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Variational data assimilation (VDA) remains one of the key issues arising in many fields of geosciences including the numerical
weather prediction. While the theory of VDA is well established, there are a number of issues with practical implementation
that require additional consideration and study. However, the exploration of VDA requires considerable computational resources.
For simple enough low-order models, the computational cost is minor and therefore models of this class are used as simple test
instruments to emulate more complex systems. In this paper, the sensitivity with respect to variations in the parameters of one of
the main components of VDA, the nonlinear forecasting model, is considered. For chaotic atmospheric dynamics, conventional
methods of sensitivity analysis provide uninformative results since the envelopes of sensitivity functions grow with time and
sensitivity functions themselves demonstrate the oscillating behaviour. The use of sensitivity analysis method, developed on the
basis of the theory of shadowing pseudoorbits in dynamical systems, allows us to calculate sensitivity functions correctly. Sensitivity
estimates for a simple coupled dynamical system are calculated and presented in the paper. To estimate the influence of model
parameter uncertainties on the forecast, the relative error in the energy norm is applied.

1. Introduction

The earth system consists of several interactive dynamical
subsystems and each of them covers a broad temporal and
spatial spectrum of motions and physical processes. The
components of the earth system have many differences in
their physical properties, structure, and behavior but are
linked together by fluxes of momentum and mass as well as
sensible and latent heat. All of these subsystems interact with
each other in different ways and can be strongly or weakly
coupled. Prediction of future state of the earth system and its
components is one of the most important problems of mod-
ern science. The most significant progress has been achieved
in the forecasting of the atmosphere via numerical models,
which describe the dynamical and physical processes in the
earth’s gaseous envelope. It is clear that further improvement
of forecasts can be pursued via the development of coupled
modeling systems that primarily combine the atmosphere

and the ocean and describe the interactions between these
two systems. Since numerical weather prediction systems
calculate a future state of the atmosphere and ocean by
integrating a set of partial differential equations that describe
the fluid dynamics and thermodynamics, initial conditions
that accurately represent the state of the atmosphere and
ocean at a certain initial time must be formulated. Numerical
weather prediction systems use data assimilation procedures
to estimate initial conditions for forecasting models from
observations. Data assimilation remains one of the key issues
not only in the numerical weather prediction (NWP) but also
in other geophysical sciences.

One of the most advanced and effective data assimilation
techniques is four-dimensional variational data assimilation
(4D-Var). In particular, the weather forecasts produced by the
ACCESS (Australian Community Climate and Earth System
Simulator) at the Bureau of Meteorology use 4D-Var in the
incremental formulation developed at the Met Office [1, 2].
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A comprehensive historical review and current status of 4D-
Var are presented, for example, in [3–7]. In our view point,
some papers and books, such as [8–17], have contributed
significantly to the development of mathematical foundation,
theory, and practice of 4D-Var.

In general, the main objective of 4D-Var is to define,
as perfectly as possible, the state of a dynamical system by
combining, in statistically optimal manner, the observations
of state variables of a real physical system together with
certain prior information. In NWP this prior information is
usually referred to as the background. Mathematically, 4D-
Var procedures are formulated as an optimization problem,
in which the initial condition plays the role of control vector
and model equations are considered as constraints. While
the theory of variational data assimilation is well established,
there are a number of issues with practical implementation
that require additional consideration and study. The perfor-
mance of 4D-Var schemes depends on their key information
components, such as the available observations, estimates
of the observation, and background error covariances that
are quantified by the corresponding matrices, as well as
the background state. All of those information components
strongly impact the accuracy of calculated initial conditions,
thus influencing the forecast quality. Thus, it is important
to estimate the sensitivity of a certain forecast aspect with
respect to variations in the observational data, background
information, and error statistics. This problem is usually
formulated within the framework of the adjoint-based sen-
sitivity analysis (e.g., [18–29]).

However, an adjoint model used to calculate sensitivity
functions is derived from a linearized forward propagation
model and contains numerous input parameters. Conse-
quently, linearization of strongly nonlinear NWPmodels and
also uncertainties in their numerous parameters generate
errors in the initial conditions obtained by data assimilation
systems. The influence of linearization and parameter uncer-
tainties on the results of data assimilation can be studied, ide-
ally for each particular NWPmodel, using sensitivity analysis
[30, 31]. Evenmore problems arise when considering coupled
4D-Var data assimilation schemes since the atmosphere and
ocean have very different physical properties and time-space
spectrum of motions generating initialization shock. Several
coupling strategies are being developed for use in NWP
systems; however, all of them introduce issues that require
additional detailed consideration. For example, the influence
of coupling strength on the initial conditions obtained by 4D-
VAR procedures is one such issue that is important to study
and analyze.

Good practice in the development of NWP models and
data assimilation systems requires evaluating the confidence
in the model. In this context, it is important to estimate the
influence of parameter variations on system dynamics and to
find those parameters that have the largest impact on system
behaviour. Sensitivity analysis, which is an essential element
of model building and quality assurance, addresses this very
important issue.

The exploration of coupled 4D-Var systems, parameter
estimation, and sensitivity analysis require considerable com-
putational resources. For simple enough low-order coupled

models, the computational cost is minor and, for that reason,
models of this class are widely used as simple test instruments
to emulate more complex systems. In this paper, we describe
a coupled nonlinear dynamical system, which is composed
of fast (the “atmosphere”) and slow (the “ocean”) versions of
the well-known Lorenz [32] model. This low-order coupled
system allows us to mimic the atmosphere-ocean system
and therefore serves as a key element of a theoretical and
computational framework for the study of various aspects
of coupled 4D-Var procedures [33, 34]. Under certain con-
ditions the Lorenz model exhibits a chaotic behaviour and
using conventional methods of sensitivity analysis can be
questionable in terms of interpretation of the obtained results
[35–37]. The “shadowing” method [36, 37] for estimating
the system sensitivity to variations in its parameters allows
us to calculate the average along the trajectory sensitivities
and therefore to make a clear conclusion with respect to the
system sensitivity to its parameters. This method is based on
the pseudoorbit shadowing in dynamical systems [38, 39].
Calculated sensitivity coefficients obtained via conventional
methods and the “shadowing” approach are presented in the
paper.

We also succinctly consider commonly used techniques
for sensitivity analysis and parameter estimations of dynam-
ical systems and study the influence of coupling strength
parameter on the dynamical behaviour of the coupled system
using Lyapunov characteristic exponent analysis. It was found
that the coupling strength parameter strongly affects the
system dynamics both quantitatively and qualitatively. This
fact should be taken into consideration when choosing the
coupling strategy in data assimilation systems.

2. Low-Order Coupled Dynamical System

In this section we consider a low-order coupled nonlinear
dynamical system obtained by coupling of two versions of
the original Lorenzmodel (L63) [32] with distinct time scales,
which differ by a factor 𝜀 (e.g., [33, 34]):

𝑥̇ = 𝜎 (𝑦 − 𝑥) − 𝑐 (𝑎𝑋 + 𝑘) ,

̇𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧 + 𝑐 (𝑎𝑌 + 𝑘) ,

𝑧̇ = 𝑥𝑦 − 𝑏𝑧 + 𝑐
𝑧
𝑍,

(1a)

𝑋̇ = 𝜀𝜎 (𝑌 − 𝑋) − 𝑐 (𝑥 + 𝑘) ,

𝑌̇ = 𝜀 (𝑟𝑋 − 𝑌 − 𝑎𝑋𝑍) + 𝑐 (𝑦 + 𝑘) ,

̇
𝑍 = 𝜀 (𝑎𝑋𝑌 − 𝑏𝑍) − 𝑐

𝑧
𝑧,

(1b)

where lower case letters represent the fast subsystem and
capital letters the slow subsystem, 𝜎, 𝑟, and 𝑏 are the
parameters of L63 model, 𝑐 is a coupling strength parameter
for the 𝑥 and 𝑦 variables, 𝑐

𝑧
is a coupling strength parameter

for 𝑧, 𝑘 is an “uncentering” parameter, and 𝑎 is a parameter
representing the amplitude scale factor. The value 𝑎 = 1

indicates that two systems have the same amplitude scale.
Thus, the state vector of the coupled model (1a) and (1b) is
x = (𝑥, 𝑦, 𝑧, 𝑋, 𝑌, 𝑍)

𝑇 and the model parameter vector is
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𝛼 = (𝜎, 𝑟, 𝑏, 𝑎, 𝑐, 𝑐
𝑧
, 𝑘, 𝜀)
𝑇. Without loss of generality, we can

assume that 𝑎 = 1, 𝑘 = 0, and 𝑐 = 𝑐
𝑧
, then 𝛼 = (𝜎, 𝑟, 𝑏, 𝑐, 𝜀)

𝑇

and the system (1a) and (1b) can be rewritten in the operator
form:

𝑑x
𝑑𝑡

= (L +Q) x, (2)

where the nonlinear uncoupled operator L and linear
coupled operatorQ are represented by the followingmatrices:

L =

[

[

[

[

[

[

[

[

[

[

[

[

−𝜎 𝜎 0

𝑟 −1 −𝑥 0

0 𝑥 −𝑏

−𝜀𝜎 𝜀𝜎 0

0 𝜀𝑟 −𝜀 −𝜀𝑋

0 𝜀𝑋 −𝜀𝑏

]

]

]

]

]

]

]

]

]

]

]

]

,

Q =

[

[

[

[

[

[

[

[

[

[

[

[

−𝑐 0 0

0 0 𝑐 0

0 0 𝑐

−𝑐 0 0

0 𝑐 0 0

0 0 −𝑐

]

]

]

]

]

]

]

]

]

]

]

]

.

