97 research outputs found

    Application of a Bayesian classifier of anomalous propagation to single-polarization radar reflectivity data

    Get PDF
    A naïve Bayes classifier (NBC) was developed to distinguish precipitation echoes from anomalous propagation (anaprop). The NBC is an application of Bayes's theorem, which makes its classification decision based on the class with the maximum a posteriori probability. Several feature fields were input to the Bayes classifier: texture of reflectivity (TDBZ), a measure of the reflectivity fluctuations (SPIN), and vertical profile of reflectivity (VPDBZ). Prior conditional probability distribution functions (PDFs) of the feature fields were constructed from training sets for several meteorological scenarios and for anaprop. A Box–Cox transform was applied to transform these PDFs to approximate Gaussian distributions, which enabled efficient numerical computation as they could be specified completely by their mean and standard deviation. Combinations of the feature fields were tested on the training datasets to evaluate the best combination for discriminating anaprop and precipitation, which was found to be TDBZ and VPDBZ. The NBC was applied to a case of convective rain embedded in anaprop and found to be effective at distinguishing the echoes. Furthermore, despite having been trained with data from a single radar, the NBC was successful at distinguishing precipitation and anaprop from two nearby radars with differing wavelength and beamwidth characteristics. The NBC was extended to implement a strength of classification index that provides a metric to quantify the confidence with which data have been classified as precipitation and, consequently, a method to censor data for assimilation or quantitative precipitation estimation

    Some Aspects of Sensitivity Analysis in Variational Data Assimilation for Coupled Dynamical Systems

    Get PDF
    Variational data assimilation (VDA) remains one of the key issues arising in many fields of geosciences including the numerical weather prediction. While the theory of VDA is well established, there are a number of issues with practical implementation that require additional consideration and study. However, the exploration of VDA requires considerable computational resources. For simple enough low-order models, the computational cost is minor and therefore models of this class are used as simple test instruments to emulate more complex systems. In this paper, the sensitivity with respect to variations in the parameters of one of the main components of VDA, the nonlinear forecasting model, is considered. For chaotic atmospheric dynamics, conventional methods of sensitivity analysis provide uninformative results since the envelopes of sensitivity functions grow with time and sensitivity functions themselves demonstrate the oscillating behaviour. The use of sensitivity analysis method, developed on the basis of the theory of shadowing pseudoorbits in dynamical systems, allows us to calculate sensitivity functions correctly. Sensitivity estimates for a simple coupled dynamical system are calculated and presented in the paper. To estimate the influence of model parameter uncertainties on the forecast, the relative error in the energy norm is applied

    Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime

    Get PDF
    This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields (>4Ă—1012 > 4 \times 10^{12} G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly lower the Compton scattering cross section below and at the resonance, when the incident photon energy exceeds mec2m_ec^2 in the electron rest frame. The cross section is strongly dependent on the polarization of the final scattered photon. Below the cyclotron fundamental, mostly photons of perpendicular polarization are produced in scatterings, a situation that also arises above this resonance for sub-critical fields. However, an interesting discovery is that for super-critical fields, a preponderance of photons of parallel polarization results from scatterings above the cyclotron fundamental. This characteristic is both a relativistic and magnetic effect not present in the Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for publication in The Astrophysical Journa

    Shallow gas migration along hydrocarbon wells – An unconsidered, anthropogenic source of biogenic methane in the North Sea

    Get PDF
    Shallow gas migration along hydrocarbon wells constitutes a potential methane emission pathway that currently is not recognized in any regulatory framework or greenhouse gas inventory. Recently, the first methane emission measurements at three abandoned offshore wells in the Central North Sea (CNS) were conducted showing that considerable amounts of biogenic methane originating from shallow gas accumulations in the overburden of deep reservoirs were released by the boreholes. Here, we identify numerous wells poking through shallow gas pockets in 3D seismic data of the CNS indicating that about one third of the wells may leak, potentially releasing a total of 3-17 kt of methane per year into the North Sea. This poses a significant contribution to the North Sea methane budget. A large fraction of this gas (~42 %) may reach the atmosphere via direct bubble transport (0-2 kt yr-1) and via diffusive exchange of methane dissolving in the surface mixed layer (1-5 kt yr-1), as indicated by numerical modeling. In the North Sea and in other hydrocarbon-prolific provinces of the world shallow gas pockets are frequently observed in the sedimentary overburden and aggregate leakages along the numerous wells drilled in those areas may be significant

    Bayesian echo classification for Australian single-polarization weather radar with application to assimilation of radial velocity observations

    Get PDF
    The Australian Bureau of Meteorology’s operational weather radar network comprises a heterogeneous radar collection covering diverse geography and climate. A naïve Bayes classifier has been developed to identify a range of common echo types observed with these radars. The success of the classifier has been evaluated against its training dataset and by routine monitoring. The training data indicate that more than 90% of precipitation may be identified correctly. The echo types most difficult to distinguish from rainfall are smoke, chaff, and anomalous propagation ground and sea clutter. Their impact depends on their climatological frequency. Small quantities of frequently misclassified persistent echo (like permanent ground clutter or insects) can also cause quality control issues. The Bayes classifier is demonstrated to perform better than a simple threshold method, particularly for reducing misclassification of clutter as precipitation. However, the result depends on finding a balance between excluding precipitation and including erroneous echo. Unlike many single-polarization classifiers that are only intended to extract precipitation echo, the Bayes classifier also discriminates types of nonprecipitation echo. Therefore, the classifier provides the means to utilize clear air echo for applications like data assimilation, and the class information will permit separate data handling of different echo types

    Data Assimilation Enhancements to Air Force Weathers Land Information System

    Get PDF
    The United States Air Force (USAF) has a proud and storied tradition of enabling significant advancements in the area of characterizing and modeling land state information. 557th Weather Wing (557 WW; DoDs Executive Agent for Land Information) provides routine geospatial intelligence information to warfighters, planners, and decision makers at all echelons and services of the U.S. military, government and intelligence community. 557 WW and its predecessors have been home to the DoDs only operational regional and global land data analysis systems since January 1958. As a trusted partner since 2005, Air Force Weather (AFW) has relied on the Hydrological Sciences Laboratory at NASA/GSFC to lead the interagency scientific collaboration known as the Land Information System (LIS). LIS is an advanced software framework for high performance land surface modeling and data assimilation of geospatial intelligence (GEOINT) information

    Tissue functions mediated by β3-adrenoceptors—findings and challenges

    Get PDF
    As β3-adrenoceptor agonists metamorphose from experimental tools into therapeutic drugs, it is vital to obtain a comprehensive picture of the cell and tissue functions mediated by this receptor subtype in humans. Human tissues with proven functions and/or a high expression of β3-adrenoceptors include the urinary bladder, the gall bladder, and other parts of the gastrointestinal tract. While several other β3-adrenoceptor functions have been proposed based on results obtained in animals, their relevance to humans remains uncertain. For instance, β3-adrenoceptors perform an important role in thermogenesis and lipolysis in rodent brown and white adipose tissue, respectively, but their role in humans appears less significant. Moreover, the use of tools such as the agonist BRL 37344 and the antagonist SR59230A to demonstrate functional involvement of β3-adrenoceptors may lead in many cases to misleading conclusions as they can also interact with other β-adrenoceptor subtypes or even non-adrenoceptor targets. In conclusion, we propose that many responses attributed to β3-adrenoceptor stimulation may need re-evaluation in the light of the development of more selective tools. Moreover, findings in experimental animals need to be extended to humans in order to better understand the potential additional indications and side effects of the β3-adrenoceptor agonists that are beginning to enter clinical medicine
    • …
    corecore