the available offers are relevant to non-

food applications. Typically the services include testing and analysis of marine materials, the 

characterisation of compounds and the assessment of marine bioresources. Full details of 

the offers are available in the Appendix 4 to this report. Table 29 provides summary details 

of the service offer.  

Table 29 NutraMara service offers relevant to marine bioresources 

Description Institution Contact 

Algal Biochemical/Bioactive analysis NUIG Dagmar Stengel 

Polysaccharide extraction and characterisation NUIG Zoe Popper 

Seaweed biomass resource assessment NUIG Dagmar Stengel 

Biofunctional characterisation of peptides  UL Dick FitzGerald 

Extraction, quantification and characterisation of peptides  UL Dick FitzGerald 

Generation and enrichment of peptides UL Dick FitzGerald 

Identification of peptides UL Dick FitzGerald 

Physicochemical and techno-functional characterisation of peptides UL Dick FitzGerald 

Food packaging assessment and testing UCC Joe Kerry 

Chemical and shelf-life testing of muscle foods UCC Joe Kerry 

Muscle foods processing UCC Joe Kerry 
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8. IMPACT OF THE NUTRAMARA PROGRAMME

8.1. Introduction 

It is now widely recognised that continued growth and competitiveness of the Irish agri-food 

and fisheries industry will play a pivotal role in Ireland’s economic recovery. Food Harvest 

2020 and more recently, FoodWise2025 each identified key industry, consumer and global 

trends and opportunities for dynamic growth in the food sector. In highlighting opportunities 

for Ireland’s food and related sectors to respond to global challenges and the emergence of 

new markets, national policy – including science and technology policy recognised the need 

for a national response. Targeted research and development, partnerships between industry 

and the scientific community and the development of an innovative, value added value 

products are common themes stressed by national policy.  

NutraMara’s focused workplan was designed to underpin and contribute to these issues. In 

common with the call from within Food Research Ireland, NutraMara created new 

knowledge, which supports the goals for “smart, green, growth”. Central to the NutraMara 

mission was its support for science-based innovation in the marine and food sectors. 

Accompanying the research activity within the NutraMara programme was a robust, dynamic 

outreach activity that was focused on linking industry with commercially relevant scientific 

outputs. 

NutraMara was positioned to interact with ongoing related food and marine research 

activity; offering scope to develop research synergies by creating new linkages. Such an 

outlook was responsible for bringing new expertise into research proposals, building new 

capacity and was behind the expansion of research activity into new priority areas. The 

consortium was well placed to address marine foods related research areas in sustainable 

foods production and processing, and foods for health, as defined by the recently published 

national Strategic Research and Innovation Agenda.  

8.2. Contribution to meeting the national research agenda 

From its inception, and having an origin within Sea Change - Ireland’s Marine Knowledge, 

Research and Innovation Strategy: NutraMara was relevant to national and European policy and 

was of strategic importance to Ireland, particularly the plan to maximise the economic 

potential of sustainably exploiting our marine resources. On a broader front, NutraMara was 

contributing to Ireland’s efforts to support the achievement of Europe’s “grand challenges of 

ensuring food security; the sustainable management of natural resources; the creation of 

jobs and maintaining competitiveness; and investing in knowledge, innovation and skills. 
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Experiences and outputs from NutraMara are reflected in successive national food research 

plans. Contributions from NutraMara highlighted opportunity areas described within 

Ireland’s first food research strategy – Food Research Ireland. Food Harvest 2020, stressed 

the importance of further developing marine functional foods research and building Ireland’s 

marine biotechnology related research capability.  

Principal Investigators and others associated with NutraMara were involved in Ireland’s 

research prioritisation exercise; drawing attention to the capabilities of NutraMara to 

support food production and processing and creating an awareness of Ireland’s new capacity 

to engage in related research. New marine functional foods research initiated within 

NutraMara complemented Ireland’s demonstrated ability in dairy based functional 

ingredients. Indeed scientists with international reputations in dairy functional foods 

research developed new expertise to engage in marine related research through an 

involvement in NutraMara. Together, these areas – dairy and marine functional foods and 

ingredients were identified as the foundation of an entirely new priority research area; 

Foods for Health by the Research Prioritisation Exercise.  

Just as was the case in the development of Food Research Ireland, experiences from 

NutraMara contributed to the development of Ireland’s most recent food research strategy 

- Sustainable Healthy Agri-Food Research Plan (SHARP), A Strategic Research and Innovation

Agenda for the “Sustainable Food Production and Processing” and Food for Health priority

areas of the National Research Prioritisation Exercise.

FoodWise 2025 recognises NutraMara as one of a number of complementary centres of

research excellence which have roles in supporting the development of Ireland’s food

sector, particularly in respect of contribution to the Foods for Health opportunity area.

Ireland’s emerging reputation in marine biotechnology research, largely achieved by the

efforts of NutraMara and its sister programme the Beaufort Biodiscovery Project, is

identified by FoodWise2025 as an opportunity to drive home Ireland’s “strategic advantage in

the marine biotechnology field”.

NutraMara also has a role in the development of a SMART NAUTRIENTS research

programme referred to in FoodWise2025 that will seek to explore the potential of marine

species of fish, shellfish and seaweed as possible high value sources of pharmaceutical,

cosmetic products. The importance and market potential of this emerging area has been

recognised by the EU and domestically under the National Research Prioritisation Exercise

and the integrated marine plan “Harnessing our Ocean Wealth”.

The Marine Institute is currently developing a strategic action plan and roadmap for Marine

Biotechnology. This initiative, informed by contributions from industry and the research

community, includes major contributions from a cohort of Principal Investigators from
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within the NutraMara consortia possessing specific expertise in marine biological resources 

research.  

8.3. Capacity building 

One of the major objectives and a basic principle of the NutraMara research programme 

was to create new research capacity. Within the research programme and across all partner 

institutions there is an ongoing development of core scientific leadership and a focus on 

developing young researchers. Creating this additional research capacity has enabled 

individual researchers and institutions active within the NutraMara programme, to be 

responsive to new research opportunities in Ireland and in European programmes. Ireland’s 

marine foods and ingredients research capabilities revolve around the NutraMara core 

group of PIs comprising food and marine scientists. New expertise at the level of senior 

researcher officer was recruited into the NutraMara programme; some of whom brought 

international marine research expertise, whilst others brought food related experience.  

Since the start of NutraMara in 2008, 21 post-doctoral researchers have worked in support 

of the programme. A further 18 PhD students have been trained as a result of working in 

areas of research that underpins and contributes to the development of marine functional 

foods.  Researchers funded to work within the NutraMara programme are listed below. 

8.3.1. Post-doctoral researchers/research officers 

NutraMara presented unique opportunities to attract experienced post-doctoral 

researchers, from food, marine, chemical and biological related areas to work within a 

focused work programme. Irish and international scientists were recruited to NutraMara; 

bringing specific expertise which supported overall research objectives and providing further 

support to the early stage researchers as they embarked on their post-graduate studies. 

These researchers significantly enhanced both the research capacity and capabilities of 

NutraMara. The researchers recruited into the NutraMara programme are listed below in 

Table 30. 

Table 30 Post-doctoral and research officers associated with NutraMara 

Name Host institution Duties PI 

Dr Anna Soler Vila NUI Galway Sampling, sample distribution and database 

management  

Prof Mark Johnson 

Dr Freddy Guiheneuf  NUI Galway Production and optimisation of compounds of food 

value from microalgal species 

Dr Dagmar Stengel 

Dr Stefan Kraan NUI Galway Sampling, sample distributiona and database 

management 

Prof Michael Guiry 

Dr Ulrike Grienke  NUI Galway Natural products chemistry and structural elucidation 

of bioactive compounds 

Prof Deniz Tasdemir 
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Dr Ayoa Fernandez  NUI Galway Natural products chemistry and structural elucidation 

of bioactive compounds 

Prof Deniz Tasdemir 

Dr Thomas Smyth  Teagasc Large scale extractions, fractionation/enrichment of 

extracts, purification and structural elucidation of 

bioactive compounds 

Dr Nigel Brunton 

Dr Fiona Manning Teagasc Programme manager Mr Declan Troy 

Dr Juan Valverde  Teagasc Extraction, purification and characterisation of 

compounds from marine species  

Dr Nigel Brunton 

Dr Carlos Alverez Teagasc Extraction, purification and characterisation of 

proteins from boarfish 

Dr Brijesh Tiwari 

Dr Owen Kenny Teagasc Extraction, purification and characterisation of 

compounds from marine species 

Dr Brijesh Tiwari 

Dr Prabhesh Kumar Teagasc Extraction, purification and characterisation of 

compounds from marine species 

Dr Brijesh Tiwari 

Dr Pádraigín Harnedy UL Extraction, purification and characterisation of 

nitrogenous components from macroalgae 

Prof Dick FitzGerald 

Dr Adriana 

CunhaNeves  

UL Extraction, purification and characterisation of 

biofunctional peptides from marine processing co-

products  

Prof Dick FitzGerald 

Dr Sinead Lordan Teagasc Assessment of the pre-biotic potential and anti-

diabetic potential of marine extracts 

Prof Paul Ross 

*Dr Snehel Gite Teagasc Assessment of the mental health benefit of marine 

extracts 

Dr Catherine Stanton 

*Dr Supriya Yadav Teagasc Assessment of the prebiotic potential of marine 

extracts 

Dr Catherine Stanton 

Dr Philip Allsopp UU Bioactive screening and profiling of marine bioactives 

using breast cancer cell models 

Dr Emeir McSorley 

Dr Emma Brown UU Bioactive screening and profiling of marine bioactives 

using colon cancer cell models, Human Intervention 

Studies 

Dr Emeir McSorley 

Mr James Burnside UU Creating and updating website Dr Emeir McSorley 

Dr Olaf Sonnetel UU Bioactive screening and profiling of marine bioactives 

using breast cancer cell models 

Dr Emeir McSorley 

Dr Michael O’Grady UCC Model foods and carriers for marine bioactives Dr Joe Kerry 

Dr Bojlul Bahar UCD Bioactive screening and profiling of marine bioactives  Prof John O’Doherty 

Dr Paul McAlpine UCD Bioactive screening and profiling of marine bioactives Prof John O’Doherty 

Dr Mary McDonnell UCD Bioactive screening and profiling of marine bioactives Prof John O’Doherty 

*Staff not directly funded by NutraMara research programme, but funded from other souces. 

8.3.2. PhD students 

A core objective of the NutraMara programme was to create additional research capacity by 

recruiting high-potential graduates to engage in research leading to the award of a PhD. 