(3)

The unperturbed parameter values are taken as

𝜎
0

= 10, 𝑟
0

= 28, 𝑏
0

=

8

3

, 𝜀
0

= 0.1, 𝑐
0

∈ [0.1; 1.2] .

(4)

Chosen values of 𝜎, 𝑟, and 𝑏 correspond to chaotic behaviour
of the L63 model. For 𝜎 = 10 and 𝑏 = 8/3 the critical value of
parameter 𝑟 is 24.74, which means that any value of 𝑟 larger
than 24.74 induces chaotic behaviour [32].The parameter 𝜀 =
0.1 indicates that the slow system is 10 times slower than the
fast system.

The coupling strength parameter 𝑐 plays a very important
role in qualitative changes in the system dynamics since this
parameter controls the interactions between fast and slow
subsystems. Qualitative changes in the dynamical properties
of a system can be detected by determining and analyz-
ing the system’s spectrum of Lyapunov exponents, which
characterize the average rate of exponential divergence (or
convergence) of nearby trajectories in the phase space. In
the analysis of coupled dynamical systems we are dealing
with conditional Lyapunov exponents that are normally used
to characterize the synchronization with coupled systems.
System (2) has six distinct exponents. If the parameter 𝑐

tends to zero, then system (2) has two positive, two zero, and
two negative Lyapunov exponents. The influence of coupling
strength parameter 𝑐 on the two largest conditional Lyapunov
exponents is illustrated in Figure 1. The numerical experi-
ments demonstrated that those, initially positive, exponents
decrease monotonically with an increase in the parameter
c. At about 𝑐 ≈ 0.8 they approach the 𝑥-axis and at about
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Figure 1: Two largest conditional Lyapunov exponents as functions
of coupling strength parameter.

𝑐 ≈ 0.95 negative values. Thus, for 𝑐 > 0.95, the dynamics
of both fast and slow subsystems become phase-synchronous
[40]. For 𝑐 > 1.0, a limit circle dynamical regime is observed
since all six exponents become negative.

Apart from Lyapunov exponents, autocorrelation func-
tions (ACFs) enable one to distinguish between regular and
chaotic processes and to detect transition fromorder to chaos.
In particular, for chaotic motions, ACF decreases in time, in
many cases exponentially, while for regular motions, ACF is
unchanged or oscillating. In general, however, the behaviour
of ACFs of chaotic oscillations is frequently very complicated
and depends on many factors (e.g., [41, 42]). Autocorrelation
functions can also be used to define the so-called typical time
memory (typical timescale) of a process [43]. If it is positive,
ACF is considered to have some degree of persistence: a
tendency for a system to remain in the same state from one
moment in time to the next. The ACF for a given discrete
dynamic variable {𝑥

𝑖
}
𝑁−1

𝑖=0
is defined as

𝐶 (𝑠) = ⟨𝑥
𝑖
𝑥
𝑖+𝑠
⟩ − ⟨𝑥

𝑖
⟩ ⟨𝑥
𝑖+𝑠
⟩ , (5)

where the angular brackets denote ensemble averaging.
Assuming time series originates from a stationary and
ergodic process, ensemble averaging can be replaced by time
averaging over a single normal realization:

𝐶 (𝑠) = ⟨𝑢
𝑚
𝑢
𝑚+𝑠

⟩ − ⟨𝑢⟩
2

. (6)

Signal analysis commonly uses the normalized ACF, defined
as 𝑅(𝑠) = 𝐶(𝑠)/𝐶(0). ACF plots for realizations of dynamic
variables 𝑥 and𝑋, and 𝑧 and 𝑍 calculated for different values
of the coupling strength parameter 𝑐 are presented in Figures
2 and 3, respectively. For relatively small parameter 𝑐 (𝑐 <

0.4), the ACFs for both 𝑥 and 𝑋 variables decrease fairly
rapidly to zero, consistently with the chaotic behaviour of the
coupled system. However, as expected, the rate of decay of
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the ACF of the slow variable 𝑋 is less than that of the fast
variable 𝑥. The ACF envelopes for variables 𝑧 and 𝑍 also
decay almost exponentially from the maximum to zero. For
coupling strength parameter on the interval 0.4 < 𝑐 < 0.6 the
ACF of the fast variable 𝑥 becomes smooth and converges to
zero. At the same time, the envelopes of the ACFs of variables
𝑋, 𝑧, and 𝑍 demonstrate a fairly rapid fall, indicating the
chaotic behaviour. As the parameter 𝑐 increases, the ACFs
become periodic and their envelopes decay slowly with time,
indicating transition to regularity. For 𝑐 > 0.8 calculated
ACFs show periodic signal components.

3. The Basics of Four-Dimensional Variational
Data Assimilation

Atmospheric models used for operational NWP are mainly
deterministic and derived from a set of multidimensional
nonlinear differential equations in partial derivatives, which
are the equations of fluid dynamics and thermodynamics that
describe atmospheric processes and atmosphere-underlying
surface interactions. A generic atmospheric model can
be represented by the following continuous autonomous
dynamical system:

𝑑x (𝑡)
𝑑𝑡

= 𝑓 (x (𝑡) ,𝛼 (𝑡)) , 𝑡 ∈ [0, 𝜏] = T, x (0) = x
0
. (7)

Here x(𝑡) is the state vector belonging to a Hilbert space X,
𝛼 ∈ P is a parameter vector, where P is a Hilbert space
(the space of the model parameters), 𝑓 is a nonlinear vector-
valued function, such that 𝑓 : X × P × T → X, and x

0

is a given vector function. This infinite-dimensional model
has to be truncated by some means to finite-dimensional
approximate model, for which a solution can be sought
numerically. Applying either a projection onto a finite set of
basic functions or a discretization in time and space, one
can derive the discrete atmospheric model which can be
represented as 𝑠 discrete nonlinear dynamical system given
by the equation

x
𝑖+1

= M
𝑖,𝑖+1

(x
𝑖
) + 𝜀
𝑚

𝑖
, (8)

where x
𝑖
∈ R𝑛 is the 𝑛-dimensional state vector representing

the complete set of the model variables that determine the
internal state of the atmosphericmodel at time 𝑡

𝑖
,M
𝑖,𝑖+1

is the
nonlinear operator that indirectly containsmodel parameters
and propagates the state vector from time 𝑡

𝑖
to time 𝑡

𝑖+1
for 𝑖 =

0, . . . , 𝑁− 1, and 𝜀𝑚
𝑖
is the model errors. It is usually assumed

that model (8) is “perfect” (𝜀𝑚
𝑖
= 0), that is the forecast has

no errors if the initial condition is perfect. In this case, given
the model operator and the initial condition x

0
, (8) uniquely

specifies the orbit of the dynamical system. Let y0
𝑖
∈ R𝑚 be the

𝑚-dimensional vector of observations measured at a discrete
time 𝑡

𝑖
, 𝑖 = 0, . . . , 𝑁 that are linked to the system state via the

following equation:

y0
𝑖
= H
𝑖
(x
𝑖
) + 𝜀
0

𝑖
, (9)

where H
𝑖

: R𝑛 → R𝑚 is the nonlinear observation
operator that maps the state vector to observation space. It is

usually assumed that the observation errors 𝜀0
𝑖
are unbiased,

serially uncorrelated, and normally distributed with known
covariance matrices R

𝑖
∈ R𝑚×𝑚.

