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ABSTRACT

A naı̈ve Bayes classifier (NBC) was developed to distinguish precipitation echoes from anomalous propagation

(anaprop). The NBC is an application of Bayes’s theorem, which makes its classification decision based on the

class with themaximuma posteriori probability. Several feature fields were input to the Bayes classifier: texture of

reflectivity (TDBZ), ameasure of the reflectivity fluctuations (SPIN), and vertical profile of reflectivity (VPDBZ).

Prior conditional probability distribution functions (PDFs) of the feature fieldswere constructed from training sets

for severalmeteorological scenarios and for anaprop.ABox–Cox transformwas applied to transform these PDFs

to approximate Gaussian distributions, which enabled efficient numerical computation as they could be spec-

ified completely by their mean and standard deviation. Combinations of the feature fields were tested on the

training datasets to evaluate the best combination for discriminating anaprop and precipitation, which was

found to be TDBZ and VPDBZ. The NBC was applied to a case of convective rain embedded in anaprop and

found to be effective at distinguishing the echoes. Furthermore, despite having been trained with data from

a single radar, the NBC was successful at distinguishing precipitation and anaprop from two nearby radars with

differing wavelength and beamwidth characteristics. The NBC was extended to implement a strength of clas-

sification index that provides a metric to quantify the confidence with which data have been classified as pre-

cipitation and, consequently, a method to censor data for assimilation or quantitative precipitation estimation.

1. Introduction

Ground-basedweather radar is often affected by return

signals that do not originate from precipitation. Return

signals frequently originate from stationary objects, such

as hills or buildings, or from moving objects such as birds

and insects. At other times the radar beam is bent toward

the ground because of atmospheric humidity and tem-

perature gradients, resulting in increased returns from

land or sea, a phenomenon known as anomalous propa-

gation or anaprop. These spurious returns are collectively

termed clutter; however, to differentiate their origin, the

term ground clutter is reserved for returns from stationary

objects that are present under normal propagation

conditions. Clutter and anaprop (over land) are charac-

terized by a Doppler velocity near zero and a narrow

spectrum width (e.g., Doviak and Zrni�c 1984); however,

anaprop is distinguished from clutter by its transient

temporal nature. Moreover, anaprop over sea has a non-

zero Doppler velocity, since the waves and spray have

measurable velocities.

Anaprop has been observed since the advent of radar,

and the meteorological conditions that produce it have

been well described in the literature (e.g., Doviak and

Zrni�c 1984;Meischner et al. 1997). It is easily recognized

by operational forecasters due to its shallow vertical

extent and transient temporal characteristics; however,

these same properties make its automated detection dif-

ficult. Automated detection of anaprop is of fundamental

importance in quantitative weather radar applications

such as data assimilation for numerical weather prediction

(NWP), as assimilation of anaprop may lead to large

overestimates of precipitation totals and initiate spurious

convection. Furthermore, small errors in quantitative

precipitation estimation (QPE) have been shown to

propagate nonlinearly in peak rate and runoff volume

in hydrologic calculations (Faures et al. 1995), potentially
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having a dramatic impact on the efficacy of flood

forecasts.

Several methods have been developed to mitigate

anaprop, each of which has advantages and shortcom-

ings (for a thorough review see Steiner and Smith 2002).

The first is to site the radar at an appreciable height

above the base level of the surrounding terrain as con-

ditions conducive to anaprop usually occur close to the

surface (Bech et al. 2007; Brooks et al. 1999); although

this also limits the low-level coverage of the radar beam.

Practicalities, however, do not always permit raised sit-

ing of the radar, so other methods have been developed.