Nineteen graduates, including some from overseas, were attracted by the challenge of 

working within a new, rapidly developing research area, and the chance to work within a 

multi-disciplinary project. Table 31 lists the diverse topics these PhD students worked on 

and the year in which the award was made.  
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Table 31 PhD students associated with NutraMara 

Name Host Thesis title Start Award 

Ms Ann Walsh UCD The use of marine derived bioactives in pig diets 2008 2012 

Mr Anthoney O’Sullivan UCC Cellular and in vitro models to assess antioxidant 

activities of seaweed extracts and the potential use 

of the extracts as ingredients 

2008 2013 

Mr Alex Wan NUI Galway Irish macroalgae as feed supplements in farmed 

Atlantic salmon (Salmo salar): Safety, viability, 

quality and economic fasibility 

2009 2016 

Mr Benoit Queguineur NUI Galway Phlorotannins, current and future implications for 

the seaweed industry 

2009 2013 

Ms Natalie Heffernan Teagasc Extraction, characterisation and seasonal variation of 

bioactive compounds 

2009 2015 

*Ms Michelle Tierney Teagasc Investigation of macroalgal polyphenols and 

peptides with potential antioxidant and 

antihypertensive activities 

2009 2014 

Ms Natasha Moroney UCC Macroalgae and commercial macroalgal 

polysaccharides as potential functional ingredients in 

muscle foods 

2009 2015 

*Mr Ciaran Fitzgerald Teagasc Development of a bioactive bread enriched with 

seaweed peptide fractions with potential heart 

health effects 

2010 2014 

Ms Sonja Nitecki UU Anticancer activity of raw and digested Irish seaweed 

extracts on colorectal cancer models in vitro 

2010 2014 

Mr Matthias Schmid NUI Galway Biochemical plasticity in seaweeds: assessment and 

optimisation of high value compounds  

2011 2015 

Mr Kenneth Collins Teagasc Potential of seaweed derived bioactives for human 

health 

2011 2017     

(Expected) 

Mr Ruairi Robertson Teagasc Algae-derived PUFA as novel functional ingredients 2012 2016  

Ms Tara Flaherty UL Extraction of nitrogenous compounds from 

macroalgae 

2012 Discontinued 

(2016) 

Ms Adriana CunhaNeves  UL Extraction, purification and characterisation of 
biofunctional peptides from marine processing co-
products  

2012 2015 

Ms Aine Egan UCD An evaluation of the effect of marine compounds as 

anti-obesity and anti-inflammatory agents using in 

vitro, ex vivo and in vivo pig models 

2012 2017              

(Expected) 

*Ms Dara Kirke NUI Galway Optimisation and standardisation of phlorotannin 

profiles of commercially valuable seaweeds with 

food applications (Walsh Fellowship) 

2013 Ongoing 

*Ms Sinéad Mackey Teagasc Marine Bioactives 2013 2016  

Ms Claire McGreagh UU Marine Bioactives 2009 Withdrew 

(2009) 

Mr Conall Strain UU Marine Bioactives 2013 2016  

*PhD students not directly funded by NutraMara research programme, but funded from other souces.



186 

8.4. Training initiatives 

The NutraMara research programme developed a training initiative to encourage early stage 

researchers to be exposed to international conferences and acquire new skills as a result of 

visiting other laboratories. Awards totalling nearly €15,000 were made to 12 researchers 

during the period 2011 to 2013. Details of the training activities undertaken and the level of 

grant support are given below in Table 32. 

Table 32 Training activity supported from within NutraMara 

Beneficiary From Purpose Location Duration Grant Date 

Kenneth Collins  Teagasc To perform laboratory work Ashtown 53 days €1,050 2011 

Maria Hayes  Teagasc To attend EuroFoodChem 

Conference   

Gdansk, Poland €250 2011 

Ciaran Fitzgerald  Teagasc To attend EuroFoodChem 

Conference   

Gdansk, Poland €300 2011 

Maria Hayes  Teagasc To attend EuroFoodChem 

Conference   

Copenhagen, 

Denmark 

€500 2011 

Pádraigín Harnedy UL To attend Kiel Food Science 

Symposium 

Kiel, Germany 3 days €700 2012 

Emma Brown UU To attend a meeting of the 

British Phycology Society 

Belfast 3 days €211 2012 

Alex Wan NUI Galway To attend Aqua 2012  Prague, Czech 

Republic  

4 days €2,000 2012 

Anna Soler Vila  NUI Galway To attend Aqua 2012  Prague, Czech 

Republic  

4 days €2,000 2012 

Ruairi Robertson Teagasc To perform research on 

algae-derived polyphenols 

CSRO Werribee, 

VIC, Australia 

34 days €2,000 2013 

Kenneth Collins  Teagasc  To perform research on 

algae-derived 

polysaccharides 

Ulster University  2 days €250 2013 

Natalie Heffernan  Teagasc To attend Trends in natural 

product research: a young 

scientist meeting of PSE & 

OPhG  

Austria 4 days 2013 

Thomas Smyth  Teagasc To attend Trends in natural 

product research: a young 

scientist meeting of PSE & 

OPhG  

Austria 4 days €1,520 2013 

Matthias Schmid  NUI Galway To attend 10th International 

Phycology Congress  

Orlando 

Florida, USA 

7 days €1,440 2013 

Conall Strain  UU Sample extractions and in-

vitro batch culture analysis 

and pyrosequencing  

Ashtown and 

Moorepark  

Intermittent €1,965 2013 
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8.5. Dissemination activities 

8.5.1. Publications 

Dissemination is an important component of NutraMara’s activities. The overall aim of the 

NutraMara consortium is to generate knowledge, capabilities and processes to identify, 

characterise and evaluate marine-derived bioactives as components of functional foods and 

as food ingredients. This knowledge and capability has the potential to have a significant 

impact not only within the scientific community but also to benefit the wider community. 

NutraMara’s dissemination strategy aimed to raise awareness of NutraMara, its activities and 

outputs. The dissemination activities were designed to inform different audiences in a 

targeted way, to promote NutraMara’s expertise, results and outputs and to actively engage 

with the wider community. 

The NutraMara research programme continues to add to an already extensive list of 

publications. The many outputs greatly contribute to raising the international profile of the 

NutraMara programme and the many scientists involved in it. In addition to the peer 

reviewed publications – many of which are in “high impact factor” journals, NutraMara 

researchers have produced large numbers of posters and delivered presentations at national 

and international events. Details of the publications to date, including those recently 

accepted and others described as “in-press” are given below.  

8.5.2. Peer reviewed publications 

The high number of co-authors on papers produced within the NutraMara programme 

reflects the extent of inter- and intra-institutional research collaboration that is facilitated by 

NutraMara. These publications are listed below in Table 33. 

Table 33 NutraMara peer reviewed publications 

Article Title Journal Title Year Authors 

The effects of lactose inclusion and 

seaweed extract derived from 

Laminaria spp. on performance, 

nutrient digestibility and microbial 

populations in newly weaned piglets.  

Animal Feed Science and 

Technology 

2010 O’Doherty, J.V., Dillon, S., Figat, S., 

Callan, J.J. and. Sweeney, T. (2010). 

The contribution of chemistry to 

improvement of food quality.  

European Food Research and 

Technology 

2010 Valverde, J., Hayes, M.,  

A review of antihypertensive and 

antioxidant activities in macroalgae. 

 Botanica Marina 2010 Tierney, M.S., Croft, A.K. and 

Hayes, M. (2010). 

The effects of supplementing the diet 

of the sow with seaweed extracts and 

fish oil on aspects of gastrointestinal 

health and performance of the 

weaned piglet. 

British Journal of Nutrition  2011 Leonard SG, Sweeney T, Pierce KM, 

Bahar B, Lynch BP and O’Doherty 

JV (2010). 
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The effects of laminarin derived from 

Laminaria spp. on measurements of 

gut health: select microbiota, 

intestinal fermentation, mucin gene 

expression and cytokine gene 

expression in the pig.  

British Journal of Nutrition 2011 Smith, A.G., O’Doherty, J.V., Reilly, 

P., Ryan, M.T., Bahar, B. and 

Sweeney, T. (2011).  

Marine bioactive as functional food 

ingredients: Potential to reduce the 

incidence of chronic diseases. 

Marine Drugs 2011 Lordan, S., R.P. Ross and Stanton, 

C. (2011).

In vitro and cellular antioxidant 

activities of seaweed extracts 

prepared from five brown seaweeds 

harvested in spring from the west 

coast of Ireland.  

Food Chemistry 2011 O’Sullivan, A.M., O’Callaghan, Y.C., 

O’Grady, M.N., Queguineur, B., 

Hanniffy, D., Troy, D.J., Kerry, J.P., 

and O’Brien, N.M. (2011).  

Heart health peptides from 

macroalgae and their potential use in 

functional foods.  

Journal of Agricultural Food 

Chemistry 

2011 Fitzgerald, C., Gallagher, E., 

Tasdemir, D. and Hayes, M. (2011). 

Bioactive proteins, peptides and 

amino acids from macroalgae.  

Journal of Phycology 2011 Harnedy, P.A., and FitzGerald, R.J. 

(2011). 

Angiotensin-I-converting enzyme and 

prolyl endopeptidase inhibitory 

peptides from natural sources with a 

focus on marine processing by-

products.  

Food Chemistry 2011 Wilson, J., Hayes, M. and Carney, B. 

(2011). 

A potential role of interleukin 6 (IL6) 

in the chitooligosaccharide mediated 

inhibition of adipogenesis.  

British Journal of Nutrition 2011 Bahar, B., O’Doherty, J.V. and 

Sweeney, T. 

Isolation of heart healthy peptides 

derived from red algae and 

incorporation into bread. 

Polish Journal of Food and Nutrition 2011 Fitzgerald C, Gallagher, E, Hayes M. 

The effects of supplementing varying 

molecular weights of 

chitooligosaccharide on performance, 

faecal scoring, selected microbial 

populations and nutrient digestibility 

in the weaned piglet.  

Animal 2012 Walsh, A.M., Sweeney, T., Bahar, 

B., Flynn, B. and O’Doherty, JV. 

(2012).  

Isolation and characterization of 

bioactive propeptides with in vitro 

renin inhibitory activities from the 

macroalga Palmaria palmata.  

Journal of Agricultural and Food 

Chemistry  

2012 Fitzgerald, C., Mora-Soler, L., 

Gallagher, E., Prieto, J., Mora-Soler, 

A. and Hayes, M. (2012). 

Influence of pressurised liquid 

extraction and solid–liquid extraction 

methods on the phenolic content and 

antioxidant activities of Irish 

macroalgae.  

International Journal of Food 

Science & Technology 

2012 Tierney, M.S., Smyth, T.J., Hayes, 

M., Soler-Vila, A., Croft, A.K. and 

Brunton, N. (2012).  

 Extracts of brown seaweeds can 

attenuate the bacterial 

Journal of Animal Science 2012 Bahar, B., O’Doherty, J.V., Hayes, 

M. and Sweeney, T. (2012).
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lipopolysaccharide (LPS) induced pro-

inflammatory response in the porcine 

colon ex-vivo.  

Chitooligosaccharide elicits acute 

inflammatory cytokine response 

through AP-1 pathway in human 

intestinal epithelial-like (Caco-2) cells. 

Molecular Immunology. 2012 Bahar, B., O’Doherty, J.V., Maher, 

S., McMorrow, J. and Sweeney, T. 

(2012). 

Bioactive peptides from marine 

processing waste and shellfish: A 

review.  

Journal of Functional Foods 2012 Harnedy, P.A., and FitzGerald, R.J. 

(2012). 

Assessment of the antioxidant 

activities of the brown macroalga 

Fucus spiralis Linnaeus harvested 

from the west coast of Ireland. 