Suppose that at the initial time the prior (background)
model state x𝑏

0
is known and represents the “best” estimate

of the “true” state x𝑡
0
before any observations are taken. This

background state is provided by a previous forecast. It is
assumed that x𝑏

0
has unbiased and normally distributed errors

𝜀
𝑏 with known covariance matrix B

0
∈ R𝑛×𝑛:

x𝑏
0
= x𝑡
0
+ 𝜀
𝑏

. (10)

Given the observations y𝑜
𝑖
at time 𝑡

𝑖
, the corresponding

observation error covariance matrices R
𝑖
(𝑖 = 0, . . . , 𝑁), the

background initial state x𝑏
0
, and the error covariance matrix

B
0
, the 4D-Var data assimilation seeks to minimize, with

respect to x
0
, a certain cost function 𝐽(x) expressing the

“distance” between observations and corresponding model
state using the model equations as constraints:

x𝑎
0
= arg min 𝐽 (x) (11)

subject to x satisfying the set of the “ideal” (𝜀𝑚
𝑖
= 0) model

equations with initial state x
0
:

x
𝑖+1

= M
0,𝑖+1

(x
0
) , 𝑖 = 1, . . . , 𝑁. (12)

The 4D-Var cost function is usually written as (e.g., [17, 18]):

𝐽 (x
0
) =

1

2

(x
0
− x𝑏
0
)

𝑇

B−1
0
(x
0
− x𝑏
0
)

+

1

2

𝑁

∑

𝑖=0

(H
𝑖
(x
𝑖
) − y0
𝑖
)

𝑇

R−1
𝑖
(H
𝑖
(x
𝑖
) − y0
𝑖
) .

(13)

The optimization problem (11) is nonlinear with strong
constraints and an iterative minimization algorithm (e.g.,
gradient-based technique) is required to obtain the solution.
The gradient of the cost function (13) is as follows:

∇x0𝐽 (x0) = B−1
0
(x
0
− x𝑏
0
) +

𝑁

∑

𝑖=0

M𝑇
0,𝑖
H𝑇
𝑖
R−1
𝑖
(H
𝑖
(x
𝑖
) − y0
𝑖
) ,

(14)

where M𝑇
0,𝑖

is the adjoint of the linearized model operator
M
0,𝑖

= M󸀠
0,𝑖
(x
𝑖
) and H𝑇

𝑖
is the adjoint of the linearized

observation operator H
𝑖

= H󸀠
𝑖
(x
𝑖
). If the model is not

“perfect” then we need to take into account the model errors
𝜀
𝑚, which are sometimes taken as Gaussian noise:

𝜀
𝑚

∈ N (0,Q) , (15)

whereQ is a model error covariance matrix. Thus, we obtain
the weakly constrained 4D-Var data assimilation and the
following term

𝐽
𝑚
=

1

2

𝑁

∑

𝑖=1

(x
𝑖
−M
𝑖−1,𝑖

(x
𝑖−1
))
𝑇Q−1
𝑖
(x
𝑖
−M
𝑖−1,𝑖

(x
𝑖−1
)) (16)



Advances in Meteorology 5

Fast variable x Slow variable X

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

−0.5

1.0

0.5

0.0

−0.5

1.0

0.5

0.0

−0.5

−1.0

1.0

0.5

0.0

−0.5

−1.0

1.0

0.5

0.0

−0.5

−1.0

1.0

0.5

0.0

−0.5

−1.0
0 20 40 60 80

Time
0 20 40 60 80

Time

0 20 40 60 80

Time
0 20 40 60 80

Time

0 20 40 60 80

Time
0 20 40 60 80

Time

0 20 40 60 80

Time
0 20 40 60 80

Time

c = 0.15c = 0.15

c = 0.5c = 0.5

c = 0.8c = 0.8

c = 1.0c = 1.0

Figure 2: Autocorrelation functions for dynamic variables 𝑥 and𝑋 for different parameter 𝑐.
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Figure 3: Autocorrelation functions for dynamic variables 𝑧 and 𝑍 for different parameter 𝑐.
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should be added to the right-hand side of the cost function
(13) [6, 19].

It is important to make the following comments. While
NWPhas significantly improved over the last several decades,
weather forecasts are still intrinsically uncertain. This is
because mathematical models used in NWP have several
sources of uncertainty and therefore a number of sources
of errors. The first one is an intrinsic uncertainty due to
chaotic nature of the system. The second one is a structural
uncertainty, which is how the model itself represents the
physical processes incorporated into it. It is important to
underline that our knowledge of the earth system is always
imperfect and, therefore, we can only theoretically design the
“ideal” model. However, improving model physics demon-
strated that even theoretically well-posed models failed to
accurately simulate and predict the dynamics of real atmo-
spheric processes. This is because numerical models have a
parametric uncertainty (how accurate model parameters are)
initial and boundary uncertainty (are initial and boundary
conditions known precisely) and, in addition, numerical
errors. All of those uncertainties (errors) impair the weather
forecast accuracy and limit the time horizon of accurate
NWP. Current time horizon of synoptic-scale NWP is several
days.

The climate study has significantly longer time horizon:
several decades.The sensitivity analysis of the climate system
is associated with stability of characteristics of climatic model
attractors with respect to perturbations in model parameters.
A priori estimation of the behaviour of state vector, when
the perturbations in the climate model parameters tend to
zero, is generally an unresolved problem since it is not known
whether or not the invariant measure of climate modeling
system is continuous with respect to the small perturba-
tions in the differential matrix operator of the numerical
model. Indeed, at certain model parameter values, different
bifurcation can occur in the system phase space. Therefore,
dynamics on the attractor generated by themodelmay change
considerably even for small parameter perturbations.

4. Sensitivity Analysis: Essentials of
Conventional Approaches

One of the commonly used measures for estimating the
influence ofmodel parameter variations on the state variables
is the sensitivity coefficient, which is the derivative of a certain
component of a model state vector 𝑥

𝑖
with respect to some

model parameter 𝛼
𝑗
[30, 31, 44]:

𝑆
𝑖𝑗
≡

𝜕𝑥
𝑖

𝜕𝛼
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝛼𝑗=𝛼

0

𝑗

= lim
𝛿𝛼→0

[

[

𝑥
𝑖
(𝛼
0

𝑗
+ 𝛿𝛼
𝑗
) − 𝑥
𝑖
(𝛼
0

𝑗
)

𝛿𝛼
𝑗

]

]

, (17)

where 𝛿𝛼
𝑗
is the infinitesimal perturbation of parameter 𝛼

𝑗

around some fixed point 𝛼0
𝑗
. Differentiating (8) with respect

to 𝛼, we obtain the set of nonhomogeneous ODEs, the so-
called sensitivity equations, which can be written as

𝑑S
𝑗

𝑑𝑡

= M ⋅ S
𝑗
+D
𝑗

𝑗 = 1, . . . , 𝑚, (18)

where S
𝑗
= (𝜕x/𝜕𝛼

𝑗
) = (𝑆

1,𝑗
, 𝑆
2,𝑗
, . . . , 𝑆

𝑛,𝑗
)
𝑇 is the sensitivity

vector with respect to parameter 𝛼
𝑗
, D
𝑗
= (𝜕𝑓
1
/𝜕𝛼
𝑗
, 𝜕𝑓
2
/𝜕𝛼
𝑗
,

. . . , 𝜕𝑓
𝑛
/𝜕𝛼
𝑗
)
𝑇, and M is a Jacobian matrix. Thus, to analyze

the sensitivity of system (7) with respect to parameter 𝛼
𝑗
one

can solve the following set of differential equations with given
initial conditions:

𝑑x
𝑑𝑡

= 𝑓 (x,𝛼) , x (0) = x
0
,

𝑑S
𝑗

𝑑𝑡

= M ⋅ S
𝑗
+D
𝑗
, S
𝑗
(0) = S

𝑗0
.

(19)

Sensitivity equations describe the evolution of sensitivity
coefficients along a given trajectory and therefore allow
tracing the sensitivity dynamics in time. The procedure
for computing sensitivity coefficients includes the following
steps.

(1) Obtain initial conditions on the system attractor at
time 𝑡 = 𝑡

0
by integrating the nonlinear model

equations (7) for a long enough time range [𝑡
0
, 𝜏],

starting from random initial conditions.
(2) Solve the nonlinear model equations (7) to calculate a

trajectory x(𝑡), 𝑡 ∈ [𝑡
0
, 𝜏].

(3) Calculate a model Jacobian matrix and a parametric
Jacobian matrix.

(4) Solve the sensitivity equations (18) with given initial
conditions to obtain the desired sensitivity coeffi-
cients.