These methods can be classified into two broad cate-

gories: those which perform signal processing on the

return radar beam at the radar site and those which

analyze the data post-acquisition.

a. On-site processing

On-site processing is generally performed via filtering

the Doppler spectrum in either the time or frequency

domain (Keeler and Passarelli 1990). The near-zero

Doppler velocity and narrow spectrumwidth of anaprop

can be exploited to remove these signals; however, an

unwanted side effect is that precipitation with a Doppler

velocity near zero is also excluded. This is commonly ob-

served in widespread stratiform rain, where data are often

missing at the zero isodop.Additionally, the notch filtering

of near-zero velocity echoes is ineffective for anaprop over

sea as waves have true measurable velocities. Another

disadvantage of this technique (and the reason that it is

performed on site) is that it requires processing of the in-

phase and quadrature-phase (I andQ) time series resulting

in large datasets unable to be transmitted and archived

given the current computing limitations at the Australian

Bureau of Meteorology (hereinafter the bureau).

b. Postdata acquisition processing

Because of the aforementioned problems of archiving

the raw I and Q signals, much effort has been placed on

the postprocessing of archived data. Postprocessing

techniques have relied mainly on analyzing quantities

derived from the spatial and temporal information of the

reflectivity field. Spatial information is usually conveyed

in the form of gradients in the reflectivity field between

adjacent range gates in either the horizontal or vertical

dimensions (Alberoni et al. 2001; Kessinger et al. 2004;

Steiner and Smith 2002). There are various mathemati-

cal descriptions of the gradient of the reflectivity field;

however, common formulations are texture, the reflec-

tivity fluctuations (SPIN; Steiner and Smith 2002),

and the statistical features (mean, median, mode, and

standard deviation) calculated within a local neighborhood

of the range gate in question. These fields usually exhibit

quite different probability distribution functions (PDFs)

for echoes from precipitation, clutter, or anaprop. Pa-

rameters derived from the reflectivity gradient field have

been used within differing probabilistic classification

algorithms including fuzzy logic (Gourley et al. 2007;

Hubbert et al. 2009; Kessinger et al. 2004), neural net-

works (Grecu and Krajewski 2000; Krajewski and Vignal

2001; Lakshmanan et al. 2007; Luke et al. 2008), and

Bayesian (Moszkowicz et al. 1994; Rico-Ramirez and

Cluckie 2008). Some of these have been developed using

polarimetric variables; however, an advantage of each of

thesemethods is that they can be applied to radar systems

utilizing only reflectivity measurements at a single

wavelength and polarization.

The Australian Bureau of Meteorology radar network

consists of single-polarizationC- and S-band radars, some

of which have Doppler capability. Furthermore, the only

moments that are routinely stored by the bureau are

corrected reflectivity (the reflectivity after Doppler notch

filtering and range correction have been applied) and

Doppler velocity. Therefore, to extract as much useful

information as possible from thesemoments and produce

quality-controlled data useful for assimilation and QPE,

texture-based methods combined with classification al-

gorithm techniques need to be employed.

This paper is structured as follows. In section 2,

we describe the operating characteristics of the radar

used for data acquisition. In section 3, we present the

development of a Bayesian classifier, known as a naı̈ve

Bayes classifier (NBC), which takes as input texture-

based fields derived from corrected reflectivity. TheNBC

is a supervised learning classification algorithm, which

requires training datasets where it is known a priori if the

returns originate from precipitation or anaprop (Rico-

Ramirez and Cluckie 2008). The algorithm developed is

similar to that presented by Rico-Ramirez and Cluckie

(2008); however, we demonstrate and quantify its efficacy

with the use of single-polarization data using only cor-

rected reflectivity. Furthermore, in section 4, the NBC is

applied to two cases of convective storms embedded in

anaprop signals: in the first, it is shown that the NBC is

skillful at distinguishing precipitation from anaprop,

while in the second example we demonstrate that the

NBC is effective when applied to data from two nearby

radars with differing wavelengths and beamwidths from

the radar on which it was trained. Finally, we develop a

strength of classification index (SOC), which is a measure

of the relative magnitude by which the scaled proba-

bility of precipitation has exceeded that for anaprop.