 Journal of Biological Sciences 2012 Tierney, M.S., Soler, A., Croft, A.K. 

and Hayes, M. (2012). 

Addition of seaweed (Laminaria 

digitata) extracts containing 

laminarin and fucoidan to porcine 

diets: Influence on the quality and 

shelf-life of fresh pork.  

Meat Science 2012 Moroney, N.C., O’Grady, M.N., 

O’Doherty, J.V. and Kerry, J.P. 

(2012). 

Assessment of the ability of seaweed 

extracts to protect against hydrogen 

peroxide and tert-butyl 

hydroperoxide induced cellular 

damage in Caco-2 cells. 

Food Chemistry 2012 O’Sullivan, A.M., O’Callaghan, Y.C., 

O’Grady, M.N., Queguineur, B., 

Hanniffy, D., Troy, D.J., Kerry, J.P 

and O’Brien, N.M. 92012). 

The α-amylase and α-glucosidase 

inhibitory effects of Irish seaweed 

extracts.  

Food Chemistry 2013 Lordan, S., Smyth, T.J., Soler-Vila, 

A., Stanton, C. and Ross P.R. (2013).  

The effects of supplementing varying 

molecular weights of chito 

oligosaccharide on performance, 

selected microbial populations and 

nutrient digestibility in the weaned 

pig.  

Animal 2013 Walsh, M., Sweeney, T., Bahar, B., 

Flynn, B. and O’Doherty J.V. (2013).  

The effect of solvents on the 

antioxidant activity in Caco-2 cells of 

Irish brown seaweed extracts 

prepared using accelerated solvent 

extraction (ASE®).  

Journal of Functional Foods 2013 O’Sullivan, A.M., O’Callaghan, Y.C., 

O’Grady, M.N., Hayes, M., Kerry, 

J.P., and O’Brien, N.M. (2013). 

The effect of solvents on the 

antioxidant activity in Caco-2 cells of 

Irish brown seaweed extracts 

prepared using accelerated solvent 

extraction (ASEÒ).  

Journal of Functional Foods 2013 6O’Sullivan, A.M., O’Callaghan, 

Y.C., O’Grady, M.N., Hayes, M., 

Kerry, J.P., and O’Brien, N.M. 

(2013). 

Prawn chitosan containing bread: 

Assessment of bioactive and sensory 

qualities.  

Journal of Chitin and Chitosan 

Science 

2013 Lafarga, T., Hayes, M., Walsh, D., 

Valverde, J. and Gallagher, E., 

(2013). 

Multi-functional roles of chitosan as a PLoS One 2013 Walsh, A.M., Sweeney, T., Bahar, B. 



190 

potential protective agent against 

obesity. 

and O’Doherty J.V. (2013).  

LC-PUFA-enriched oil production by 

microalgae: accumulation of lipid and 

triacylglycerols containing n-3LC-

PUFA is triggered by nitrogen 

limitation and inorganic carbon 

availability in the marine haptophyte 

Pavlova lutheri.  

Marine Drugs  2013 Guihéneuf, F. and Stengel, D. 

(2013). 

Influence of pressurised liquid 

extraction and solid-liquid extraction 

methods on the phenolic content and 

antioxidant activities of Irish 

macroalgae.  

International Journal of Food 

Science & Technology 

2013 Tierney, M.S., Smyth, T.J., Hayes, 

M., Soler-Vila, A., Croft, A.K., 

Brunton N. (2013). 

In vitro assessment of the 

cardioprotective, anti-diabetic and 

antioxidant potential of Palmaria 

palmata protein hydrolysates.  

Journal of Applied Phycology 2013 Harnedy, P.A., and FitzGerald, R.J. 

(2013).  

Extraction of protein from the 

macroalga Palmaria palmata. 

Lebensmittel-Wissenschaftund-

Technologie  

2013 Harnedy, P.A. and FitzGerald, R.J. 

(2013).  

Enrichment of polyphenol contents 

and antioxidant activities of Irish 

brown macroalgae using food-

friendly techniques based on polarity 

and molecular size.  

Food Chemistry 2013 Tierney, M.S., Smyth T.J., Rai, D.K., 

Soler-Vila A., Croft A.K. and 

Brunton N. (2013). 

Development of a seaweed derived 

platelet activating factor 

acetylhydrolase (PAF-AH) inhibitory 

hydrolysate, synthesis of inhibitory 

peptides and assessment of their 

toxicity using the Zebrafish larvae 

assay.  

Peptides 2013 Fitzgerald, C., Gallagher, E., 

O'Connor, P., Prieto, J., Mora-Soler, 

L., Grealy, M. and Hayes, M. (2013). 

Chitosan containing bread made 

using marine shellfishery by-

products: functional, bioactive and 

quality assessment of the end 

product.  

Journal of Agricultural and Food 

Chemistry 

2013 Lafarga, T., Gallagher, E., Walsh, D., 

Valverde, J., and Hayes, M., (2013).  

Chito-oligosaccharide inhibits the de-

methylation of a 'CpG' island within 

the leptin (LEP) promoter during 

adipogenesis of 3T3-L1 cells.  

PLoS One 2013 Bahar, B., O’Doherty, J.V., 

O’Doherty, A.M. and Sweeney, T. 

(2013).  

Cardioprotective peptides from 

marine sources.  

Current Protein & Peptide Science 2013 Harnedy, P.A. and FitzGerald, R.J. 

(2013).  

Antioxidant activity of the brown 

macroalgae Fucus spiralis harvested 

from the West Coast of Ireland. 

Current Research Journal of 

Biological Sciences 

2013 Tierney, M.S., Soler-vila, A., Croft, 

A.K. and Hayes, M. (2013). 

Effect of a brown seaweed (Laminaria Meat Science 2013 Moroney, N.C., O’Grady, M.N., 
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digitata) extract containing laminarin 

and fucoidan on the quality and shelf-

life of fresh and cooked minced pork 

patties.   

O’Doherty, J.V. and Kerry, J.P. 

(2013). 

UPLC-MS profiling of low molecular 

weight phlorotannin polymers in 

Ascophyllum nodosum, Pelvetia 

canaliculata and Fucus spiralis.  

Metabolomics  2014 Tierney, M.S., Soler-Vila, A., Rai, 

D.K., Croft, A.K., Brunton, N. and 

Smyth, T.J. (2014). 

The effect of time and origin of 

harvest on the in vitro biological 

activity of Palmaria palmata protein 

hydrolysates.  

Food Research International 2014 Harnedy, P.A, Soler-Vila, A., 

Edwards, M.D., FitzGerald, R.J. 

(2014). 

Seaweed and human health.  Nutrition Reviews 2014 Brown, E.M., Allsopp, P.J., Magee, 

P.J., Gill, C.I., Nitecki, S., Strain, C.R.

and McSorley, E.M. (2014). 

Potential of a renin inhibitory peptide 

from the red seaweed Palmaria 

palmata as a functional food 

ingredient following confirmation and 

characterization of a hypotensive 

effect in spontaneously hypertensive 

rats.  

Journal of Agricultural and Food 

Chemistry 

2014 Fitzgerald, C., Aluko, R.E., Hossain, 

M., Rai, D.K. and Hayes, M.(2014). 

Increasing the health benefits of 

bread: assessment of the physical 

and sensory qualities of bread 

formulated using a renin inhibitory 

Palmaria palmata protein 

hydrolysate. 

Lebensmittel-Wissenschaftund-

Technologie 

2014 Fitzgerald, C., Gallagher, E., Doran, 

L., Auty, M., Prieto, J. and Hayes, 

M. (2014). 

In vitro assessment of the multi-

functional bioactive potential of 

Alaska pollock skin collagen following 

simulated gastrointestinal digestion.  

Journal of the Science of Food and 

Agriculture 

2014 Guo, L. Harnedy, P.A., Li, B., Zhang, 

Z., Hou, H., Zhao, X. and FitzGerald, 

R.J. (2014).  

Food protein-derived chelating 

peptides: biofunctional ingredients 

for dietary mineral bioavailability 

enhancement.  

Trends in Food Science & 

Technology 

2014 Guo, L., Harnedy, P.A., Li, B., Hou, 

H., Zhang, Z., Zhao, X. and 

FitzGerald, R.J. (2014).  

Fatty acid contents and profiles of 16 

macroalgae collected from the Irish 

coast at two seasons. 

 Journal of Applied Phycology 2014 Schmid, M., Guihéneuf, F., Stengel, 

D.B. (2014).

Bioactive peptides and their potential 

use for the prevention of diseases 

associated with Alzheimer’s disease 

and mental health disorders: Food for 

thought?  

Annals of Psychiatry and Mental 

Health 

2014 Hayes, M. (2014). 

Bioactive compounds from marine 

mussels and their effects on human 

health.  

Food Chemistry  2014 Grienke,U., Silke, J., and Tasdemir, 

D. (2014).
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Antioxidant activity and phenolic 

content of pressurised liquid and 

solid-liquid extracts from four Irish 

origin macroalgae. 

International Journal of Food 

Science & Technology 

2014 Heffernan, N., Smyth, T.J., 

FitzGerald, R.J., Soler-Vila, A. and 

Brunton, N.P. (2014). 

An examination of the potential of 

seaweed extracts as functional 

ingredients in milk.  

International Journal of Dairy 

Technology 

2014 O’Sullivan, A.M., O’Callaghan, Y.C., 

O’Grady, M.N., Waldron, D.S., 

Smyth, T.J., O’Brien, N.M., and 

Kerry, J.P. (2014).  

Towards the biorefinery concept: 

interaction of light, temperature and 

nitrogen for optimizing the co-

production of high-value compounds 

in Porphyridium purpureum.  

Algal Research 2015 Guiheneuf, F. and Stengel, D.B. 

(2015).  

Seaweed polysaccharides (laminarin 

and fucoidan) as functional 

ingredients in pork meat: an 

evaluation of anti-oxidative potential, 

thermal stability and bioaccessibility.  

Marine Drugs 2015 Moroney, N.C., O’Grady, M.N., 

Lordan, S., Stanton, C., and Kerry, 

J.P. (2015).  

Seasonal and geographical variations 

in the biochemical composition of the 

blue mussel (Mytilus edulis L.) from 

Ireland. 

Food Chemistry 2015 Fernández, A., Grienke, U., Soler-

Vila, A., Guihéneuf, F., Stengel, D.B. 

and Tasdemir, D. (2015).  

Purification and identification of 

dipeptidyl peptidase (DPP) IV 

inhibitory peptides from the 

macroalga Palmaria palmate. 

Food Chemistry 2015 Harnedy, P.A., O’Keeffe, M.B, and 

FitzGerald, R.J. (2015). 

Profiling of the molecular weight and 

structural isomer abundance of 

macroalgae derived phlorotannins.  

Marine Drugs 2015 Heffernan, N., Brunton, N.P., 

FitzGerald, R.J. and Smyth, T.J. 

(2015). 

Phenolic content and antioxidant 

activity of fractions obtained from 

selected Irish macroaglae species 

(Laminaria digitata, Fucus serratus, 

Gracilaria gracilis and Codium 

fragile).  