Sensitivity analysis allows us also to explore the sensitivity
of a generic objective function (performancemeasure), which
characterizes the dynamical system (7):

J (x,𝛼) = ∫

𝜏

0

Φ (𝑡; x,𝛼) 𝑑𝑡, (20)

where Φ is a nonlinear function of the state variables x and
model parameters 𝛼. The gradient of the functional J with
respect to the parameters 𝛼 around the unperturbed state
vector x0

∇
𝛼
J (x0,𝛼0) = (

𝑑J

𝑑𝛼
1

, . . . ,

𝑑J

𝑑𝛼
𝑚

)

𝑇󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

(21)

quantifies the influence of parameters on the model output
results. In particular, the effect of the 𝑗th parameter can be
estimated as follows:

𝑑J

𝑑𝛼
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝛼
0

𝑗

≈

J (x0 + 𝛿x0; 𝛼0
1
, . . . , 𝛼

0

𝑗
+ 𝛿𝛼
𝑗
, . . . , 𝛼

0

𝑚
) −J (x0,𝛼0)

𝛿𝛼
𝑗

,

(22)

where 𝛿𝛼
𝑖
is the variation in parameter 𝛼0

𝑖
. Note that

𝑑J

𝑑𝛼
𝑗

=

𝑛

∑

𝑖=1

𝜕J

𝜕𝑥
𝑖

𝜕𝑥
𝑖

𝜕𝛼
𝑗

+

𝜕J

𝜕𝛼
𝑗

=

𝑛

∑

𝑖=1

𝑆
𝑖𝑗

𝜕J

𝜕𝑥
𝑖

+

𝜕J

𝜕𝛼
𝑗

. (23)
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This approach is acceptable for low-order models. However,
the accuracy of sensitivity estimates strongly depends on
choice of the perturbation 𝛿𝛼

𝑖
. By introducing the Gâteaux

differential, the sensitivity analysis problem can be consid-
ered in the differential formulation eliminating the need to
set the value of 𝛿𝛼

𝑖
[30, 31]. The Gâteaux differential for the

objective function (20) has the following form:

𝛿J (x0,𝛼0; 𝛿x, 𝛿𝛼) = ∫

𝜏

0

(

𝜕Φ

𝜕x

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

⋅ 𝛿x + 𝜕Φ

𝜕𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

⋅ 𝛿𝛼)𝑑𝑡.

(24)

Here 𝛿x is the state vector variation due to the variation
in the parameter vector in the direction 𝛿𝛼. Linearizing the
nonlinear model (7) around an unperturbed trajectory x0(𝑡),
we obtain the following system of variational equations, the
so-called tangent linear model, for calculating 𝛿x:

𝜕𝛿x
𝜕𝑡

=

𝜕𝑓

𝜕x

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

⋅ 𝛿x + 𝜕𝑓

𝜕𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

⋅ 𝛿𝛼,

𝑡 ∈ [0, 𝜏] , 𝛿x (0) = 𝛿x
0
.

(25)

Then using (24) we can calculate the variation 𝛿J. Since
𝛿J(x0,𝛼0; 𝛿x, 𝛿𝛼) = ⟨∇

𝛼
J, 𝛿𝛼⟩, where ⟨⋅, ⋅⟩ is a scalar

product, the model sensitivity with respect to parameter
variations can be estimated by calculating the components of
the gradient ∇

𝛼
J. However, this method is computationally

ineffective if the number of model parameters𝑚 is large. The
use of adjoint equations allows obtaining the required sen-
sitivity estimates within a single computational experiment
(e.g., [6, 30, 31]) since the gradient ∇

𝛼
J can be calculated by

the following equation:

∇
𝛼
J (x0,𝛼0) = ∫

𝜏

0

[

𝜕Φ

𝜕𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

− (

𝜕𝑓

𝜕𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

)

𝑇

⋅ x∗]𝑑𝑡, (26)

where the vector function x∗ is the solution of adjoint model

−

𝜕x∗

𝜕𝑡

− (

𝜕𝑓

𝜕x

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

)

𝑇

x∗ = −

𝜕Φ

𝜕x

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨x0 ,𝛼0

,

𝑡 ∈ [0, 𝜏] , x∗ (𝜏) = 0.

(27)

This equation is numerically integrated in the inverse time
direction. Thus, the algorithm for computing sensitivity
functions is as follows.

(1) Obtain initial conditions on the system attractor at
time 𝑡

0
by integrating the nonlinear model equations

(7) for a long enough time range [𝑡
0
, 𝜏], starting from

random initial conditions.
(2) Solve the nonlinear model equations (7) to calculate a

trajectory x(𝑡), 𝑡 ∈ [𝑡
0
, 𝜏].

(3) Calculate the right-hand side of (27) and then inte-
grate numerically this equation in the inverse time
direction with the initial conditions x∗(𝜏) = 0.

(4) Calculate the gradient (26).

5. Testing the Variational Data Assimilation

Wewill consider the dynamics of system (2) on its attractor. In
order to obtain themodel attractor, the numerical integration
of (2) is started at 𝑡

𝐷
= −20 with the initial conditions

x (𝑡
𝐷
) = (0.01, 0.01, 0.01, 0.02, 0.02, 0.02)

𝑇 (28)

and finished at 𝑡
0
= 0 to guarantee that the calculated model

state vector x
0
= x(0) is on the model attractor. The forecast,

obtained by NWPmodels, is substantially determined by ini-
tial conditions, which calculated via 4D-Var. The accuracy of
initial conditions strongly depends on numerous parameters
of 4D-Var systems. Some of these parameters are uncertain.
To estimate the influence of parameter variations on the
forecast obtained by model (2), the “true” and “forecast”
trajectories were calculated. The “true” trajectory x𝑡(𝑡

𝑖
) and

the “true” state x𝑡(𝑡
𝑓
) at the verification time 𝑡

𝑓
are obtained

by integrating the model equations over the time interval
[𝑡
0
, 𝑡
𝑓
] with unperturbed parameter vector 𝛼0 and initial

conditions x
0
. Then, the forecast trajectory x𝑓(𝑡

𝑘
) and the

forecast state x𝑓(𝑡
𝑓
) at 𝑡
𝑓
are obtained by integration of the

“forecast” model (2) with initial conditions x
0
and a certain

perturbed model parameter. Thus, the “forecast” model has
the same set of equations as the “true” model; however, some
model parameter is slightly changed (i.e., this parameter is
known with uncertainty). In order to measure forecast errors
the relative error in energy norm is used:

𝑒 (x𝑓) = [

[

(x𝑓 − x𝑡)
𝑇

(x𝑓 − x𝑡)

(x𝑡)𝑇 x𝑡
]

]

1/2

. (29)

As an example, variations in parameters 𝑟 and 𝑐 are
considered and forecast is made for two time periods 𝑡

𝑓
:

2.5 and 5.0 of nondimensional time units. The forecast error
(29) is estimated at time 𝑡

𝑓
. Table 1 shows the results of

forecast verifications. It is obvious that the less the forecast
error measure 𝑒(x𝑓), the higher the forecast skill. Qualita-
tively, calculated results are consistent with real numerical
weather forecasts obtained with complex state-of-the-art
NWP models: longer 𝑡

𝑓
leads to lower forecast accuracy and

smaller parameter variations (difference between the “true”
parameter value and the value used in the “real” model)
lead to better forecast accuracy. It can also be observed that
parameter 𝑟 influences the forecast accuracy almost twice as
much as parameter 𝑐.

Synthetic data assimilation requires the “true” state x𝑡(𝑡
𝑖
),

the background (first guess) state x𝑏(𝑡
𝑖
), and observations

y0(𝑡
𝑖
) inside the assimilation window [𝑡

0
, 𝑡
𝑁
] as well as error

covariance matrices of the prior guess B
0
and observations

R
𝑖
. The length of data assimilation window should be defined

as well. The “true” and background trajectories on the data
assimilation interval [𝑡

0
, 𝑡
𝑁
] represent some portions of x𝑡(𝑡

𝑖
)

and x𝑏(𝑡
𝑖
), respectively. Observations should be provided

every 5–10 time steps inside the assimilation window and
can be generated by adding the Gaussian random noise (with
zero mean and variance 𝜎2

0
= 0.2) to the “true” state. Since

observation grid and model grid are the same, observation
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Table 1: Relative errors in energy norm (subscript at parameters denotes the nondimensional time unit).

