3,918 research outputs found

    On the origin of the Tully-Fisher relation

    Get PDF
    We discuss the origin of the Tully-Fisher (TF) relation using the NN-body/SPH method, which includes cooling, star formation and stellar feedback of energy, mass and metals. We consider initially rotating overdense spheres, and trace formation processes of disk galaxies from z=25z=25 to z=0z=0 in the Cold Dark Matter (CDM) cosmology. To clarify the origin of the TF relation, we simulate formation of 14 galaxies with different masses and spin parameters, and compute observable values, such as the total magnitude and the line-width. We find that the simulated galaxies reproduce the slope and scatter of the TF relation: the slope is originated in the difference of total galactic masses, and the scatter is produced by the difference of initial spin parameters. As well as the TF relation, observed features of spiral galaxies, such as the exponential light-profile and the flat rotation curve, are reproduced in our simulations, which were assumed {\it a priori} in past semi-analytical approaches.Comment: 11 pages, including 6 figures, submitted to Ap

    Lateral stability and control derivatives of a jet fighter airplane extracted from flight test data by utilizing maximum likelihood estimation

    Get PDF
    A method of parameter extraction for stability and control derivatives of aircraft from flight test data, implementing maximum likelihood estimation, has been developed and successfully applied to actual lateral flight test data from a modern sophisticated jet fighter. This application demonstrates the important role played by the analyst in combining engineering judgment and estimator statistics to yield meaningful results. During the analysis, the problems of uniqueness of the extracted set of parameters and of longitudinal coupling effects were encountered and resolved. The results for all flight runs are presented in tabular form and as time history comparisons between the estimated states and the actual flight test data

    The cosmological origin of the Tully-Fisher relation

    Get PDF
    We use high-resolution cosmological simulations that include the effects of gasdynamics and star formation to investigate the origin of the Tully-Fisher relation in the standard Cold Dark Matter cosmogony. Luminosities are computed for each model galaxy using their full star formation histories and the latest spectrophotometric models. We find that at z=0 the stellar mass of model galaxies is proportional to the total baryonic mass within the virial radius of their surrounding halos. Circular velocity then correlates tightly with the total luminosity of the galaxy, reflecting the equivalence between mass and circular velocity of systems identified in a cosmological context. The slope of the relation steepens slightly from the red to the blue bandpasses, and is in fairly good agreement with observations. Its scatter is small, decreasing from \~0.45 mag in the U-band to ~0.34 mag in the K-band. The particular cosmological model we explore here seems unable to account for the zero-point of the correlation. Model galaxies are too faint at z=0 (by about two magnitudes) if the circular velocity at the edge of the luminous galaxy is used as an estimator of the rotation speed. The Tully-Fisher relation is brighter in the past, by about ~0.7 magnitudes in the B-band at z=1, at odds with recent observations of z~1 galaxies. We conclude that the slope and tightness of the Tully-Fisher relation can be naturally explained in hierarchical models but that its normalization and evolution depend strongly on the star formation algorithm chosen and on the cosmological parameters that determine the universal baryon fraction and the time of assembly of galaxies of different mass.Comment: 5 pages, 4 figures included, submitted to ApJ (Letters

    Development of a VOR/DME model for an advanced concepts simulator

    Get PDF
    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher

    Simulations of galaxy formation in a Λ cold dark matter universe : I : dynamical and photometric properties of a simulated disk galaxy.

    Get PDF
    We present a detailed analysis of the dynamical and photometric properties of a disk galaxy simulated in the cold dark matter (CDM) cosmogony. The galaxy is assembled through a number of high-redshift mergers followed by a period of quiescent accretion after z1 that lead to the formation of two distinct dynamical components: a spheroid of mostly old stars and a rotationally supported disk of younger stars. The surface brightness profile is very well approximated by the superposition of an R1/4 spheroid and an exponential disk. Each photometric component contributes a similar fraction of the total luminosity of the system, although less than a quarter of the stars form after the last merger episode at z1. In the optical bands the surface brightness profile is remarkably similar to that of Sab galaxy UGC 615, but the simulated galaxy rotates significantly faster and has a declining rotation curve dominated by the spheroid near the center. The decline in circular velocity is at odds with observation and results from the high concentration of the dark matter and baryonic components, as well as from the relatively high mass-to-light ratio of the stars in the simulation. The simulated galaxy lies 1 mag off the I-band Tully-Fisher relation of late-type spirals but seems to be in reasonable agreement with Tully-Fisher data on S0 galaxies. In agreement with previous simulation work, the angular momentum of the luminous component is an order of magnitude lower than that of late-type spirals of similar rotation speed. This again reflects the dominance of the slowly rotating, dense spheroidal component, to which most discrepancies with observation may be traced. On its own, the disk component has properties rather similar to those of late-type spirals: its luminosity, its exponential scale length, and its colors are all comparable to those of galaxy disks of similar rotation speed. This suggests that a different form of feedback than adopted here is required to inhibit the efficient collapse and cooling of gas at high redshift that leads to the formation of the spheroid. Reconciling, without fine-tuning, the properties of disk galaxies with the early collapse and high merging rates characteristic of hierarchical scenarios such as CDM remains a challenging, yet so far elusive, proposition

    A Unified Scaling Law in Spiral Galaxies

    Get PDF
    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensionallogarithmic space of luminosity L, radius R and rotation velocity V. The plane is expressed as L(VR)αL \propto (V R)^{\alpha} in I-passband, where α\alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations, L-V (Tully-Fisher relation), V-R (also the Tully-Fisher relation) and R-L (Freeman's law), can be understood as oblique projections of the surfboard-like plane into 2-D spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/SPH method, including cooling, star formation and stellar feedback. Initial conditions are set to isolated 14 spheres with two free parameters, such as mass and angular momentum. The CDM (h=0.5, Ω0=1\Omega_0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (a) The slope of the plane is well reproduced but the zero-point is not. This zero-point discrepancy could be solved in a low density ($\Omega_00.5) cosmology. (b) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.Comment: Accepted for publication in ApJ Letters. 6 pages including 2 figure

    Application of modified profile analysis to function testing of the motion/no-motion issue in an aircraft ground-handling simulation

    Get PDF
    A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data

    Absolute velocity measurements in sunspot umbrae

    Full text link
    In sunspot umbrae, convection is largely suppressed by the strong magnetic field. Previous measurements reported on negligible convective flows in umbral cores. Based on this, numerous studies have taken the umbra as zero reference to calculate Doppler velocities of the ambient active region. To clarify the amount of convective motion in the darkest part of umbrae, we directly measured Doppler velocities with an unprecedented accuracy and precision. We performed spectroscopic observations of sunspot umbrae with the Laser Absolute Reference Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the high-resolution spectrograph and absolute wavelength positions. A thorough spectral calibration, including the measurement of the reference wavelength, yielded Doppler shifts of the spectral line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured Doppler shifts are a composition of umbral convection and magneto-acoustic waves. For the analysis of convective shifts, we temporally average each sequence to reduce the superimposed wave signal. Compared to convective blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a strongly reduced convective blueshifts around -30 m s-1. {W}e find that the velocity in a sunspot umbra correlates significantly with the magnetic field strength, but also with the umbral temperature defining the depth of the titanium line. The vertical upward motion decreases with increasing field strength. Extrapolating the linear approximation to zero magnetic field reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as a zero velocity reference for the calculation of photospheric Dopplergrams can imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure
    corecore