Journal of Applied Phycology 2015 Heffernan, N., Smyth, T.J., Soler-

Vila, A., Fitzgerald, R.J. and 

Brunton, N.P. (2015). 

Optimization of ultrasound assisted 

extraction of bioactive components 

from brown seaweed Ascophyllum 

nodosum using response surface 

methodology.  

Ultrasonics sonochemistry 2015 Kadam, S.U., Tiwari, B.K., Smyth, 

T.J. and O’Donnell, C.P. (2015). 

Intra-thallus differentiation of fatty 

acid and pigment profiles in some 

temperate Fucales and Laminariales.  

Journal of Phycology 2015 Schmid, M. and Stengel, D.B. 

(2015).  

Influence of level and duration of 

feeding polysaccharide (laminarin 

and fucoidan) extracts from brown 

seaweed (Laminaria digitata) on 

Meat Science 2015 Moroney, N.C., O'Grady, M.N., 

Robertson, R.C., Stanton, C., 

O'Doherty, J.V. and Kerry, J.P. 

(2015). 
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quality indices of fresh pork.  

Influence of green seaweed (Ulva 

rigida) supplementation on the 

quality and shelf-life of Atlantic 

salmon fillets.  

Journal of Aquatic Food Product 

Technology  

2015 Moroney, N.C., Wan, A.H.L., Soler-

Vila, A., O'Grady, M.N., FitzGerald, 

R.D., Johnson, M.P. and Kerry, J.P.

(2015) 

Inclusion of Palmaria palmata (red 

seaweed) in Atlantic salmon diets: 

effects on the quality, shelf-life 

parameters and sensory properties of 

fresh and cooked salmon fillets.  

Journal of the Science of Food and 

Agriculture 

2015 Moroney, N.C., Wan, A.H.L., Soler-

Vila, A., FitzGerald, R.D., Johnson, 

M.P. and Kerry, J.P. (2015).

Hydrodynamic characterisation of 

chitosan and its interaction with two 

polyanions: DNA and xanthan.  

Carbohydrate Polymers  2015 Almutairi, F.M., Erten, T., Adams, 

G.G., Hayes, M., McLoughlin, P., 

Kok, M.S., Mackie, A.R., Rowe, A.J.

and Harding S.E. (2014). 

Fractionation and identification of 

Alaska pollock skin collagen-derived 

mineral chelating peptides.  

Food Chemistry 2015 Guo, L., Harnedy, P.A., O’Keeffe, 

M.B, Zhang, Z., Li, B., Hou, H. and 

FitzGerald, R.J. (2015). 

Extraction, structure and 

biofunctional activities of laminarin 

from brown algae.  

International Journal of Food 

Science & Technology 

2015 Kadam, S.U., Tiwari, B.K. and 

O'Donnell, C.P. (2015). 

Extraction of antioxidant and ACE 

inhibitory peptides from Thai 

traditional fermented shrimp pastes. 

Food Chemistry 2015 Kleekayai, T., Harnedy, P.A., 

O’Keeffe, M.B, Poyarkov, A.A., 

CunhaNeves, A., Suntornsuk, W. 

and FitzGerald, R.J. (2015) 

Effects of polysaccharide rich extracts 

obtained from the brown seaweed 

Laminaria digitata on human 

microbiota in an in vitro model of the 

distal colon.  

Proceedings of the Nutrition 

Society 

2015 Strain, C.R., Collins, K.C., Smyth, 

T.J., Soler-Vila, A., Rea, M.C., 

Stanton, C., Ross, R.P., Allsopp, P.J., 

Naughton, V., and McSorley, E.M. 

(2015) 

Effect of ultrasound pretreatment on 

the extraction kinetics of bioactives 

from brown seaweed (Ascophyllum 

nodosum).  

Separation Science and Technology 2015 Kadam, S.U., Tiwari, B.K., 

O’Connell, S., O’Donnell, C.P. 

(2015).  

Effect of ultrasound pre-treatment on 

the drying kinetics of brown seaweed 

Ascophyllum nodosum.  

Ultrasonics Sonochemistry 2015 Kadam, S.U., Tiwari, B.K. and 

O’Donnell, C.P. (2015). 

Cardioprotective potential of Irish 

macroalgae: Generation of glycine 

betaine and DMSP containing 

extracts by accelerated solvent 

extraction.  

Planta Medica 2015 Valverde, J., Hayes, M., 

McLoughlin, P., Rai, D. K. and Soler-

Vila, A. (2015). 

The anti-inflammatory effect of 

algae-derived lipid extracts on human 

THP-1 macrophages.  

Accepted by Marine Drugs  2015 Robertson R., Stanton C. Guihéneuf 

F., Ross P., Bahar B., Schmid M., 

Stengel D.B. and Fitzgerald G.  

Cardioprotective cryptides derived 

from fish and other food sources: 

Generation, application and future 

Journal of Agriculture and Food 

Chemistry 

2015 Mora, L. and Hayes, M. (2015) 
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markets.  

Angiotensin converting enzyme and 

dipeptidyl peptidase-IV inhibitory, 

and antioxidant activities of a mussel 

meat protein extract and its 

hydrolysates.  

Journal of Aquatic Food Product 

Technology 

2015 CunhaNeves, A., Harnedy P.A., and 

FitzGerald, R.J. (2015).  

Prospects and challenges for 

industrial production of seaweed 

bioactives 

Journal of Phycology 2015 Hafting, J.T., Craigie, J.S., Stengel 

D.B., Loureiro, R.R., Buschmann,

A.H., Yarish, C., Edwards, M.D. and 

Critchley, A.T. 

Prawn shell chitosan has anti-

obesogenic properties, influencing 

both nutrient digestibility and 

microbial populations in a pig model  

 PLoS One. 2015; 10(12): e0144127 2015 Á. M Egan, T. Sweeney, M. Hayes, J. 

V. O’ Doherty.

The Omega-3 Polyunsaturated Fatty 

acid Docosahexaenoic acid (DHA) 

reverses Corticosterone-induced 

Changes in Cortical neurons. 

Int J Neuropsychopharmacol 2015 Pusceddu, M.M., Nolan, Y. M., 

Green, H. F., Robertson, R. C., 

Stanton, C. Kelly, P., Cryan, J. F., 

Dinan, T. G 

The effect of consuming Palmaria 

palmata‑enriched bread on 

inflammatory markers, antioxidant 

status, lipid profile and thyroid 

function in a randomised 

placebo‑controlled intervention trial 

in healthy adults 

Eur J Nutr 2015 Allsopp P, Crowe W, Bahar B, 

Harnedy PA, Brown ES, Taylor SS, 

Smyth TJ, Soler-Vila A, Magee PJ, 

Gill CI, Strain CR, Hegan V, Devaney 

M, Wallace JM, Cherry P, FitzGerald 

RJ, Strain JJ, O'Doherty JV, 

McSorley EM. 

Cardioprotective cryptides derived 

from fish and other food sources: 

Generation, application and future 

markets 

Journal of Agricultural and Food 

Chemistry 

2015 Mora L, Hayes M,  

Red and green macroalgae for fish 

and animal feed and human 

functional food development 

Food Research International 2015 Vaquero M, Hayes M 

Prawn shell chitosan exhibits anti-

obesity effects through alterations to 

hypothalamic and intestinal gene 

expression in vivo. 

PLoS One. 2016   2016 Á. M Egan, T. Sweeney, S. Vigors, J. 

V. O’ Doherty. PLoS One 

(Accepted). 

The anti-inflammatory potential of 

seaweed extracts in in vitro and ex 

vivo models of the gastrointestinal 

tract. 

Innovative Food Science and 

emerging technologies  

2016 Á. M Egan, B. Bahar, T. Sweeney, T. 

Smyth, J. V. O’ Doherty (Submitted) 

8.5.3. Books and book chapters 

Members of the NutraMara consortium contributed chapters to books or were responsible 

for editing major books relating to the use of marine bioresources. These are listed below in 

Table 34 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Allsopp%20P%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Crowe%20W%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bahar%20B%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Harnedy%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20ES%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Taylor%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smyth%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Soler-Vila%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Magee%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gill%20CI%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Strain%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hegan%20V%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Devaney%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Devaney%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wallace%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cherry%20P%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=FitzGerald%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=FitzGerald%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=Strain%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=O'Doherty%20JV%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
http://www.ncbi.nlm.nih.gov/pubmed/?term=McSorley%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=26254196
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Table 34 Books and Book chapters by NutraMara researchers 

Title Publication Date Authors 

Antihypertensive peptides from 

marine origin. 

In Hernández-Ledesma, B. and 

Herrero, M. (Eds.): Bioactive 

Compounds from Marine Foods: 

Plant and Animal Sources, Wiley-

Blackwell. 

2013 Norris, R., Harnedy, P.A. & 

FitzGerald, R.J.  

Bioactive proteins and peptides 

from macroalgae, fish, shellfish and 

marine processing waste.  

In: Kim, S.K. (Ed.): Marine Proteins 

and Peptides: Biological Activities 

and Applications, Wiley-Blackwell 

2013 Harnedy, P.A. & FitzGerald, R.J.  

Algae-derived polyunsaturated 

fatty acids: Implications for human 

health.  

In: Polyunsaturated Fatty Acids: 

Sources, Antioxidant Properties 

and Health Benefits 

2013 Robertson, R., Guihéneuf, F., 

Schmid, M., Stengel, D.B., 

Fitzgerald, G., Ross, P. and 

Stanton C. (2013).  

Bioactive peptides from marine 

processing by-products. 

In: Bioactive Compounds from 

Marine Foods: Plant and Animal 

Sources, First edition, Edited by 

Blanca Hernández-Ledesma and 

Miguel Herrero, (Wiley & Sons, 

2014), 57-72 

2013 Hayes, M., and Flower, D. (2013). 

Biological activities of proteins and 

marine-derived peptides from by-

products and seaweeds.  

In: Marine Proteins and Peptides: 

Biological Activities and 

Applications, First edition, Se-

Kwon S Kim (editor), John Wiley & 

Sons, 139-166 

2013 Hayes, M., (2013). 

Algae-derived polyunsaturated 

fatty acids: Implications for human 

health. 

In: Polyunsaturated fatty acids: 

Sources, antioxidant properties 

and health benefits. Ed: Catalá A. 

Nova Sciences Publishers, Inc., 

Hauppauge, NY 11788 USA. 

2013 Robertson R., Guihéneuf F., 

Schmid M., Stengel D.B., 

Fitzgerald G., Ross P., and 

Stanton C., 2013.   

Nutraceuticals derived from marine 

sources: Extraction and application 

of bioactive carbohydrates, 

proteins and peptides as functional 

ingredients.  

In: Nutraceuticals and Functional 

Foods: Natural Remedy. Nova 

Publishers. 

2014 Hayes, M., and Valverde, J. 

(2014). 

Natural Products from Marine 

Algae: Methods and Protocols. 

Humana Press, Springer 2015 Stengel, D.B. and Connan, S. 

(editors) (2015). 

Marine processing proteinaceous 

by-products: sources, 

characterization, purification and 

In:Dhillon, G.S. (Ed): Waste-

derived proteins: Transformation 

from environmental burden into 

2015 Neves, A.C. Harnedy, P.A., and 

FitzGerald, R.J. 
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applications.  value-added products. Elsevier 

(accepted) 

Extraction and enrichment of 

protein from red and green 

macroalgae.  