This index will prove useful from censoring data before

being used for data assimilation of QPE/QPF (quanti-

tative precipitation forecast. The conclusions are stated

in section 5.
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2. Data

The data were obtained with the Kurnell radar located

south of Sydney at 34.018S, 151.238E at an altitude of 64m

MSL. The Kurnell radar is a C band (5-cm wavelength)

with a 3-dB beamwidth of 18. The data are collected in

polar coordinate format, comprising 360 azimuthal beams

each consisting of 596 range gates with a radial spacing

of 250m. The radar operating characteristics are summa-

rized in Table 1. Analysis was performed on polar data

rather than a transformation to Cartesian coordinates.

One volume, consisting of scans at 11 tilt angles (spaced

at 0.78, 1.58, 2.58, 3.58, 4.58, 5.58, 6.98, 9.28, 12.08, 15.68, and
20.08) is completed in approximately 5min. Standard

UTC time will be used in this paper; however, for refer-

ence, local time (LT) isUTC1 10h normally andUTC1
11h during daylight saving. This radar was chosen for

evaluation as it covers one of Australia’s major pop-

ulation centers and anaprop is a common occurrence in

this location, especially during the summer months when

the prevailing subtropical high in the Tasman Sea pro-

duces strong temperature and humidity gradients off the

Australian eastern coast.

3. Bayes clutter classifier

a. Na€ıve Bayes classifier

In this work aBayes classifier is developed to distinguish

anaprop from precipitation echoes. Bayes’s theorem (e.g.,

Gelman et al. 2003) relates the a posteriori probability of

an object belonging to a particular class c given a vector of

input observations x1, . . . , xn and can be written as

P(c j x1, . . . , xn)5
P(x1, . . . , xn j c)P(c)

P(x1, . . . , xn)
, (1)

where P(x1, . . . , xn j c) is the conditional probability

distribution (likelihood) of returning a measurement xi
given it belongs to class c, P(c) is the a priori probability

of a given class, and P(x1, . . . , xn) is the probability of

obtaining a particular observation xi. The denominator

in Eq. (1) is constant for all classes, making it a constant

of proportionality, which can be ignored.

Here, we apply a version of Bayes’s theorem known as

the naı̈ve Bayes classifier. The NBC makes the assump-

tion that the input measurements xi are conditionally

independent, which greatly simplifies the calculation of

the likelihood term in Eq. (1). Assuming the indepen-

dence of the input measurements, the likelihood can be

expanded as amultiplication of the individual conditional

probabilities (Rico-Ramirez and Cluckie 2008) so that

P(c j x1, . . . , xn)}P(c)P
n

i51

P(xi j c) . (2)

In practice, the independence assumption is often vio-

lated; however, the NBC has been shown to be effective

even when the independence assumption is known to be

false (Friedman et al. 1997). The likelihood PDFs are

obtained from training datasets where the classification

is known a priori. To obtain the a priori probability of

a particular class occurringP(c), a climatological dataset

could be used to determine the probability of each class’s

occurrence. However, this would induce biases unless

the dataset was very large (in theory infinite), and instead

we make the assumption that each class is equally likely.

For simplicity we will specify two classes: anaprop (AP)

and precipitation (PR), hence P(AP)5P(PR)5 0:5. The

number of classes could be extended and in generalP(ci)5
1/(number of classes). Conceptually, the NBC reduces to

calculating PDFs of the conditional probabilities, while the

classification is determined by maximizing the a posteriori

probability. For our purposes, the vector xi corresponds

to a sequence of feature fields, derived from the radar ob-

servations, which are described in the next section.

b. Feature fields

In this section, we detail the feature fields used as in-

put to the NBC. The feature fields can be described as

texture-based fields that examine various gate-to-gate re-

lationships in the retrieved radar fields. The use of feature

fields obtained from reflectivity data is advantageous since

they require minimal numerical computation. Moreover,

they can be applied in a postprocessing capacity, negating

any need to upgrade radar hardware or electronics. The

three feature fields we will consider are texture of reflec-

tivity, ‘‘SPIN,’’ and the vertical profile of reflectivity.