Parameter variations in percent of unperturbed value
1% −1% 5% −5% 10% −10%

𝑟
2.5

0.1273 0.1266 0.2871 0.2796 0.4081 0.3890
𝑐
2.5

0.0584 0.0583 0.1312 0.1300 0.1866 0.1833
𝑟
5.0

0.1663 0.1689 0.3617 0.3202 0.5004 0.5742
𝑐
5.0

0.0705 0.0704 0.1583 0.1569 0.2250 0.2210

operator H is simply an identity mapping. To take into
consideration the background covariances, for simplicity, the
assumption B

0
= 𝜎
2

𝑏
I can be used, where 𝜎2

𝑏
= 0.2 is the

variance of background error and I is the identity matrix.
Under assumption that the observation quality is the same
for all variables, the observation covariance matrix can be
defined as R

𝑖
= R = 𝜎

2

0
I.

Testing the TL model and its adjoint is required to
ensure the convergence of theminimization algorithm in data
assimilation procedures. If 𝜁𝛿x is a small perturbation of the
model state, then

M (x + 𝜁𝛿x) −M (x) ≈ M (x) 𝜁𝛿x. (30)

To verify the applicability of theTLmodel on the time interval
[𝑡
0
, 𝑡
𝑁
], the relative error

𝑒
𝑅
=

M (x + 𝜁𝛿x) −M (x)
M (x) 𝜁𝛿x

(31)

should be calculated. The TL model is valid if 𝑒
𝑅

→ 0

when 𝜁 → 0. The results of numerical experiments showed
that the TL model passed this test with 𝑒

𝑅
tending towards

zero (Table 2). The TL adjoint correctness can be tested by
verification of the inner product identity

⟨M𝛿x,M𝛿x⟩ = ⟨𝛿x,M𝑇M𝛿x⟩ . (32)

It was found that this equality is essentially correct: the
difference was observed only in the 7th digit, which is
consistent with a round-off error.The second test to verify the
adjoint model is the so-called gradient test [45], which aims
to compare a finite difference representation of the gradient
of 4D-Var cost function (13) with the gradient obtained via
adjoint model ∇𝐽(x

0
). A linear Taylor approximation of the

cost function can be written as

𝐽 (x
0
+ 𝜁𝛿x) ≈ 𝐽 (x

0
) + 𝜁 (𝛿x)𝑇 ∇𝐽 (x

0
) . (33)

Let us introduce the following function:

Ψ (𝜁) =

𝐽 (x
0
+ 𝜁𝛿x) − 𝐽 (x

0
)

𝜁 (𝛿x)𝑇 ∇𝐽 (x
0
)

. (34)

If the gradient is estimated correctly then the function
Ψ(𝜁) → 1 as 𝜁 → 0. The perturbation vector 𝛿x is taken
to be [45]

𝛿x =
∇𝐽 (x
0
)

󵄩
󵄩
󵄩
󵄩
∇𝐽 (x
0
)
󵄩
󵄩
󵄩
󵄩

, (35)

Table 2: Results of verification of tangent linear model for 𝑐 = 0.8

and 𝛿x = 10
−2

× x
0
.

𝜁 𝑒
𝑅

1 0.9182066027544249
10−1 0.9997279965782743
10−2 0.9999925468155463
10−3 0.9999991929611531
10−4 0.9999999534965012
10−5 0.9999999911217883
10−6 0.9999999914427087
10−7 0.9999997435447022

Table 3: Results of verification of 4D-Var cost function gradient for
𝑐 = 0.8 and 𝛿x = 10

−2

× x
0
.

𝜁 Ψ (𝜁) log
10
(
󵄨
󵄨
󵄨
󵄨
Ψ (𝜁) − 1

󵄨
󵄨
󵄨
󵄨
)

10−4 0.8727731981461396 −0.8954213897009056
10−5 0.9975483775420343 −2.6105464089686840
10−6 0.9998765512756632 −3.9085133935113787
10−7 0.9999884562844123 −4.9376543818657845
10−8 0.9999979865432855 −5.6960577024708600
10−9 0.9999998912431426 −6.9635433500893210
10−10 0.9999999244103234 −7.1215375125562080

where ‖ ⋅ ‖ is the 𝐿
2
norm. Table 3 manifests the success of the

gradient test.

6. Sensitivity of the System with
respect to Parameters

According to the sensitivity theory [44], general solutions
of sensitivity equations for oscillatory nonlinear dynamical
systems grow unbounded as time tends to infinity; therefore,
sensitivity functions calculated by conventional approaches
have a high degree of uncertainty.The reason is that nonlinear
dynamical systems that exhibit chaotic behavior are very
sensitive to its initial conditions.Thus, the solutions to the lin-
earized Cauchy problem (7) grow exponentially as ‖𝛿x(𝑡)‖ ≈
‖𝛿x(0)‖𝑒𝜆𝑡, where 𝜆 > 0 is the leading Lyapunov exponent.
As a result, calculated sensitivity coefficients contain a fairly
large error [35–37]. To illustrate this point, let us explore
the sensitivity of model output to changes in the coupling
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strength parameter. Let us introduce the following sensitivity
coefficients:

𝑆
1𝑐
=

𝜕𝑥

𝜕𝑐

, 𝑆
2𝑐
=

𝜕𝑦

𝜕𝑐

, 𝑆
3𝑐
=

𝜕𝑧

𝜕𝑐

,

𝑆
4𝑐
=

𝜕𝑋

𝜕𝑐

, 𝑆
5𝑐
=

𝜕𝑌

𝜕𝑐

, 𝑆
6𝑐
=

𝜕𝑍

𝜕𝑐

.

(36)

The corresponding sensitivity equations can be written as

̇𝑆
1𝑐
= 𝜎 (𝑆

2𝑐
− 𝑆
1𝑐
) − 𝑐𝑆

4𝑐
− 𝑋,

̇𝑆
2𝑐
= 𝑟𝑆
1𝑐
− 𝑆
2𝑐
− 𝑥𝑆
3𝑐
− 𝑧𝑆
1𝑐
+ 𝑐𝑆
5𝑐
+ 𝑌,

̇𝑆
3𝑐
= 𝑥𝑆
2𝑐
+ 𝑦𝑆
1𝑐
− 𝑏𝑆
3𝑐
+ 𝑐𝑆
6𝑐
+ 𝑍,

̇𝑆
4𝑐
= 𝜀𝜎 (𝑆

5𝑐
− 𝑆
4𝑐
) − 𝑐𝑆

1𝑐
− 𝑥,

̇𝑆
5𝑐
= 𝜀 (𝑟𝑆

4𝑐
− 𝑆
5𝑐
− 𝑋𝑆
6𝑐
− 𝑍𝑆
4𝑐
) + 𝑐𝑆

2𝑐
+ 𝑦,

̇𝑆
6𝑐
= 𝜀 (𝑋𝑆

5𝑐
+ 𝑌𝑆
4𝑐
− 𝑏𝑆
6𝑐
) − 𝑐𝑆

3𝑐
− 𝑧.

(37)

Sensitivity coefficients can be introduced for any particular
model parameter. Since the parameter vector𝛼 consists of five
components (𝜎, 𝑟, 𝑏, 𝑐, and 𝜀), five sets of sensitivity equations
can be derived from the model equations (2). The dynamics
of sensitivity coefficients (36) can be traced by solving the
sensitivity equations (37) along with the nonlinear model (2).

Sensitivity coefficients (36), calculated on the time inter-
val [0, 20], are shown in Figure 4. Envelopes of these coeffi-
cients grow over timewhile sensitivity coefficients themselves
exhibit oscillating behavior. Figure 5 provides more detailed
information on the evolution of sensitivity coefficients (36)
calculated on the time interval [0, 5]. It is known that sensitiv-
ity coefficient is a measure of the change in state variable due
to the variation of the estimated parameter. Unfortunately,
obtained sensitivity coefficients are inherently uninformative
and misleading. We cannot make a clear conclusion from
them about system sensitivity to variations in the parameter
𝑐. In this regard, the average values of sensitivity functions
∇
𝛼
⟨J(𝛼)⟩ over a certain period of time can be considered as

one of the most important measures of sensitivity, where J
is a generic objective function (20). However, the gradient
∇
𝛼
⟨J(𝛼)⟩ cannot be correctly estimated within the frame-

work of conventional methods of sensitivity analysis since for
chaotic systems it is observed that [35, 36]

∇
𝛼
⟨J (𝛼)⟩ ̸= ⟨∇

𝛼
J (𝛼)⟩ . (38)

This is because the integral

I = lim
𝑇→∞

∫

𝑇

0

lim
𝛿𝛼→0

[

J (𝛼 + 𝛿𝛼) −J (𝛼)

𝛿𝛼

] 𝑑𝑡 (39)

does not possess uniform convergence and two limits (𝑇 →

∞ K 𝛿𝛼 → 0) would not commute.
Similar results were obtained when we considered the

influence of variations in the parameter 𝑟 on the system
dynamics. This parameter plays an important role in the
formation of system’s dynamical structure and transition to
chaotic behavior [32]. Figure 6 shows the differences between

components of state vector x(𝑟0) obtained with 𝑟 = 𝑟
0

= 28

and x(𝑟0 +𝛿𝑟) obtained with 𝑟 = 𝑟
0

+𝛿𝑟, where 𝛿𝑟 = 0.01𝑟
0

=

0.28. Even a small perturbation in the parameter 𝑟 generates
a tangible difference between corresponding state variables.
Let us define the following sensitivity coefficients:

𝑆
1𝑟
=

𝜕𝑥

𝜕𝑟

, 𝑆
2𝑟
=

𝜕𝑦

𝜕𝑟

, 𝑆
3𝑟
=

𝜕𝑧

𝜕𝑟

,

𝑆
4𝑟
=

𝜕𝑋

𝜕𝑟

, 𝑆
5𝑟
=

𝜕𝑌

𝜕𝑟

, 𝑆
6𝑟
=

𝜕𝑍

𝜕𝑟

.