In Stengel, D.B. and Connan, S 

(Eds): Natural Products from 

Marine Algae, Methods and 

Protocols, Springer. 

2015 Harnedy, P.A., and FitzGerald, R. 

J. (2015).

Marine algae a source of biomass 

for biotechnological applications. 

In: Natural Products from Marine 

Algae: Methods and Protocols, 

Springer.  

2015 Stengel, D.B. and Connan, S. 

(2015).  

Lipids and fatty acids in algae: 

extraction, fractionation into lipid 

classes, and analysis by gas 

chromatography coupled with 

flame ionisation detector (GC-FID). 

In: Natural Products from Marine 

Algae: Methods and Protocols.  

2015 Guiheneuf, F., Schmid, M. and 

Stengel, D.B. (2015). 

The Gut-Brain Axis: Dietary, 

Probiotic, and Prebiotic 

Interventions on the Microbiota 

The Gut-Brain Axis: Dietary, 

Probiotic, and Prebiotic 

Interventions on the Microbiota: 

Academic Press 

2016 Niall Hyland, Catherine Stanton 

(Eds) 

8.5.4. Posters 

Byrne A., Schmid M. and Stengel D.B. Omega 3s under the seas: Increasing bioactive compounds in seaweeds. 

Environ - Irish Environmental Researchers’ Colloquium Galway February 2013  

Guihéneuf, F. and Stengel, D.B. Culture Strategies to Enhance the Potential of Microalgae as a Source of 

Bioactives for “Healthy” Foods. Natural Product Biotechnology 2014, 18-20 November 2014, Inverness, Scotland  

Kirke, D., Smyth, T., Rai, D. and Stengel, D.B. Optimisation of phlorotannin-enriched food products from 

commercially valuable Irish seaweeds. Natural Product Biotechnology 2014. 18-20 November 2014, Inverness, 

Scotland 

Kirke, D., Smyth, T., Rai, D. and Stengel, D.B. Optimisation of phlorotannin profiles for the enrichment of 

seaweed-based food products. 43rd Annual Food Research Conference, UCD, Ireland (poster)  

Schmid M., Guihéneuf F. and Stengel D.B. Optimised utilisation of Irish seaweeds as a source for bioactive 

compounds with potential applications in Functional Foods, NutraMara conference, Dublin, June 2015  

Schmid M. and Stengel, D.B. Optimised utilization of Irish seaweeds as a source for bioactive compounds, Natural 

Product Biotechnology, Inverness Scotland, November 18th-22nd 2014   

Schmid M., Guihéneuf F. and Stengel, D.B. Irish seaweeds as a source of pigments and fatty acids as bioactive 

compounds with potential applications in functional foods, NutraMara conference, Dublin, April 2012  

Stack, J., Le Gouic, A., Guihéneuf, F., Tobin, P., Stengel, D.B. and FitzGerald, R.J. Antioxidant activity of protein 

hydrolysates from Porphyridium purpureum and Phaeodactylum tricornutum. NutraMara Conference, Dublin, 

Ireland, 29-30th June 2015. 

Guihéneuf, F. and Stengel, D.B. Challenges and strategies for optimised production of bioactive compounds from 

microalgae for food applications. NutraMara Conference, Dublin, Ireland, 29-30th June 2015. 
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Guihéneuf, F. and Stengel, D.B. Culture Strategies to Enhance the Potential of Microalgae as a Source of 

Bioactives for “Healthy” Foods. Natural Product Biotechnology 2014, 18-20 November 2014, Inverness, 

Scotland. 

Guihéneuf, F. and Stengel, D.B. LC-PUFA-Enriched Oil Production by the Marine Haptophyte Pavlova lutheri: The 

Importance of Inorganic Carbon Availability. Royal Society of Chemistry Conferences: Sustainable Chemicals 

from Microalgae: Encompassing Biocrude through to Fine Chemicals. The Chemistry Center, 19 November 2013, 

London, UK. 

Guihéneuf, F. and Stengel, D.B. Marine microalgae as potential sources of nutritionally important PUFA. 

NutraMara Conference, Dublin, Ireland, 25th and 26th April 2012. 

Schmid, M., Guihéneuf, F. and Stengel, D.B. Irish seaweeds as a source of pigments and fatty acids as bioactive 

compounds with potential applications in functional foods. NutraMara Conference, Dublin, Ireland, 25th and 26th 

April 2012. 

Guihéneuf, F. and Stengel, D.B. Marine microalgae as potential alternative sources of bioactive compounds for 

food applications. 9th European Workshop “Biotechnology of Microalgae”, Nuthetal, Germany, 4th and 5th June 

2012. 

Guihéneuf, F. and Stengel, D.B. Marine microalgae as potential sources of nutritionally important PUFA. Marine 

Biodiversity/discovery 'event', Ryan Institute, NUI Galway, Ireland, 7th June 2012. 

Guihéneuf, F. and Stengel, D.B. Marine microalgae as potential alternative sources of bioactive compounds for 

food applications. Ryan Institute Launch and Symposium, NUI Galway, Ireland, 10th July 2012. 

Harnedy P.A., O’Keeffe M.B. & FitzGerald, R. Isolation and characterisation of dipeptidyl peptidase (DPP) IV 

inhibitory peptides from Palmaria palmate, NutraMara Conference Dublin June 2015 

Mullan, C., Harnedy, P.A., Mc Laughlin, C., Parthsarathy, V., Allsopp, P.J., McSorley, E.M., FitzGerald, R.J. & 

O’Harte, F.P.M. Synthetic peptides isolated from the macroalga Palmaria palmata demonstrate dipeptidy-

peptidase-4 inhibitory actions on GLP-1 degradation using a HPLC assay system. NutraMara Conference Dublin 

June 2015 

CunhaNeves, A., Harnedy P.A. and FitzGerald, R.J. Extraction, purification and characterisation of biofunctional 

peptides from marine waste/co-products. The world is your oyster: How You Eat It Is Up to You, NutraMara 

Student Conference, Dublin, Oct 2013. 

Flaherty, T., Harnedy P.A. & FitzGerald, R.J. Assessment of the biological activity of peptide and amino acid 

extracts from the macroalgae Palmaria palmata NutraMara Student Conference, Dublin, Oct 2013 

CunhaNeves, A., Harnedy P.A. & FitzGerald, R.J.Adaption and optimisation of a protein extraction protocol for 

salmon processing by-products NutraMara Conference, Dublin, April 2012 

Flaherty, T., Harnedy P.A. & FitzGerald, R.J. Seasonal and Geographical Variation of Total Nitrogen, Protein 

Nitrogen and Non-Protein Nitrogen Content of Macroalgae Native to the Irish Coastline NutraMara 

Conference, Dublin, April 2012 

O’Sullivan, A.M., O’Grady, M.N., O’Callaghan, Y.C., Smyth, T.J., O’Brien, N.M. and Kerry, J.P. (2015). Seaweed 

extracts as potential functional ingredients in yoghurt. NutraMara Conference (Harnessing Marine Bioresources for 

Innovations in the Food Industry), Royal Dublin Society (RDS) Dublin.  29 – 30 June 2015 (p. 75).   
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Moroney, N.C., O’Grady, M.N., Wan, A., Soler-Vila, A., Johnson, M., Fitzgerald, R. and Kerry, J.P. (2012). 

Inclusion of seaweed (Palmaria palmata) in salmon diets: Effects on fresh salmon fillet quality.  41st Annual UCC 

Food Research Conference, University College Cork.  26 – 27 April 2012.   

Moroney, N.C., O’Grady, M.N., Wan, A., Soler-Vila, A., Johnson, M., Fitzgerald, R. and Kerry, J.P. (2012). 

Supplementation of salmon diets with red macroalgae (Palmaria palmata): Effects on fresh salmon fillet quality. 

Nutramara Conference (Bioactive Components from Marine Sources and By-Product Utilisation and Valorisation), Dublin.  

25 – 26 April 2012 (p. 50-51).   

Moroney, N.C., O’Grady, M.N., O’Doherty, J.V. and Kerry, J.P. (2011). Addition of seaweed polysaccharides from 

brown seaweed (Laminaria digitata) to porcine diets: Influence on the oxidative stability of organ tissues and fresh 

pork quality. 62nd Annual EAAP (European Association for Animal Production) Meeting, Stavanger, Norway.  29 August 

– 2 September 2011 (p. 358).

Moroney, N.C., O’Grady, M.N., O’Doherty, J.V. and Kerry, J.P. (2010). Assessment of the effect of dietary 

laminarin and fucoidan supplementation on the quality of fresh pork. Proceedings of the EFFoST (European 

Federation of Food Science and Technology (EFFoST) Conference, Dublin. 10 – 12 November 2010.   

O’Sullivan, A.M., O’Callaghan, Y.C., O’Grady, M.N., Hayes, M., Kerry, J.P. and O’Brien, N.M. (2012). Influence of 

the extraction solvent on the DNA-protective compounds extracted from brown seaweed. Nutramara 

Conference (Bioactive Components from Marine Sources and By-Product Utilisation and Valorisation), Dublin. 25 – 26 

April 2012 (p. 40).   

O’Sullivan, A.M., O’Callaghan, Y.C., O’Grady, M.N., Kerry, J.P. and O’Brien, N.M. (2009). Determination of the 

antioxidant potential of seaweed extracts using different methods. Proceedings of the Nutrition Society, 68 (OCE3), 

E110, Belfast, N. Ireland.  17 – 19 June 2009.   

Robertson, R. C., Guihéneuf, F., Bahar, B., Schmid, M., Stengel, D.B., Fitzgerald, G., Ross, P. and Stanton C. – The 

anti-inflammatory effect of algae-derived lipid fractions in THP-1 macrophages. NutraMara Postgraduate 

Dissemination Open Day (October 2013) 

Robertson, R. C., Fitzgerald, G., Ross, P. and Stanton C.  - An investigation into the modulation of the gut 

microbiota following in vitro fermentation of a seaweed polyphenol extract. 8th World Congress on Polyphenol 

Applications, Lisbon, Portugal, June 2014 

Robertson, R. C., Fitzgerald, G., Ross, P. and Stanton C.  An investigation into the modulation of the gut 

microbiota following in vitro fermentation of a seaweed polyphenol extract. UCC and Imperial College London 

Joint Postgraduate Symposium in Food and Health, September 2014 

Robertson, R. C., Fitzgerald, G., Ross, P. and Stanton C.  An investigation into the modulation of the gut 

microbiota following in vitro fermentation of a seaweed polyphenol extract. Alimentary Pharmabiotic Centre 

Scientific Advisory Board Day, Cork, October 2014 

Robertson, R. C., Guihéneuf, F., Bahar, B., Schmid, M., Stengel, D.B., Fitzgerald, G., Ross, P. and Stanton C. The 

anti-inflammatory effect of algae-derived lipid fractions in THP-1 macrophages. New York Academy of Sciences 

Journey Through Science Day, New York, December 2014 

Nitecki, SS, Allsopp, PJ, Brown, EM, Soler-Vila, A, Magee, PJ, McSorley, EM, Gill, CIR, Strain, JJ. Anticancer activity 

of raw and digested Irish seaweed extracts on colorectal cancer cell lines in vitro. NutraMara international 

conference 2012, Dublin. 



