146 research outputs found

    UV chromospheric and circumstellar diagnostic features among F supergiant stars

    Get PDF
    A survey of F supergiant stars to evaluate the extension of chromospheric and circumstellar characteristics commonly observed in the slightly cooler G, K, and M supergiant is discussed. An ultraviolet survey was elected since UV features of Mg II and Fe II might persist in revealing outer atmosphere phenomena even among F supergiants. The encompassed spectral types F0 to G0, and luminosity classes Ib, Ia, and Ia-0. In addition, the usefulness of the emission line width-to-luminosity correlation for the G-M stars in both the Ca II and Mg II lines is examined

    High resolution absolute flux profiles of the MC 2 h and k lines in evolved F8 to M5 stars

    Get PDF
    The central results of a survey of the Mg II resonance line emission in a sample of over 50 evolved late type stars, including spectral-luminosity type F8 to M5 and La to IV are presented. Observed and surface fluxes are derived and correlations noted. The major findings include: (1) Mg II k emission core asymmetry transition near K1 III, analogous to that known for Ca II K; (2) a small gravity and temperature dependence of the Mg II chromospheric radiative loss rate

    Direct UV observations of the circumstellar envelope of alpha Orionis

    Get PDF
    Observations were made in the IUE LWP camera, low dispersion mode, with alpha Ori being offset various distances from the center of the Long Wavelength Large Aperture along its major axis. Signal was acquired at all offset positions and is comprised of unequal components of background/dark counts, telescope-scattered light, and scattered light emanating from the extended circumstellar shell. The star is known from optical and infrared observations to possess an extended, arc-minute sized, shell of cool material. Attempts to observe this shell with the IUE are described, although the deconvolution of the stellar signal from the telescope scattered light requires further calibration effort

    Taming the Invisible Monster: System Parameter Constraints for Epsilon Aurigae from the Far-Ultraviolet to the Mid-Infrared

    Get PDF
    We have assembled new Spitzer Space Telescope Infrared Array Camera observations of the mysterious binary star Epsilon Aurigae, along with archival far-ultraviolet to mid-infrared data, to form an unprecedented spectral energy distribution spanning three orders of magnitude in wavelength from 0.1 microns to 100 microns. The observed spectral energy distribution can be reproduced using a three component model consisting of a 2.2+0.9/-0.8 Msun F type post-asymptotic giant branch star, and a 5.9+/-0.8 Msun B5+/-1 type main sequence star that is surrounded by a geometrically thick, but partially transparent, disk of gas and dust. At the nominal HIPPARCOS parallax distance of 625 pc, the model normalization yields a radius of 135+/-5 Rsun for the F star, consistent with published interferometric observations. The dusty disk is constrained to be viewed at an inclination of i > 87 deg, and has effective temperature of 550+/-50 K with an outer radius of 3.8 AU and a thickness of 0.95 AU. The dust content of the disk must be largely confined to grains larger than ~10 microns in order to produce the observed gray optical-infrared eclipses and the lack of broad dust emission features in the archival Spitzer mid-infrared spectra. The total mass of the disk, even considering a potential gaseous contribution in addition to the dust that produces the observed infrared excess, is << 1 Msun. We discuss evolutionary scenarios for this system that could lead to the current status of the stellar components and suggests possibilities for its future evolution, as well as potential observational tests of our model.Comment: 13 pages, 3 figures. Accepted for publication in The Astrophysical Journal

    Taming the Invisible Monster: System Parameter Constraints for Ñ” Aurigae from the Far-ultraviolet to the Mid-infrared