(40)

The associated system of sensitivity equations can be written
as

̇𝑆
1𝑟
= 𝜎 (𝑆

2𝑟
− 𝑆
1𝑟
) − 𝑐𝑆

4𝑟
,

̇𝑆
2𝑟
= 𝑥 + 𝑟𝑆

1𝑟
− 𝑆
2𝑟
− (𝑥𝑆
3𝑟
+ 𝑧𝑆
1𝑟
) + 𝑐𝑆

5𝑟
,

̇𝑆
3𝑟
= (𝑥𝑆

2𝑟
+ 𝑦𝑆
1𝑟
) − 𝑏𝑆

3𝑟
+ 𝑐𝑆
6𝑟
,

̇𝑆
4𝑟
= 𝜀𝜎 (𝑆

5𝑟
− 𝑆
4𝑟
) − 𝑐𝑆

1𝑟
,

̇𝑆
5𝑟
= 𝜀 [𝑋 + 𝑟𝑆

4𝑟
− 𝑆
5𝑟
− (𝑋𝑆

6𝑟
+ 𝑍𝑆
4𝑟
)] + 𝑐𝑆

2𝑟
,

̇𝑆
6𝑟
= 𝜀 [(𝑋𝑆

5𝑟
+ 𝑌𝑆
4𝑟
) − 𝑏𝑆

6𝑟
] − 𝑐𝑆

3𝑟
.

(41)

Envelopes of calculated sensitivity coefficients (40) grow
over time and sensitivity coefficients demonstrate the oscil-
lating behavior (Figures 7 and 8). Obtained sensitivity
coefficients are also uninformative and inconclusive. The
“shadowing” approach for estimating the system sensitivity
to variations in its parameters [36, 37] allows us to calculate
the average sensitivities ⟨∇

𝛼
𝐽(𝛼)⟩ and therefore to make a

clear conclusion with respect to the system sensitivity to its
parameters. A detailed description of two variants of the
“shadowing” approach is provided in an appendix, and some
results of numerical experiments are presented below.

The main problem arising in the “shadowing” method
is to calculate the pseudotrajectory. We consider two sets
of numerical experiments: weak coupling (𝑐 = 0.01) and
strong coupling (𝑐 = 0.8) between fast and slow systems.
Fast and slow variables that correspond to the original and
pseudoorbits are shown in Figures 9 and 10when the coupling
strength parameter 𝑐 = 0.01. The Least Square Shadowing
variant of the “shadowing” approach was used to calculate
pseudotrajectories. The differences between state variables
corresponding to the original and pseudotrajectories of
the fast and slow systems are plotted in Figure 11. These
figures show that the calculated pseudoorbits are close to
corresponding true trajectories over a specified time interval,
demonstrating the shadowability. The strong coupling does
not introduce significant qualitative and quantitative changes
in the behavior of pseudotrajectories with respect to the
true orbits. The original and pseudo fast and slow variables
for 𝑐 = 0.8 are shown in Figures 12 and 13, and the
differences between these state variables are presented in
Figure 14. Sensitivity estimateswith respect to the parameter 𝑟
calculated over the time interval [0, 20] for different values of
coupling strength parameter are shown in Table 4. The most
sensitive variables are 𝑧 and 𝑍. The sensitivity of variables 𝑥,
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Figure 4: Time dynamics of sensitivity functions with respect to parameter 𝑐 on the time interval [0, 20] for 𝑐0 = 0.9.

𝑦,𝑋, and𝑌with respect to 𝑟 is significantly less than variables
𝑧 and 𝑍.

7. Concluding Remarks

We considered a coupled nonlinear dynamical system, which
is composed of fast (the “atmosphere”) and slow (the “ocean”)
versions of the well-known Lorenz model. This low-order
mathematical tool allows us to mimic the atmosphere-ocean
system and therefore serves as a key part of a theoretical and
computational framework for the study of various aspects

of coupled 4D-Var procedures. Numerical models used to
predict the weather are highly nonlinear but tangent linear
approximations and their adjoints are used in VDA algo-
rithms. Linear approximation of strongly nonlinear NWP
models and also uncertainties in their numerous parameters
generate errors in the initial conditions obtained via data
assimilation systems. The influence of parameter uncertain-
ties on the results of data assimilation can be studied using
sensitivity analysis.

We discussed conventional methods of sensitivity analy-
sis and their inefficiencywith respect to calculating sensitivity
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Figure 5: Time dynamics of sensitivity functions with respect to parameter 𝑐 on the time interval [0, 5] for 𝑐0 = 0.9.

Table 4: Sensitivity estimates of fast and slow variables with respect to parameter 𝑟.

𝑐 𝜕𝑍/𝜕𝑟 𝜕𝑌/𝜕𝑟 𝜕𝑋/𝜕𝑟 𝜕𝑧/𝜕𝑟 𝜕𝑦/𝜕𝑟 𝜕𝑥/𝜕𝑟

1.0 1.10 0.05 0.01 1.08 0.04 0.03
0.8 0.69 0.08 0.03 1.02 0.07 0.07
0.4 0.95 0.03 −0.01 1.03 0.09 0.09
0.15 0.91 −0.08 −0.09 1.01 −0.01 −0.01
10
−4 1.04 −0.02 −0.03 1.02 −0.01 −0.01
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coefficients for chaotic dynamics. To calculate sensitivity
coefficients with acceptable accuracy, the sensitivity analy-
sis method [36, 37], developed on the basis of theory of
shadowing of pseudoorbits in dynamical systems [38, 39],
was applied. Previously, this method was used to analyze the
sensitivity of the periodic van der Pol oscillator, the original
Lorenz system, and simplified aeroelastic model that exhibit
both periodic and chaotic regimes.

Calculated sensitivity coefficients obtained via conven-
tional methods and the “shadowing” approach are presented
and discussed. It was shown that envelopes of sensitivity
coefficients obtained by conventional methods grow over
time and the coefficients themselves exhibit the oscillating
behaviour. Using the “shadowing” method allows us to
calculate the average sensitivity functions (coefficients) that
can be easily interpreted.

In conclusion, two comments should be highlighted.
(1) The shadowing property of dynamical systems is a

fundamental feature of hyperbolic systems that was first
discovered by Anosov [46] and Bowen [47]. However, most
physical systems are nonhyperbolic. Despite the fact that
much of shadowing theory has been developed for hyperbolic
systems, there is evidence that nonhyperbolic attractors also
have the shadowing property (e.g., [48–51]). In theory this
property should be verified for each particular dynamical
system, but this is more easily said than done.

(2) The applicability of the shadowing method for sen-
sitivity analysis of modern atmospheric and climate models
is a rather complicated problem since these models are
quite complex and they contain numerous input parameters.
Thus, further research and computational experiments are
required. However, we are confident that, by using the basic
ideas of the shadowing method, it is possible to better

understand the sensitivity analysis of atmospheric models of
various levels of complexity.

Appendix

The novel sensitivity analysis method for chaotic dynamical
systems developed in [36, 37] is based on the theory of
pseudoorbit shadowing in dynamical systems [38, 39], which
is one of the most rapidly developing components of the
global theory of dynamical systems and classical theory of
structural stability [52]. Naturally, pseudo- (or approximate-)
trajectories arise due to the presence of round-off errors,
method errors, and other errors in computer simulation of
dynamical systems. Consequently, we will not get an exact
trajectory of a system, but we can come very close to an
exact solution and the resulting approximate solution will be
a pseudotrajectory. The shadowing property (or pseudoorbit
tracing property) means that, near an approximate trajectory,
there exists the exact trajectory of the system considered, such
that it lies uniformly close to a pseudotrajectory. The shad-
owing theory is well developed for the hyperbolic dynamics,
which is characterized by the presence of expanding and
contracting directions for derivatives.The study of shadowing
problem was originated by Anosov [46] and Bowen [47].

Let (𝑀, dist) be a compact metric space and let 𝑓 : 𝑀 →

𝑀 be a homeomorphism (a discrete dynamical systemon𝑀).
A set of points 𝑋 = {𝑥

𝑘
: 𝑘 ∈ Z} is a 𝑑-pseudotrajectory

(𝑑 > 0) of 𝑓 if

dist (𝑥
𝑘+1

, 𝑓 (𝑥
𝑘
)) < 𝑑, 𝑘 ∈ Z. (A.1)

Here the notation dist(⋅, ⋅) denotes the distance in the phase
space between two geometric objects within the brackets.