199 

Nitecki, SS, Magee, PJ, McSorley, EM, Strain, JJ, Gill, CIR. Anticancer activity of raw and digested Irish Palmaria 

palmata seaweed extracts on colorectal cancer cell lines in vitro. The Institution of Biomedical Sciences (IBMS) 

Centenary Symposium 2012, Belfast. 

Nitecki, SS, Magee, PJ, McSorley, EM, Strain, JJ, Gill, CIR. Anticancer activity of raw and digested Irish Palmaria 

palmata seaweed extracts on colorectal cancer cell lines in vitro. European Nutraceutical Association 

international conference 2012, Munich. 

Allsopp, PJ, Brown, EM, Soler-Vila, A, Magee, PJ, Nitecki, SS, , Gill, CIR, Strain, JJ McSorley EM. “An investigation 

into the effect of consuming bread containing Palmaria palmata on markers of inflammatory status in healthy 

adults” IUNS 20TH International Congress of Nutrition September 15th 2013 

Strain, CS, Allsopp, PJ, Brown, EM, Soler-Vila, A, Magee, PJ, Nitecki, SS, Gill, CIR, Strain, JJ McSorley EM. Prebiotic 

potential of polysaccharide rich extracts obtained from Laminaria digitata. Society of general microbiology 

Strain, CS, Allsopp, PJ, Brown, EM, Magee, PJ, Gill, CIR, McSorley EM. Prebiotic potential of polysaccharide rich 

extracts obtained from Laminaria digitata. The World is Your Oyster: How you Eat It Is Up To You NutraMara 

student workshop 

C.R. Strain, K.C. Collins, T.J. Smyth, A. Soler-Vila, M.C. Rea, C. Stanton, R.P. Ross, P.J. Allsopp, V. Naughton and

E.M. McSorley Effects of polysaccharide rich extracts obtained from the brown seaweed Laminaria digitata on

human microbiota in an in vitro model of the distal colon.  Poster presentation at Nutrition Society Summer

meeting, ‘Carbohydrates in health: friends or foes?’ University of Glasgow

8.5.5. Conference presentations 

Allsopp, P.J., Brown, E.M., Soler-Vila, A., Magee, P.J., Nitecki, S.S, Gill, C.I.R., Strain, J.J. and McSorley, E.M. Mining 

seaweeds for bioactive ingredients. BIM seaweed workshop, December, 2012 

Allsopp, P.J., Brown, E.M., Soler-Vila, A., Magee, P.J., Nitecki, S.S, Gill, C.I.R., Strain, J.J. and McSorley, E.M. Insights 

into Research Careers in Marine and Food Science. NutraMara student workshop, October 2013 

Allsopp, P.J., Brown, E.M., Soler-Vila, A., Magee, P.J., Nitecki, S.S, Gill, C.I.R., Strain, J.J. and McSorley, E.M. An 

investigation into the effect of consuming bread containing Palmaria palmata on markers of inflammatory status in 

healthy adults. Infection and Immunity TRG meeting. Feb 2013  

Allsopp, P.J., Brown, E.M., Soler-Vila, A., Magee, P.J., Nitecki, S.S, Gill, C.I.R., Strain, J.J. and McSorley, E.M. Marine 

Bioactives in human health – NutraMara human intervention studies Sea to Shelf workshop – University of Ulster 

Coleraine, July 2013 

Allsopp, P.J., Brown, E.M., Soler-Vila, A., Magee, P.J., Nitecki, S.S, Gill, C.I.R., Strain, J.J. and McSorley, E.M. 

“Potential anticancer activity of Irish brown seaweed extracts in models of colon cancer”. British Phycology 

Society Meeting 7-10 July 2013 

Brown, E.M., Allsopp, P.J., Soler-Vila, A., Magee, P.J., Nitecki, SS, , Gill, C.I.R., Strain, J.J. and McSorley E.M. 

“Marine Bioactives in human health – NutraMara In vitro studies”. Sea to Shelf workshop – University of Ulster 

Coleraine, July 2013 

CunhaNeves, A., Harnedy P.A. and FitzGerald, R.J. Anti-diabetic and anti-oxidant potential of marine by-products 

derived peptides. Department of Life Sciences 2013 Annual Research Day, UL, May 2013. 
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CunhaNeves, A., Harnedy P.A. and FitzGerald, R.J. Extraction, purification and characterisation of biofunctional 

peptides from marine processing co-products, Department of Life Sciences, UL, 2014 Annual Research Day, 

Limerick, May 2014. 

CunhaNeves, A., Harnedy P.A. and FitzGerald, R.J. Extraction, purification and characterisation of biofunctional 

peptides from marine processing co-products. Young Life Scientists Ireland, Dublin, March 2014. 

CunhaNeves, A., Harnedy P.A. and FitzGerald, R.J. Extraction, purification and characterisation of biofunctional 

peptides from marine waste/co-products. The world is your oyster: How You Eat It Is Up to You, NutraMara 

Student Conference, Dublin, Oct 2013. 

CunhaNeves, A., Harnedy P.A. and FitzGerald, R.J. Mussel byssus Collagen hydrolysates Angiotensin converting 

enzyme Dipeptidyl peptidase IV Oxygen radical antioxidant capacity, 43rd Annual Food Research Conference, 

Dublin, December 2014. 

Fitzgerald, C., Gallagher, E. and Hayes, M. Isolation of heart healthy peptides derived from Palmaria palmata and 

incorporation into bread. EuroFoodChem XVII, July 2011 6th-8th. Gdansk, Poland. 

Fitzgerald, C. and Hayes, M. Characterisation of bioactive peptides from Palmaria palmata and the INFOGEST 

method. INFOGEST, COST Action 1005 meeting Madrid, Spain, 2014. 

Fitzgerald, C., Mora, L., Gallagher, E., Prieto, J., Soler-Vila, A. and Hayes, M. Isolation and characterisation of 

bioactive peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata, 10th Nordic 

Nutrition Conference, Reykjavik, Iceland June, 2012.  

FitzGerald, R.J. and Harnedy P.A. Biologically active peptides from marine protein sources. NutraMara 

Conference Dublin, June 2015 

FitzGerald, R.J. and Harnedy P.A. Proteins and peptides from marine sources: their potential as functional food 

ingredients. NutraMara Conference, Dublin, April 2012. 

Flaherty, T., Harnedy P.A. and FitzGerald, R.J. Assessment of the biological activity of peptide and amino acid 

fractions from the macroalgae Palmaria palmata. Department of Life Sciences 2013 Annual Research Day, UL, 

May 2013. 

Flaherty, T., Harnedy P.A. and FitzGerald, R.J. Extraction of nitrogenous compounds from Irish macroalgae. The 

world is your oyster: How You Eat It Is Up to You, NutraMara Student Conference, Dublin, Oct 2013. 

Flaherty, T., Harnedy P.A. and FitzGerald, R.J. Seasonal and Geographical Variation of Total Nitrogen, Protein 

Nitrogen and Non-Protein Nitrogen Content of Macroalgae Native to the Irish Coastline. Department of Life 

Sciences 2012 Annual Research Day, UL, May 2012. 

Guihéneuf, F. and Stengel, D.B. LC-PUFA-enriched oil production by the marine haptophyte Pavlova lutheri: 

combined effects of light, temperature, and inorganic carbon availability. 5th Congress of the International Society 

for Applied Phycology, Sydney, Australia, June 2014.  

Guihéneuf, F. and Stengel, D.B. The potential of microalgae as a source of food ingredients. NutraMara 

Conference, Dublin, Ireland, April 2012.  

Guihéneuf, F. and Stengel, D.B. The potential of Microalgae for “Healthy” Foods. The 23rd Irish Environmental 

Research’ Colloquium, ENVIRON 2013, Galway, Ireland, January 2013. 

Harnedy, P.A. and FitzGerald, R.J. Bioactive proteins, peptides and amino acids from marine sources. NutraMara 

Training Day, Dublin, May 2009. 
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Harnedy, P.A. and FitzGerald, R.J. Bioactivity of Palmaria palmata hydrolysates in vitro.  2nd Kiel Food 

Symposium, Max Rubner-Institut, Kiel, Germany. May 2012. 

Harnedy, P.A. and FitzGerald, R.J. Macroalgae: a reservoir of biofunctional peptides. NutraMara Industry Day, 

Dublin, Oct 2009. 

Harnedy, P.A. and FitzGerald, R.J. Macroalgal protein a potential source of biofunctional peptides: Extraction 

optimisation.  1st Kiel Food Symposium, Max Rubner-Institut, Kiel, Germany. May 2010. 

Hayes, M. Collagen and chitin generation from Irish Marine processing waste streams. NutraMara conference 

2012, 24th and 26th of April 2012, Castleknock Hotel and Country Club, Dublin, Ireland. 

Hayes, M. Las algas como Fuentes de ingredientes funcionales para alimentacion. CETMAR 2nd workshop, 24th 

June, Vigo, Galicia, Spain 2010. 

Hayes, M. Marine bioactive peptides and proteins including betaines: potential industry applications and 

challenges. International Marine Ingredients Conference 2013 September 22nd-24th, Oslo, Norway. 

Hayes, M. Marine bioresources for use as techno-functional and health beneficial ingredients. NutraMara 

conference 2015, 29th and 30th of June, 2015. Royal Dublin Society, Dublin. 

Hayes, M. Proteins from Macroalgae: Isolation and characterisation of bioactive peptides from red and green 

macroalgal species, Natural Product Biotechnology, Aberdeen, Scotland. 18th November 2014 

Hayes, M. Transport of food derived peptides across the blood brain barrier and development of an in vitro 

model. 106th AOCS annual meeting, 3-6th May 2015, Orlando, Florida, USA. 

Hayes, M., Valverde, J. and Soler-Vila, A. Edible seaweeds as a source of bioactive ingredients for functional foods: 

Screening through pressurised liquid extraction and H-NMR. EuroFoodChem XVII, Istanbul, Turkey, May 10-13th 

2013. 

Hayes, M. Waste not want not: Bioactive peptides from marine resources including macroalgae and by-products. 

105th AOCS annual meeting and expo, May 4-7th 2014, San Antonio, Texas, USA. 

Kirke, D., D. K. Rai, Smyth, T. and Stengel, D.B. Environmental impact on phlorotannin profiles of commercially 

valuable Irish brown seaweeds. 6th European Phycological Congress (EPC6). London, 2015.  

Kirke, D., D. K. Rai, Smyth, T. and Stengel, D.B. The influence of environmental factors on phlorotannin profiles 

of commercially valuable Irish brown seaweeds. Environ 25: Sustainability and Opportunities for Change. Sligo, 

2015 

McSorley_EM Radio interview: Seaweed and human health (Super Human Radio), April 2014 

Allsopp, P. “Insights into Research Careers in Marine and Food Science” NutraMara student workshop,  The 

World is Your Oyster: How you Eat It Is Up To You. October 2013. 