    Get PDF
    We have assembled new Spitzer Space Telescope IRAC observations of the mysterious binary star є Aurigae, along with archival far-ultraviolet to mid-infrared data, to form an unprecedented spectral energy distribution (SED) spanning 3 orders of magnitude in wavelength from 0.1 μm to 100 μm. The observed SED can be reproduced using a three-component model consisting of a 2.2^(+0.9)_(–0.8) M_☉ F-type post-asymptotic giant branch star, and a 5.9 ± 0.8 M_☉ B5±1 type main-sequence star that is surrounded by a geometrically thick, but partially transparent, disk of gas and dust. At the nominal HIPPARCOS parallax distance of 625 pc, the model normalization yields a radius of 135 ± 5 R_☉ for the F star, consistent with published interferometric observations. The dusty disk is constrained to be viewed at an inclination of i ≳87°, and has an effective temperature of 550 ± 50 K with an outer radius of 3.8 AU and a thickness of 0.95 AU. The dust content of the disk must be largely confined to grains larger than ~10 μm in order to produce the observed gray optical-infrared eclipses and the lack of broad dust emission features in the archival Spitzer mid-infrared spectra. The total mass of the disk, even considering a potential gaseous contribution in addition to the dust that produces the observed infrared excess, is « 1 M_☉. We discuss evolutionary scenarios for this system that could lead to the current status of the stellar components and suggest possibilities for its future evolution, as well as potential observational tests of our model

    Tycho 2 stars with infrared excess in the MSX Point Source Catalogue

    Full text link
    Stars of all evolutionary phases have been found to have excess infrared emission due to the presence of circumstellar material. To identify such stars, we have positionally correlated the infrared MSX point source catalogue and the Tycho 2 optical catalogue. A near/mid infrared colour criteria has been developed to select infrared excess stars. The search yielded 1938 excess stars, over half (979) have never previously been detected by IRAS. The excess stars were found to be young objects such as Herbig Ae/Be and Be stars, and evolved objects such as OH/IR and carbon stars. A number of B type excess stars were also discovered whose infrared colours could not be readily explained by known catalogued objects.Comment: Added Comment: 16 pages, 9 figures, accepted for publication in MNRA

    3D Simulations of Betelgeuse's Bow Shock

    Full text link
    Betelgeuse, the bright, cool red supergiant in Orion, is moving supersonically relative to the local interstellar medium. The star emits a powerful stellar wind which collides with this medium, forming a cometary structure, a bow shock, pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. The models include realistic low temperature cooling and cover a range of plausible interstellar medium densities and stellar velocities between 0.3 - 1.9 cm-3 and 28 - 73 km/s. We show that the flow dynamics and morphology of the bow shock differ substantially due to the preferential growth of Rayleigh-Taylor or Kelvin-Helmholtz instabilities in the models. The former dominate the models with slow stellar velocities resulting in a clumpy bow shock sub-structure, whereas the latter produce a smoother, more layered sub-structure in the fast models. If the mass in the bow shock shell is low, as seems to be implied by the AKARI luminosities (~0.003 Msun), then Betelgeuse's bow shock is very young and is unlikely to have reached a steady state. The circular nature of the bow shock shell is consistent with this conclusion. Thus, our results suggest that Betelgeuse entered the red supergiant phase only recently.Comment: Minor revisions, replaced Fig. 1, 15, and 16, added movies. For a pdf version with higher resolution, see A&A: Forthcomin

    Reovirus-Induced Apoptosis in the Intestine Limits Establishment of Enteric Infection

    Get PDF
    Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease

    Structure of the outer layers of cool standard stars

    Get PDF
    Context: Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in. Aims: Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. Methods: The observational spectral energy distributions are compared with the theoretical predictions of the MARCS atmosphere models for a sample of 9 K- and M-giants. The discrepancies found are explained using basic models for flux emission originating from a chromosphere or an ionized wind. Results: For 7 out of 9 sample stars, a clear flux excess is detected at (sub)millimeter and/or centimeter wavelengths. The precise start of the excess depends upon the star under consideration. The flux at wavelengths shorter than about 1 mm is most likely dominated by an optically thick chromosphere, where an optically thick ionized wind is the main flux contributor at longer wavelengths. Conclusions: Although the optical to mid-infrared spectrum of the studied K- and M-giants is well represented by a radiative equilibrium atmospheric model, the presence of a chromosphere and/or ionized stellar wind at higher altitudes dominates the spectrum in the (sub)millimeter and centimeter wavelength ranges. The presence of a flux excess also has implications on the role of these stars as fiducial spectrophotometric calibrators in the (sub)millimeter and centimeter wavelength range.Comment: 13 pages, 6 figures, 7 pages of online material, submitted to A&
    • …
    corecore