117 research outputs found

    Optical absorption of (Ag-Au)133(SCH3)52 bimetallic monolayer-protected clusters

    Get PDF
    Abstract The evolution of the optical absorption spectrum of bimetallic Ag-Au monolayer-protected clusters (MPC) obtained by progressively doping Ag into the experimentally known structure of Au 133 (SR) 52 was predicted via rigorous time-dependent density-functional theory (TDDFT) calculations. In addition to monometallic Au 133 (SR) 52 and Ag 133 (SR) 52 species, 5 different (Ag-Au) 133 (SR) 52 homotops were considered with varying Ag content and site positioning, and their electronic structure and optical response were analyzed in terms of Projected Density Of States (PDOS), the induced or transition electron density, and Transition Component Maps (TCM) at selected excitation energies. It was found that Ag doping led to the effects rather different from those encountered in bare metal clusters. And it was also observed that Ag doping could produce structured spectral features, especially in the 3–4 eV range but also in the optical region if Ag atoms were located in the sub-staple region, as rationalized by the accompanying electronic analysis. Additionally, Au doping into the staples of Ag-rich MPC also gave rise to a more homogeneous induced electron density. These findings show the great sensitivity of the electronic response of MPC nanoalloy systems to the exact location of the alloying sites

    DESCRIZIONE DI FENOMENI DI FOTOASSORBIMENTO E FOTOEMISSIONE CON LA TEORIA DEL FUNZIONALE DENSITA'

    Get PDF
    1994/1995VIII Ciclo1967Versione digitalizzata della tesi di dottorato cartacea

    Optimization of density fitting auxiliary Slater-type basis functions for time-dependent density functional theory

    Get PDF
    A new set of auxiliary basis function suitable to fit the induced electron density is presented. Such set has been optimized in order to furnish accurate absorption spectra using the complex polarizability algorithm of time-dependent density functional theory (TDDFT). An automatic procedure has been set up, able, thanks to the definition of suitable descriptors, to evaluate the resemblance of the auxiliary basis-dependent calculated spectra with respect to a reference. In this way, it has been possible to reduce the size of the basis set maximizing the basis set accuracy. Thanks to the choice to employ a collection of molecules for each element, such basis has proven transferable to molecules outside the collection. The final sets are therefore much more accurate and smaller than the previously optimized ones and have been already included in the database of the last release of the AMS suite of programs. The availability of the present new set will allow to improve drastically the applicability range of the polTDDFT method with higher accuracy and less computational effort

    A computational approach for modeling electronic circular dichroism of solvated chromophores

    Get PDF
    The present study consists in a novel computational protocol to model the UV-circular dichroism spectra of solvated species. It makes use of quantum-chemical calculations on a series of conformations of a flexible chromophore or on a series of chromophore/solvent clusters extracted from molecular dynamic simulations. The protocol is described and applied to the aqueous cationic tripeptide GAG(+) and to the aqueous neutral decapeptide (GVGVP)(2). The protocol has proven able to: (i) properly consider the conformational motion of solute in the given environment; (ii) give the actual statistical weight of each conformational state; (iii) provide a reliable quantum mechanical method able to reproduce the spectral features. Temperature effects on conformations and spectral properties are properly taken into account. The role of explicit solvent on the conformational analysis and the spectra calculation is discussed. The comparison of the calculated circular dichroism spectra with experimental ones recorded at different temperatures represents a strict validation test of the method

    A new time dependent density functional algorithm for large systems and plasmons in metal clusters

    Get PDF
    A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The method has been applied to very different systems in nature and size (from H2 to [Au147] 12). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemente

    Optical Activity of Metal Nanoclusters Deposited on Regular and Doped Oxide Supports from First-Principles Simulations

    Get PDF
    We report a computational study and analysis of the optical absorption processes of Ag20 and Au20 clusters deposited on the magnesium oxide (100) facet, both regular and including point defects. Ag20 and Au20 are taken as models of metal nanoparticles and their plasmonic response, MgO as a model of a simple oxide support. We consider oxide defects both on the oxygen anion framework (i.e., a neutral oxygen vacancy) and in the magnesium cation framework (i.e., replacing Mg++ with a transition metal: Cu++ or Co++). We relax the clusters’ geometries via Density-Functional Theory (DFT) and calculate the photo-absorption spectra via Time-Dependent DFT (TDDFT) simulations on the relaxed geometries. We find that the substrate/cluster interaction induces a broadening and a red-shift of the excited states of the clusters, phenomena that are enhanced by the presence of an oxygen vacancy and its localized excitations. The presence of a transition-metal dopant does not qualitatively affect the spectral profile. However, when it lies next to an oxygen vacancy for Ag20, it can strongly enhance th