Robertson, R.C., Seira Oriach, C., Cryan, J.F., Dinan, T.G. and Stanton, C. In utero  and early life omega-3 status 

alters neurobehaviorual outcomes in C57BL/6 mice. NutraMara Conference, Dublin, June 2016. 

Schmid M. and Stengel D.B. Combined effects of temperature, light, nitrogen and carbon source on the bioactive 

profile in seaweeds. 5th Congress of the International Society of Applied Phycology, Sydney, Australia, June 2014.  

Schmid M. and Stengel D.B. Enhancement of PUFAs, phycobilins and carotenoids in two Irish macroalgal species 

(Palmaria palmata, Fucus serratus) through optimised cultivation. International Phycological Congress, Orlando 

Florida, USA, August 2013.  

http://www.nutramara.ie/assets/files/Pdfs/Presentations%20from%20NutraMara%20Conf%202015/maria-hayes-marine-bio-resources-for-use-as-techno-functional-and-health-beneficial-ingredients.pdf
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Schmid M., Guihéneuf F. and Stengel D. B. Plasticity of fatty acid profiles and contents in seaweeds. 6th European 

Phycological Congress, London, August 2015. 

Schmid M., Guihéneuf F. and Stengel D. B. You are where and when you eat: seasonal and spatial variability in 

edible seaweed bioactives. The 23rd Irish Environmental Researchers' Colloquium, ENVIRON 2013, NUI Galway, 

Ireland, January 2013.  

Stanton, C. Marine ingredients for enhanced gut and brain function. NutraMara Conference, Dublin, June 2015. 

Stengel D. B. ‘Variability in bioactivity of algal compounds – implications for commercial applications’, NutraMara 

Conference, Dublin, April 2012. 

Stengel D.B. Bioactives from marine algae – overview of some research activities at NUI Galway. 18-20 

November Inverness, Scotland, oral presentation at Natural Product Biotechnology Inverness, UK, November 

2014. 

Stengel D.B. Variability in algal bioactives – the good, the bad and the unknown International Society of Applied 

Phycology, Sydney, invited symposium presentation, June 2014. 

Stengel, D. B. Applications of marine algae in food and health – recent developments and remaining challenges. 

NutraMara Conference. Dublin June, 2015. 

Stengel, D. B. Bridging the gap between algal ecology and biotechnology – more than just learning a new language. 

6th European Phycological Congress (EPC6) London, 2015.  

Stengel, D.B. Ireland has vast & valuable seaweed resources – fact or fiction? INFOMAR Seminar 2013 

Achievements, Opportunities, Innovation. University of Limerick/Marine Institute. October 2013. Invited talk. 

Stengel, D.B. The Algal Biorefinery Concept. The European Marine Biotechnology ERA-NET Stakeholders’ 

Meeting, , Portugal. Invited keynote address, Lisbon, October 2014.  

Strain, C.S., Allsopp, PJ, Brown, EM, Magee, PJ, Gill, CIR, McSorley EM. Prebiotic potential of polysaccharide rich 

extracts obtained from Laminaria digitata. NutraMara student workshop, The World is Your Oyster: How you 

Eat It Is Up To You. October 2013.  

Troy, D.J. Marine Functional Foods – Research Needs Biomarine International Conference, Halifax Nova Scotia 

September, 2013. 

8.5.6. Conferences 

The NutraMara programme organised various conferences and workshops aimed at securing 

insights from industry; to highlight research programme outputs; to promote opportunities 

for industry collaboration; and to provide opportunities to early stage researchers to discuss 

their work. The two international conferences organised by the NutraMara consortium 

provided an opportunity to build new national and international linkages, raise the 

international profile of Ireland’s marine functional foods research capacity and showcase 

research outputs. Together, the 2012 and the 2015 conferences attracted over 350 

participants from industry, national research funding agencies, government departments and 

research performers from Ireland and overseas. Dedicated conferences targeting specific 

groups were also organised; including an early stage research conference and industry 
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conference. Table 35 below lists the conferences and the numbers of participants. Appendix 

5 contains the programmes from these conferences and indicates the diversity of topics 

presented and discussed. 

Table 35 NutraMara Conferences and Workshops 

Conference Target 

audience 

Date Number of 

attendees 

Research opportunities for industry Industry 2010 60 

NutraMara Conference Industry/research 2012 102 

NutraMara Student Conference Early researchers 2013 40 

NutraMara Conference Industry/research 2015 250 

8.6. Additional research activity/awards 

NutraMara has created a solid research platform and generated new research capacity that 

is being used to develop functional food ingredients from marine bio-resources. The 

strength of the NutraMara research programme is reflected in the successes of Principal 

Investigators working within the research consortium in winning significant further research 

funds. These awards build on the expertise of the PI, and the network of multi-disciplinary 

research activity of NutraMara. A characteristic of the additional research awards is the 

inter-institution collaborations involving PIs working within the NutraMara programme.  

Not only have NutraMara PIs been successful in securing funds from national agencies, they 

have also secured research funds from international sources and in doing so, built new 

collaborative linkages (Table 36). Principal Investigators involved in the NutraMara 

consortium secured additional funds of close to €6.2 million for research on the use of 

marine organisms in food and health related applications. 

Table 36 Research awards to NutraMara Scientists 

Project title Host PI Partners Grant Source 

SMART FOOD-Science based 
'Intelligent/Functional and Medical Foods for 
Optimum Brain Health, Targeting Depression 
and Cognition  

Teagasc Catherine Stanton NUI Galway, 
UCC 

€595,846  DAFM 

Marine Compounds to enhance productivity 
and health in pigs  

UCD John O’Doherty n/a €99,387  DAFM 

Seaweed extracts to reduce Campylobacter in 
chickens  

UCD Torres Sweeney n/a €95,195  DAFM 

Seaweeds as a source of non-digestible 
complex polysaccharide components for the 
development of novel prebiotic ingredients 
for the functional food industry  

UCC Paul Ross NUI Galway, 
UU  

€601,078  DAFM 

The anti-inflammatory and microbial 
modulating effects of marine derived 
laminarin and omega-3 fatty acids on 
inflammatory bowel disease in an 

UCD Torres Sweeney UCC €493,064  DAFM 
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experimental porcine model  
Marine sourced Peptides for Glycaemic 
Management  

UL Dick FitzGerald UU €581,117  DAFM 

Iodine in commercially valuable Irish 
seaweeds: variability, pathways, and 
implications for industrial applications 

NUI Galway Dagmar Stengel n/a €244,843 SFI 

Optimisation and standardisation of 

phlorotannin profiles of commercially 

valuable seaweeds with food applications  

NUI Galway Dagmar Stengel Teagasc €78,000 Teagasc 

Comparative extraction technologies applied 

to selected micro- and macroalgae for 

optimised compound yield 

NUI Galway Dagmar Stengel n/a €24,000 IRC 

Technology Development Award UL Dick FitzGerald n/a €115,682 SFI 
The Macroalgal Fibre Initiative: ‘natural 
molecules naturally’. 

UCD John O’Doherty UCD €1,222,140 SFI 

Delivering Processed Meat Products with 

Health Benefits – NutriMeat 

UCD Joe Kerry Teagasc, UCC €141,400 DAFM 

Fulbright Scholarship  Harvard 

University  

Ruairi Robertson Teagasc, UCC Fulbright 

Isolation of fatty acids from  seaweeds Teagasc Michelle Tierney Memorial 

University 

Canada 

Ireland-Newfoundland 

partnership 

Natural compounds to enhance productivity, 
quality and health in intensive farming 
systems 

UCD John O’Doherty UCD €533,125 EU  

Novel Extraction Processes for multiple high-
value compounds from selected Algal source 
materials  

NUIG Dagmar Stengel UCC, Ghent, 
Unilever, & 
UiTromso 

€759,976 EU  

The high visibility of the NutraMara nationally, and the significant research outputs, together 

have attracted “new blood” into the marine functional foods research area. As a result, a 

number of NutraMara Principal Investigators were invited to join other research consortia in 

making submissions in response to national and international research calls. Table 37 lists the 

projects where NutraMara PIs are involved in funded projects and where new PIs were 

successful in winning marine foods related research awards that are linked to the work of 

NutraMara. Research grants in excess of €3 million contribute to expanding marine 

functional foods related research as well as generating new research capacity, much of which 

leverages upon the work done within the NutraMara consortium, including access to marine 

materials collected by the consortium.   
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Table 37 Projects with links to NutraMara research activity 

Project title Host PI Partners Grant Source 

The use of marine derived antibacterial agents 
to combat the prevalence of Salmonella in 
pork products  

UCC Alan Dobson Teagasc €490,000 DAFM 

Antioxidant and anti-inflammatory ingredients 
for health enhancement in the older 
population  

UL Dick FitzGerald UCC €495,472  DAFM 

Shelf-life Extension ingredient and processing 
technologies Applied to Fish  

Teagasc Declan Bolton UCD €583,100  DAFM 

Adding value to ready to eat crustacean 
products by improving their quality, safety 
and shelf life enhanced conventional and 
novel processing methods  

UCD James Lyng  Teagasc €599,983 DAFM 

Arsenic in Marine Macroalgae and 
Implications for Commercial Uses  

MI Evin McGovern NUIG €277,437  DAFM 

Mining marine materials for novel functional 
ingredients that modulate the immune 
response for benefit in inflammation and 
allergy  

DCU Christine Loscher  UL €557,526  DAFM 

Anticancer activity of seaweed extracts UU Philip Allsopp IT Sligo €6,000  UU  
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9. CONCLUSIONS

The NutraMara programme spanned the period 2008 to 2015 and involved six research 

partners collaborating on a jointly agreed research agenda to explore marine organisms as a 

source of functional ingredients. Allied to this goal, was a series of initiatives designed to 

provide feedback on research findings to industry and other audiences; attract additional 

research funds; and provide early stage researchers with opportunities for professional 

development. From the outset, NutraMara sought to develop synergies with other research 

projects possessing a marine bioresources or functional food research component. The 

funds provided by the Marine Institute and the Department of Agriculture, Food and the 

Marine led to the creation of a unique research capability, where expertise from the marine 

sciences and food sciences work on a common research agenda. This agenda anticipated and 

initiated areas of research subsequently identified as priorities in national strategies and 

development plans. NutraMara contributed to the international profile of Ireland as a focal 

point for functional foods research with the capabilities to engage in high-quality research. 

Findings from NutraMara have contributed to the world body of knowledge regarding the 

potential of developing novel functional ingredients from marine bioresources. The vision of 

providing dedicated funds to build research competencies in marine functional food has been 

amply rewarded as evidenced by;   

• Ireland’s capacity to engage in leading edge functional foods research being further
strengthened and reflected in the large number of peer reviewed publications, 
PhDs awarded and other publications produced by the project. 

• NutraMara has created research critical mass, attracting food and marine scientists
to collaborate, training 39 new researchers (PhD and PDoc) to work in an area of
increasing global importance; and in doing so establishing a solid foundation of 
expertise on which to build further capabilities for marine functional foods 
research. 

• As the first such integrated research programme in the marine-food space, it placed
Ireland to the fore in marine functional foods research and raised the international 
visibility of Irish researchers leading to international research collaboration.  