We say that 𝑓 has the shadowing property if given 𝜀 > 0

there is 𝑑 > 0 such that for any 𝑑-pseudotrajectory𝑋 = {𝑥
𝑘
:

𝑘 ∈ Z} there exists a corresponding trajectory 𝑌 = {𝑦
𝑘
: 𝑘 ∈

Z}, which 𝜀-traces𝑋; that is

dist (𝑥
𝑘
, 𝑦
𝑘
) < 𝜀, 𝑘 ∈ Z. (A.2)

The shadowing lemma for discrete dynamical systems
[53] states that, for each 𝜀 > 0, there exists 𝑑 > 0 such that
each 𝑑-pseudotrajectory can be 𝜀-shadowed.

The definition of pseudotrajectory and shadowing lemma
for flows (continuous dynamical systems) [38] are more
complicated than for discrete dynamical systems. Let Φ𝑡 :
R ×𝑀 → 𝑀 be a flow of a vector field 𝑋 on𝑀. A function
𝑔 : R → 𝑀 is a 𝑑-pseudotrajectory of the dynamical system
Φ
𝑡 if the inequalities

dist (Φ𝑡 (𝑡, 𝑔 (𝜏)) , 𝑔 (𝜏 + 𝑡)) < 𝑑 (A.3)

hold for any 𝑡 ∈ [−1, 1] and 𝜏 ∈ R. The “continuous”
shadowing lemma ensures that, for the vector field 𝑋 gener-
ating the flow Φ

𝑡, the shadowing property holds in a small
neighborhood of a compact hyperbolic set for dynamical
system Φ

𝑡.
It is very important to note that the shadowing problem

for continuous dynamical systems requires reparameteriza-
tion of shadowing trajectories. This is the case because for



14 Advances in Meteorology

Fast subsystem Slow subsystem

S1

S2

S3

S4

S5

S6

0 2010

Time
0 2010

Time

0 2010

Time
0 2010

Time

0 2010

Time
0 2010

Time

A
m

pl
itu

de

500

0

−500

A
m

pl
itu

de

500

0

−500

A
m

pl
itu

de

6000

4000

2000

0

−2000

A
m

pl
itu

de

1000

0

−2000

−1000 A
m

pl
itu

de

8000

4000

0

−4000

A
m

pl
itu

de

1500

0

−1500

Figure 7: Time dynamics of sensitivity functions with respect to parameter 𝑟 on the interval [0, 25] for 𝑐0 = 0.9.

continuous dynamical systems close points of pseudotra-
jectory and true trajectory do not correspond to the same
moments of time. A monotonically increasing homeomor-
phism ℎ : R → R such that ℎ(0) = 0 is called a
reparameterization and denoted by Rep. For 𝜀 > 0, Rep(𝜀)
is defined as follows [38]:

Rep (𝜀) = {ℎ ∈ Rep :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ℎ (𝑡
1
) − ℎ (𝑡

2
)

𝑡
1
− 𝑡
2

− 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜀}

for any different 𝑡
1
, 𝑡
1
∈ R.

(A.4)

For simplicity, we will consider a generic autonomous
dynamical system with one parameter 𝛼:

𝑑𝑥

𝑑𝑡

= 𝑓 (𝑥, 𝛼) , 𝑥 ∈ R
𝑛

. (A.5)

The new sensitivity analysis method [36, 37] is based on the
“continuous” shadowing lemma and the following two basic
assumptions.

(a) Model state variables are considered over long time
interval 𝑡 ∈ [0, 𝑇], where 𝑇 → ∞, and an averaged
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Figure 8: Time dynamics of sensitivity functions with respect to parameter 𝑟 on the time interval [0, 5] for 𝑐0 = 0.9.

performancemeasure ⟨𝐽(𝛼)⟩ is of themost interest for
us:

⟨𝐽 (𝛼)⟩ = lim
𝑇→∞

1

𝑇

∫

𝑇

0

𝐽 (𝑥 (𝑡, 𝛼) , 𝛼) 𝑑𝑡. (A.6)

(b) The dynamical systemunder consideration is ergodic.

With these assumptions, we can use the arbitrarily chosen
trajectory of the system to trace the state variables along
the orbit and calculate the performance measure 𝐽(𝛼). For
example, the arbitrary trajectory 𝑥(𝑡) can be chosen as a

solution of the model equation, such that it is located nearby
a certain reference trajectory 𝑥

𝑟
(𝑡). Taking into account the

shadowing lemma, the closest orbit 𝑥(𝑡) to 𝑥
𝑟
(𝑡) satisfies the

following constrained minimization problem [37]:

min
𝑥,𝜏

1

𝑇

∫

𝑇

0

[
󵄩
󵄩
󵄩
󵄩
𝑥 (𝜏 (𝑡)) − 𝑥

𝑟
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

+ 𝜂
2

(

𝑑𝜏

𝑑𝑡

− 1)

2

]𝑑𝑡,

such that 𝑑𝑥

𝑑𝑡

= 𝑓 (𝑥, 𝛼) ,

(A.7)
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Figure 10: Original trajectory (in red) and pseudoorbit (in blue) for fast 𝑥 and slow𝑋 variables for 𝑐0 = 0.01.

where 𝜂 is the parameter that provides the same order of
magnitude of the two terms in the integrand and 𝜏(𝑡) is
a time transformation. The second term in the integrand
describes reparameterization. Problem (A.7) is called the
nonlinear Least Square Shadowing (LSS) problem, and its
solution, denoted by 𝑥(𝑇)

𝑠
(𝑡, 𝛼) and 𝜏

(𝑇)

𝑠
(𝑡, 𝛼), is a solution of

the model equation and time transformation that provides

the trajectory 𝑥(𝑇)
𝑠
(𝑡, 𝛼) to be close to 𝑥

𝑟
(𝑡). The performance

measure (A.6) averaged over the time interval 𝑡 ∈ [0, 𝑇] can
be then approximated as

⟨𝐽 (𝛼)⟩ ≈ ⟨𝐽
(𝑇)

𝑠
(𝛼)⟩ =

1

𝜏 (𝑇) − 𝜏 (0)

∫

𝜏(𝑇)

𝜏(0)

𝐽 (𝑥
(𝑇)

𝑠
(𝑡, 𝛼) , 𝛼) ,

(A.8)
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since 𝑥(𝑇)
𝑠
(𝑡, 𝛼) satisfies the model equation at a different 𝛼.

The desired sensitivity estimate ∇
𝛼
⟨𝐽
(𝑇)

𝑠
(𝛼)⟩ can be computed

by solving the following linearized LLS problem [37]:

min
𝑆,𝜇

1

𝑇

∫

𝑇

0

[‖𝑆‖
2

+ 𝜂
2

𝜇
2

] 𝑑𝑡,

such that 𝑑𝑆

𝑑𝑡

=

𝜕𝑓

𝜕𝑥

𝑆 +

𝜕𝑓

𝜕𝛼

+ 𝜇𝑓 (𝑥
𝑟
, 𝛼) .

(A.9)

The solutions of this problem 𝑆(𝑡) and 𝜇(𝑡) relate to the
solutions of the nonlinear LSS problem (A.7) as follows:

𝑆 (𝑡) =

𝑑

𝑑𝛼

(𝑥
(𝑇)

𝑠
(𝜏
(𝑇)

𝑠
(𝑡, 𝛼) , 𝛼)) ,

𝜇 (𝑡) =

𝑑

𝑑𝛼

𝑑𝜏
(𝑇)

𝑠
(𝑡, 𝛼)

𝑑𝑡

.

(A.10)

The time-dependent parameter 𝜇 is called a time-dilation
variable and corresponds to the time transformation from the

shadowing lemma. Using 𝑆 and 𝜇, we can estimate the desired
sensitivity (the derivative of the linearized performance
measure (A.8) with respect to the parameter 𝛼):

∇
𝛼
⟨𝐽
(𝑇)

𝑠
(𝛼)⟩ ≈

1

𝑇

∫

𝑇

0

(

𝜕𝐽

𝜕𝑥

𝑆 +

𝜕𝐽

𝜕𝛼

+ 𝜇 (𝐽 − 𝐽)) 𝑑𝑡,

where 𝐽 = 1

𝑇

∫

𝑇

0

𝐽 𝑑𝑡.