1) TEXTURE OF REFLECTIVITY

The texture of reflectivity (TDBZ) is a measure of the

reflectivity difference between adjacent radial reflec-

tivity gates. It is computed as (Hubbert et al. 2009;

Kessinger et al. 2004)

TDBZ5

"
�
N

j
�
M

i
(dBZi,j 2 dBZi21,j)

2

#,
(N3M) , (3)

TABLE 1. Operating parameters for the Kurnell radar.

Peak power (kW) 250

Wavelength (cm) 5

Pulse repetition frequency (Hz) 1000

Pulse length (ms) 1.0

Range resolution (m) 250

Azimuthal sampling interval (8) 1

Rotation rate (8 s21) 17.2
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where dBZ is the reflectivitymeasured in a range gate,N

is the number of radar beams, and M is the number of

radial range gates; the quantity N 3 M is referred to as

the kernel. The texture of reflectivity is currently used in

the U.S. Weather Surveillance Radar-1988 Doppler

(WSR-88D) network’s clutter mitigation decision al-

gorithm (Hubbert et al. 2009; Kessinger et al. 2004).

These formulations include only the radial component

in the calculations, although others (e.g., Rico-Ramirez

and Cluckie 2008) include the azimuth. Here, we use

a formulation similar to that of Hubbert et al. (2009)

and average along a kernel of 11 radius gates (centered

on the gate of interest) along a single azimuth ray (i.e.,

N 5 1 and M 5 11). Evaluation of TDBZ in only the

radial component has several advantages: 1) it requires

less computation time and memory usage; 2) the radar

tends to inherently average or smear over azimuths,

especially at the fast rotation rates (;178 s21) used

operationally; and 3) for adjacent azimuths, the distance

between measurements increases linearly with range

so that TDBZ computed in 2D has range-dependent

properties.

2) SPIN

The SPIN feature field is a measure of the number of

sign changes in the relative difference of reflectivity

between adjacent gates. The difference must be greater

than a specified threshold (nominally 2 dBZ), and the

result is expressed as a percentage of all possible fluctua-

tionswithin the kernelmask (Steiner and Smith 2002). For

example, if three successive gates along a radar ray are

considered, each with an associated dBZ value, then in

order for a SPIN change to occur, two conditions must be

met: 1) theremust be a sign change of reflectivity on either

side of a specified range gate and 2) the magnitude of the

average difference between the range gates preceding and

following the range gate of interest must exceed a speci-

fied threshold. Mathematically, these conditions can be

expressed as (Hubbert et al. 2009)

signfdBZi2 dBZi21g52signfdBZi112 dBZig and

(4a)

jdBZi 2 dBZi21j1 jdBZi112 dBZij
2

. spin threshold.

(4b)

3) VERTICAL PROFILE OF REFLECTIVITY

The vertical profile of reflectivity (VPDBZ) measures

the difference between two elevation angles for the same

range gate:

VPDBZ5 dBZu2 dBZl , (5)

where u and l represent the upper and lower elevation

angles, respectively. This field is particularly good at

identifying anaprop echoes as they are normally con-

fined to the lowest two or three elevations. The bureau’s

postprocessing currently uses a measure of VPDBZ to

censor echoes due to anaprop; however, it has the un-

desired effect of eliminating echoes from shallow strat-

iform precipitation.

c. Construction of the conditional probabilities

The application of the NBC requires evaluating PDFs

of the a priori conditional probabilities for each class

using training datasets. Since we are attempting to dis-

tinguish anaprop from precipitation, we specify two

classes c1,2, both of which require training data. Data

representative of anaprop are shown in Fig. 1, the left-

hand side of which shows a plan position indicator (PPI)

radar image obtained from the lowest elevation (0.78) of
the Kurnell radar at 1100 UTC 31 January 2011. The