• Research collaborations established between researchers in the NutraMara initiative
facilitated a role for Irish researchers as partners in EU projects that target the 
use of marine bioresources.  

• Highlighted the strategic importance of understanding marine bioactives and
functional compounds from marine bioresources and of the need to employ 
environmentally, socially and economically sustainable methods in further 
developing them into value-added products.   

• Established Ireland as a focal point for marine functional ingredients research,
resulting in invitations from companies, research institutions and regional 
governments in Europe, North America and the Asia-Pacific region inviting 
NutraMara staff to participate in a variety of discussions overseas and to receive 
fact-finding missions to Ireland. 
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• Enabled linkages and synergies between the Beaufort Biodiscovery project and the
industry oriented Food for Health Ireland initiative, leading to shared services in 
managing data/materials, access to equipment and the provision of marine origin 
materials for evaluation on foot of formal agreements between projects.  

• Attracted a wide range of research expertise and competencies from areas typically
unconnected with the marine foods/marine research to work on related projects, 
creating an awareness of new methods and providing access to specialised 
equipment and facilities. 

• Broadened the awareness of the potential of marine bioresources in national policy
and strategy development, through the provision of knowledge and personnel to 
participate in working groups, steering groups etc. on Food Research Ireland, the 
National Research Prioritisation Exercise, Harnessing Our Ocean Wealth, SHARP, 
FoodHarvest 2020, Foodwise2025 and others. 

• Contributed to marine bioactive compounds, functional foods and marine
biotechnology research being prioritised by the Research Prioritisation Exercise, 
and identified as key opportunity areas requiring further research activity by 
SHARP and FoodWise 2025. 

• Stimulated links between industry and research providers and created an awareness
in industry, much of it unconnected with the marine sector, of the potential of 
marine bioresources as a source of novel compounds for food use as ingredients 
and in functional foods. 

• The knowledge transfer activity of NutraMara resulted in the provision of know-
how to companies seeking to create value from marine bioresources; leading to 
contracts for in-company consultancy between various firms and members of the 
NutraMara consortium. 

• Provided specialised training to the next generation of research scientists by
supporting students engaged on the NutraMara project to work in overseas 
laboratories to access specialised equipment, receive mentoring and attend 
conferences. 

• Resulted in the creation of a network of leading experts in food and marine
bioresources, which has demonstrated a lasting and successful collaboration in 
securing new research funding for marine functional foods and marine 
biotechnology oriented projects. This informal network supports the exchange of 
early stage researchers and has provided opportunities for PIs to work within new 
research areas.   

• The initial involvement of Ulster University (UU) in the NutraMara initiative led to
further and extensive cross-border collaboration between UU and Universities in 
the rest of the country, and with Irish industry, where the nutritional sciences 
expertise of UU is integrated within other marine foods/nutrition related projects. 

• Returned significant value from the original investment; producing 80 peer reviewed
publications at an average cost of €65,000 per publication and generating 
additional research funds of €9.2 million, almost double the original grant award 
to the NutraMara consortium.  

• Results from the NutraMara project highlight the importance of understanding the
biology of marine species when seeking to utilise them as sources of food 
ingredients. Knowledge of the natural variations that exist in the same species is 
essential when seeking to optimise processing conditions. The results also point 
to the importance of quantifying the extent of Ireland’s marine bioresources, if the 
harvesting and use of marine species is to be labelled as “sustainable”. 
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• NutraMara has provided Ireland’s food ingredients, marine foods and marine 
bioresources companies with new knowledge about the use of compounds 
extracted from marine species, with a source of expertise and research leadership 
to draw upon and equipped early stage researchers with industry relevant 
experience.  

• As a unique research initiative NutraMara has become strategically important in the 
development of Ireland’s marine bioresources sector and an essential knowledge 
provided to end-user of marine materials. Research outputs and impacts 
demonstrate its potential to address the challenges and opportunities described in 
Harnessing Our Ocean Wealth, FoodWise 2025 and the SHARP research plan.    

• The collaboration between leading Irish scientists working on the NutraMara 
initiative and other Irish scientists engaged in related research created a 
foundation on which to build a major research initiative. Such an initiative could 
make wide-ranging contributions to increase the competitiveness of Ireland’s 
marine bioresources sector. These include the creation of new revenue streams 
from marine bioresources; building science and technology platforms to underpin 
efforts to increase the value of marine bioresources; using research outputs to 
enhance the marketability of marine origin products; and provide robust, 
scientifically validated knowledge of the quality attributes of marine bioresources. 
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APPENDIX 2 – MICRO-ALGAL STRAINS IN CULTURE 

COLLECTIONS 

International Culture Collections  

Algobank, France:   http://www.unicaen.fr/algobank/ 

American Type Culture Collection:   http://www.atcc.org  

Antarctic Protist Culture Collection at Woods Hole, MA:   http://www.whoi.edu/science/B/protists/ 

Canadian Center for the Culture of Microorganisms 

(includes marine algae in NEPCC and Freshwater Algal 

Collection at UBC):  

 http://www3.botany.ubc.ca/cccm/index.html 

Cawthron Micro-Algae Collection:  
 http://www.cawthron.org.nz/seafood-safety-

biotechnology/micro-algae culture-collection.html  

Chlamydomonas Genetics Center:   http://www.chlamy.org 

Coimbra Culture Collection of Algae, Portugal (ACOI):    acoi.ci.uc.pt/ 

CSIRO Microalgae Research Center, Australia:   http://www.marine.csiro.au/microalgae/ 

Culture Collection at University of Marburg, Germany 

(based on the collection of Professor H.A.von Stosch):  
 http://staff-www.unimarburg.de/~cellbio/welcomeframe.html  

Culture Collection of Algae and Protozoa:   http://www.ife.ac.uk/ccap 

Culture Collection of Algae at the University of Cologne, 

Germany (CCAC):  
 http://www.ccac.uni-koeln.de/ 

Culture Collection of Algal Laboratory, Trebon, Czech 

Republic:  
 http://www.butbn.cas.cz/ccala/ccala.htm 

Culture Collection of Algae of Charles University Prague:   http://botany.natur.cuni.cz/algo/caup.html 

Culture Collection of Baltic Algae (Gdansk, Poland):   www.ocean.univ.gda.pl/~ccba/ien.php 

Culture Collection of Cyrophilic Algae, Germany:   http://cccryo.fraunhofer.de/web/infos/welcome/  

Culture Collection of Microorganisms from Extreme 

Environments:  
 http://cultures.uoregon.edu/default.htm 

Dunaliella Culture Collection:   http://www.dunaliella.org/dccbc/ 

Hawaii Culture Collection (see HR BioPetroleum):   www.hrbp.com/Technology/CultureCollection.html 

IAM Culture Collection in Japan (Transferred to National 

Institute of Environmental Studies (NIES), Japan):  
 http://www.nies.go.jp/biology/mcc/home.htm 

Loras College Diatom Culture Collection, USA 

(Transferred to UTEX):   

 http://www.bgsu.edu/departments/biology/facilities/algae/html

/DiatomCulture.html  

Marine Biotechnology Institute Culture Collection in 

Japan (Transferred to National Institute of Technology & 

Evaluation):  

 www.nbrc.nite.go.jp/e/070328-e.html 

http://www.unicaen.fr/algobank/
http://www.atcc.org/
http://www.whoi.edu/science/B/protists/
http://www3.botany.ubc.ca/cccm/index.html
http://www.cawthron.org.nz/seafood-safety-biotechnology/micro-algae%20culture-collection.html
http://www.cawthron.org.nz/seafood-safety-biotechnology/micro-algae%20culture-collection.html
http://www.chlamy.org/
http://acoi.ci.uc.pt/
http://www.marine.csiro.au/microalgae
http://staff-www.unimarburg.de/%7Ecellbio/welcomeframe.html
http://www.ife.ac.uk/ccap
http://www.ccac.uni-koeln.de/
http://www.butbn.cas.cz/ccala/ccala.htm
http://botany.natur.cuni.cz/algo/caup.html
http://www.ocean.univ.gda.pl/%7Eccba/ien.php?id=hp
http://cccryo.fraunhofer.de/web/infos/welcome/
http://cultures.uoregon.edu/default.htm
http://www.dunaliella.org/dccbc/
http://www.hrbp.com/Technology/CultureCollection.html
http://www.nies.go.jp/biology/mcc/home.htm
http://www.bgsu.edu/departments/biology/facilities/algae/html/DiatomCulture.html
http://www.bgsu.edu/departments/biology/facilities/algae/html/DiatomCulture.html
http://www.nbrc.nite.go.jp/e/070328-e.html
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National Institute of Environmental Studies, Japan 

(NIES):  
http://www.nies.go.jp/biology/mcc/home.htm 

Pasteur Culture Collection of Cyanobacteria: http://www.pasteur.fr/recherche/banques/PCC/ 

Provasoli-Guillard Culture Collection of Marine 

Phytoplankton:  
http://ccmp.bigelow.org 

Roscoff Culture Collection, France (RCC): http://www.sb-roscoff.fr/Phyto/RCC/index.php 

Sammlung von Algenkulturen Goettingen Germany  

(SAG):  
http://www.epsag.uni-goettingen.de 

Scandinavian Culture Collection of Algae and Protozoa: http://www.sccap.dk 

University of Texas Culture Collection of Algae: http://www.utex.org/ 

http://www.nies.go.jp/biology/mcc/home.htm
http://www.pasteur.fr/recherche/banques/PCC
http://ccmp.bigelow.org/
http://www.sb-roscoff.fr/Phyto/RCC/index.php
http://www.epsag.uni-goettingen.de/
http://www.sccap.dk/
http://www.utex.org/
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APPENDIX 3 – NUTRAMARA TECHNOLOGY 

UPDATES 
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APPENDIX 4 – SERVICE OFFERS 
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APPENDIX 5 – NUTRAMARA CONFERENCE AGENDAS 

NutraMara Conference 2015: Harnessing marine 
bioresources for innovations in the food industry 

Day 1: Monday 29th June 2015 

Introduction and keynote addresses 
Growing Ireland’s Capability in Marine Functional Foods – The Nutramara Programme 
Mr Declan Troy, Director of NutraMara, Teagasc  

Innovation in the European marine bioresources sector 
Dr Torger Børresen, Technical University of Denmark  

Marine ingredients and opportunities for processing underutilised fish species: an Irish 

industry perspective 
Mr Jason Whooley, Bio-Marine Ingredients Ireland Ltd  

Marine Based Functional Food Ingredients 
Applications of marine algae in food and health – recent developments and remaining 

challenges 
Dr Dagmar Stengel, National University of Ireland, Galway  

Novel ingredients from Irish seaweeds: the CyberColloids approach 

Dr Sarah Hotchkiss, CyberColloids Ltd, UK 

The novel role of seaweed in traditional food products 
Dr Helena Abreu, AlgaPlus, Portugal  

Seasonal variation in phlorotannin profiles of Irish brown seaweeds; novel knowledge for 

industry 
Ms Dara Kirke, National University of Ireland, Galway  

The challenges and pitfalls of marine bioactive characterisation 
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