(A.11)

Several numerical algorithms can be used to solve the
linearized LSS problem (A.9). One such method is based
on variational calculus, which is used to derive optimality
conditions representing a system of linear differential equa-
tions that are then discretized and solved numerically to
calculate variables 𝑆 and 𝜇 [37]. Let Δ𝑡 = 𝑇/𝑚 be a uniform
discretization time step, then denoting 𝑥

𝑖+1/2
= 𝑥
𝑟
((𝑖 +

1/2)Δ𝑡), 𝑥
𝑖−1/2

= 𝑥
𝑟
((𝑖 − 1/2)Δ𝑡), 𝑖 = 0, . . . , 𝑚 − 1, and using

the trapezoidal rule to approximate the time derivative of 𝑆
and 𝜇, we can obtain the following discrete Karush-Kuhn-
Tucker (KKT) system [37, 54]:
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where

𝐴
𝑖
= −

𝐼

Δ𝑡

−

𝜕𝑓

𝜕𝑥

(𝑥
𝑖−1/2

, 𝛼) , 𝐵
𝑖
=

𝑥
𝑖+1/2

− 𝑥
𝑖−1/2

Δ𝑡

,

𝐶
𝑖
=

𝐼

Δ𝑡

−

𝜕𝑓

𝜕𝑥

(𝑥
𝑖+1/2

, 𝛼) ,

𝑑
𝑖
=

1

2

[

𝜕𝑓

𝜕𝛼

(𝑥
𝑖−1/2

, 𝛼) +

𝜕𝑓

𝜕𝛼

(𝑥
𝑖+1/2

, 𝛼)] .

(A.13)

The KKT system can be solved using, for example, iterative
methods. Gauss elimination approach for solving the KKT
system was considered in [37]. The convergence of the LSS
method was proved in [55]. Calculated variables 𝑆 and 𝜇 are

then used to determine the sensitivity estimate (A.11).TheLSS
algorithm is summarized as follows.

(1) Define a temporal grid 𝑡
𝑖
= 𝑖Δ𝑡, 𝑖 = 0, . . . , 𝑚, and then

discretize the model equation (A.5) on this grid.
(2) Calculate a solution of (A.5) 𝑥

𝑟
on the time interval

[0, 𝑇].
(3) Compute the vectors 𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, and 𝑑

𝑖
.

(4) Solve the KKT system to obtain variables 𝑆
𝑖
and 𝜇

𝑖
.

(5) Compute the gradient components (sensitivity func-
tions) (A.11).

Anothermethod that also uses the concept of pseudoorbit
shadowing in dynamical systems for sensitivity analysis of
chaotic oscillations was developed in [36]. This method
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Figure 11: Difference between variables that correspond to the original trajectory and pseudoorbit for 𝑐0 = 0.01.

is based on inverting the so-called “shadowing operator”
that requires calculating the Lyapunov characteristic (covari-
ant) vectors. However, the computational cost needed for
the Lyapunov eigenvector decomposition is high when the
dynamical system hasmany positive Lyapunov exponents. To
illustrate this approach, suppose that the sensitivity analysis
of system (A.5) aims to estimate the following sensitivity
coefficient: 𝑆

𝛼
= 𝜕𝑥/𝜕𝛼. Let us introduce the following

transform: 𝑥󸀠(𝑥) = 𝑥 + 𝛿𝑥(𝑥), where 𝑥 and 𝑥
󸀠 are true

trajectory and pseudoorbit, respectively. The orbit 𝑥
󸀠 is

generated due to the variation in parameter𝛼. It can be shown
[36] that 𝛿𝑓(𝑥) = 𝐴𝛿𝑥(𝑥), where

𝐴 = [−(

𝜕𝑓

𝜕𝑥

) + (

𝑑

𝑑𝑡

)] (A.14)

is a “shadow” operator. Thus, to find a pseudotrajectory, we
need to solve the equation 𝛿𝑥 = 𝐴

−1

𝛿𝑓; that is, we must
numerically invert the operator 𝐴 for a given 𝛿𝑓. To solve
this problem, functions 𝛿𝑥 and 𝛿𝑓 are decomposed into their
constituent Lyapunov covariant vectors 𝜐

1
(𝑥), . . . , 𝜐

𝑛
(𝑥):

𝛿𝑥 (𝑥) =

𝑛

∑

𝑖=1

𝜓
𝑖
(𝑥) 𝜐
𝑖
(𝑥) , (A.15a)

𝛿𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝜑
𝑖
(𝑥) 𝜐
𝑖
(𝑥) . (A.15b)

Note that each 𝜐
𝑖
(𝑥) satisfies the following equation:

𝑑𝜐
𝑖
(𝑥 (𝑡))

𝑑𝑡

=

𝜕𝑓

𝜕𝑥

𝜐
𝑖
(𝑥 (𝑡)) − 𝜆

𝑖
𝜐
𝑖
(𝑥 (𝑡)) , (A.16)

where 𝜆
1
, . . . , 𝜆

𝑛
are the Lyapunov exponents. From (A.14)

one can obtain

𝐴 (𝜓
𝑖
𝜐
𝑖
) = [−𝜓

𝑖
(𝑥)

𝜕𝑓

𝜕𝑥

+

𝑑𝜓
𝑖
(𝑥)

𝑑𝑡

] 𝜐
𝑖
(𝑥) + 𝜓

𝑖
(𝑥)

𝑑𝜐
𝑖
(𝑥)

𝑑𝑡

.

(A.17)

Substitution of (A.16) into the last term of (A.17) gives

𝐴 (𝜓
𝑖
𝜐
𝑖
) = [

𝑑𝜓
𝑖
(𝑥)

𝑑𝑡

− 𝜆
𝑖
𝜓
𝑖
(𝑥)] 𝜐

𝑖
(𝑥) . (A.18)

From (A.15a) and (A.15b) and (A.18) and the relation 𝛿𝑓(𝑥) =
𝐴𝛿𝑥(𝑥), we get

𝛿𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝐴 (𝜓
𝑖
𝜐
𝑖
) =

𝑛

∑

𝑖=1

(

𝑑𝜓
𝑖

𝑑𝑡

− 𝜆
𝑖
𝜓
𝑖
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜑𝑖

𝜐
𝑖
. (A.19)

Equation (A.19) gives the following relationship between
𝜓
𝑖
(𝑥) and 𝜑

𝑖
(𝑥) along the orbit:

𝑑𝜓
𝑖
(𝑥)

𝑑𝑡

= 𝜑
𝑖
(𝑥) + 𝜆

𝑖
𝜓
𝑖
(𝑥) . (A.20)

Thus, we can calculate 𝜓
𝑖
(𝑥) using (A.20) by first decom-

posing 𝛿𝑓 as a sum (A.15b), and then the desired 𝛿𝑥 can
be obtained from (A.15a). However, if dynamical system has
a zero Lyapunov exponent, 𝜆0

𝑖
= 0, then the algorithm

described above fails to compute 𝛿𝑥 [36]. The problem can
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Figure 12: Original trajectory (in red) and pseudoorbit (in blue) for the fast 𝑧 and slow 𝑍 variables for 𝑐0 = 0.8.
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Figure 13: Original trajectory (in red) and pseudoorbit (in blue) for fast 𝑥 and slow𝑋 variables for 𝑐0 = 0.8.

be resolved by introducing a time-dilation variable 𝜇 that
satisfies the following equation:

𝜇 + ⟨𝜑
0

𝑖
⟩ = 0, (A.21)

where

⟨𝜑
0

𝑖
⟩ = lim
𝑇→∞

1

𝑇

[𝜓
0

𝑖
(𝑥 (𝑇)) − 𝜓

0

𝑖
(𝑥 (0))] . (A.22)

In the presence of the variable 𝜇, the expression for
calculating 𝛿𝑥 takes the following form: 𝛿𝑥 = 𝐴

−1

(𝛿𝑓 + 𝜇𝑓).
The supplement 𝜇𝑓 affects (A.20) only for 𝜆0

𝑖
= 0:

𝑑𝜓
0

𝑖
(𝑥)

𝑑𝑡

= 𝜑
0

𝑖
(𝑥) + 𝜇. (A.23)
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Figure 14: Difference between variables that correspond to the original trajectory and pseudoorbit for 𝑐0 = 0.8.

In general, the procedure for solving a sensitivity analysis
problem represents the following set of steps.

(1) Obtain initial conditions of the system attractor by
integrating the model equations (A.5) from 𝑡

𝐷
= −20

to 𝑡
0
= 0, starting from random initial conditions.

(2) Solve (A.5) to obtain a trajectory 𝑥(𝑡), 𝑡 ∈ [0, 20], on
the attractor.

(3) Compute the Lyapunov exponents 𝜆
𝑖
and the Lya-

punov covariant vectors 𝜐
𝑖
(𝑥(𝑡)), 𝑖 = 1, . . . , 𝑛.

(4) Define 𝛿𝑓 = (𝜕𝑓/𝜕𝛼)𝛿𝛼 and execute the Lyapunov
spectrum decomposition of 𝛿𝑓 along the trajectory
𝑥(𝑡) to obtain 𝜑

𝑖
(𝑥), 𝑖 = 1, . . . , 𝑛.

(5) Calculate the time-dilation variable 𝜇 using (A.21).
(6) Compute 𝛿𝑥 along the trajectory 𝑥(𝑡).
(7) Estimate the sensitivity 𝑆

𝛼
= 𝜕𝑥/𝜕𝛼 by averaging over

the time interval 𝑡 ∈ [0, 20].
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