    Accurate Vertical Excitation Energies of BODIPY/Aza-BODIPY Derivatives from Excited-State Mean-Field Calculations

    Get PDF
    We report a benchmark study of vertical excitation energies and oscillator strengths for the HOMO -> LUMO transitions of 17 boron-dipyrromethene (BODIPY) structures, showing a large variety of ring sizes and substituents. Results obtained at the time-dependent density functional theory (TDDFT) and at the delta-self-consistent-field (Delta SCF) by using 13 different exchange correlation kernels (within LDA, GGA, hybrid, and range-separated approximations) are benchmarked against the experimental excitation energies when available. It is found that the time-independent Delta SCF DFT method, when used in combination with hybrid PBE0 and B3LYP functionals, largely outperforms TDDFT and can be quite competitive, in terms of accuracy, with computationally more costly wave function based methods such as CC2 and CASPT2

    A new time-dependent density-functional method for molecular plasmonics: Formalism, implementation, and the Au144(SH)60 case study

    Get PDF
    We describe the implementation and application of a recently developed time-dependent density-functional theory (TDDFT) algorithm based on the complex dynamical polarizability to calculate the photoabsorption spectrum of large metal clusters, with specific attention to the field of molecular plasmonics. The linear response TDDFT equations are solved in the space of the density fitting functions, so the problem is recast as an inhomogeneous system of linear equations whose resolution needs a numerical effort comparable to that of a SCF procedure. The construction of the matrix representation of the dielectric susceptibility is very efficient and is based on the discretization of the excitation energy, so such matrix is easily obtained at each photon energy value as a linear combination of constant matrix and energy-dependent coefficients. The code is interfaced to the Amsterdam Density Functional (ADF) program and is fully parallelized with standard message passing interface. Finally, an illustrative application of the method to the photoabsorption of the Au144(SH)60 cluster is presented

    Au279(SR)84: The Smallest Gold Thiolate Nanocrystal That Is Metallic and the Birth of Plasmon

    Get PDF
    We report a detailed study on the optical properties of Au279(SR)84 using steady-state and transient absorption measurements to probe its metallic nature, timedependent density functional theory (TDDFT) studies to correlate the optical spectra, and density of states (DOS) to reveal the factors governing the origin of the collective surface plasmon resonance (SPR) oscillation. Au279 is the smallest identified gold nanocrystal to exhibit SPR. Its optical absorption exhibits SPR at 510 nm. Powerdependent bleach recovery kinetics of Au279 suggests that electron dynamics dominates its relaxation and it can support plasmon oscillations. Interestingly, TDDFT and DOS studies with different tail group residues ( 12CH3 and 12Ph) revealed the important role played by the tail groups of ligands in collective oscillation. Also, steady-state and timeresolved absorption for Au36, Au44, and Au133 were studied to reveal the molecule-to-metal evolution of aromatic AuNMs. The optical gap and transient decay lifetimes decrease as the size increases

    AgPd, AuPd, and AuPt nanoalloys with Ag- or Au-rich compositions: Modeling chemical ordering and optical properties

    Full text link
    Bimetallic nanoparticles have a myriad of technological applications, but investigations of their chemical and physical properties are precluded due to their structural complexity. Here, the chemical ordering and optical properties of AgPd, AuPd, and AuPt nanoparticles have been studied computationally. One of the main aims was to clarify whether layered ordered phases similar to L11 one observed in the core of AgPt nanoparticles [Pirart, J.; Nat. Commun. 2019, 10, 1982] are also stabilized in other nanoalloys of coinage metals with platinum-group metals, or the remarkable ordering is a peculiarity only of AgPt nanoparticles. Furthermore, the effects of different chemical orderings and compositions of the nanoalloys on their optical properties have been explored. Particles with a truncated octahedral geometry containing 201 and 405 atoms have been modeled. For each particle, the studied stoichiometries of the Ag- or Au-rich compositions, ca. 4:1 for 201-atomic particles and ca. 3:1 for 405-atomic particles, corresponded to the layered structures L11 and L10 inside the monatomic coinage-metal skins. Density functional theory (DFT) calculations combined with a recently developed topological (TOP) approach [Kozlov, S. M.; Chem. Sci. 2015, 6, 3868−3880] have been performed to study the chemical ordering of the particles, whose optical properties have been investigated using the time-dependent DFT method. The obtained results revealed that the remarkable ordering L11 of inner atoms can be noticeably favored only in small AgPt particles and much less in AgPd ones, whereas this L11 ordering in analogous Au-containing nanoalloys is significantly less stable compared to other calculated lowest-energy orderings. Optical properties were found to be more dependent on the composition (concentration of two metals) than on the chemical ordering. Both Pt and Pd elements promote the quenching of the plasmon
    • …
    corecore