complete anaprop training dataset spanned the time

period 0000–1400 UTC, which consisted of 169 volume

scans comprising over 5 million separate reflectivity re-

turns (see Table 2). The eastern coast of Australia is

indicated by the heavy black line, and many returns can

be seen emanating over the ocean. The reflectivity rea-

ches magnitudes of 35–40 dBZ, values typical of returns

from showers in this location. These returns, however,

are not from precipitation but anaprop. This is apparent

on examination of the right-hand side of Fig. 1, which

shows the range–height indicator (RHI) volume slice at

an azimuth of 1008 clockwise from north and reveals that

returns were only present in the lowest two tilts of the

volume scan. The shallow extent of the returns is a strong

indicator that they are from anaprop. However, there

are occasions when strong precipitation can occur from

shallow stratiform clouds; in such situations the vertical

extent of reflectivity is not always a good discriminator of

anaprop and precipitation. There are also some isolated

returns to the west of the radar, which are due to a com-

bination of topography and ‘‘clear-air’’1 returns. The

clear-air returns are present despite a lower reflectivity

threshold of 10 dBZ being applied to the data (i.e., re-

flectivities lower than 10dBZ have been discarded). The

lower threshold of 10 dBZwas chosen, as this is about the

lowest reflectivity that signifies the onset of precipitation

1Clear-air returns are returns measured when there are no me-

teorological targets (i.e., clouds/rain) present. They can be due to

either 1) returns from birds or insects or 2) refractivity (humidity)

gradients in the atmosphere, which is termed Bragg scattering.
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(Knight and Miller 1993). It is apparent that if the

anaprop signals were assimilated, theNWPmodel would

attempt to create precipitation where none was present.

The aim therefore is to identify and remove echoes from

anaprop.

For the construction of the conditional PDFs for the

precipitation class, four separate precipitation scenarios

were chosen: shallow stratiform rain where cloud tops

were below the freezing level and precipitation was

generated by warm rain processes, a line of shallow

convection with cloud tops below 5km, deep isolated

continental convection, and widespread stratiform rain

with embedded convection. These will be referred to as

Shallow, Sh conv, Convect, andMixed, respectively. The

reasons for these choices were twofold: 1) to capture

a wide variety of meteorological cases and 2) to increase

sampling statistics. Radar images (PPIs) representative

of each of the scenarios are shown in Fig. 2. A visual

comparison of anaprop with the shallow convection case

(upper-right panel of Fig. 2) indicates that there is little

information in the reflectivity field to distinguish them.

Histograms of reflectivity (not shown) confirm this; in

fact, there is little information in the reflectivity field (of

a PPI) to distinguish each of the precipitation examples

(except perhaps shallow stratiform rain) from anaprop.

Therein lies the problem of automated detection of

anaprop from the reflectivity field alone.

More information can be gained from examining the

feature fields, TDBZ and SPIN, which are shown for

anaprop in Fig. 3. Immediately apparent is the lack of

correspondence in structure of the feature fields com-

pared with that of reflectivity (i.e., small/large values

of reflectivity do not show up as small/large values of

TDBZ or SPIN). TDBZ and SPIN are shown for the

precipitation cases in Figs. 4 and 5, respectively. Again,

the feature fields are relatively homogeneous through

strong gradients in reflectivity; however, it is evident

that both TDBZ and SPIN are 1) skewed to larger

values and 2) noisier for anaprop than for the meteo-

rological events. Furthermore, there is little distinction

in the feature fields between each of the precipitation

cases. These observations suggest that TDBZ and SPIN

FIG. 1. (left) PPI obtained from theKurnell radar at 1100UTC 31 Jan 2011 (2200 LT). Some returns are of the order 35–45dBZ, which is

also typical of showers in this location. (right) RHI obtained at an azimuth of 1008 from the north. Returns are prevalent between the 80-

and 130-km range; however, they are only present in the lower two elevations, signifying their source is from anaprop. Only reflectivities

above 10 dBZ are shown.

TABLE 2. Summary of time periods, number of radar volumes,

and number of unique reflectivity samples used for the training

dataset.

Meteorological

type

Time period

(UTC)

No. of

volumes

No. of dBZ

samples

Anaprop 0000–1400 169 5 089 099

Sh strat 1420–2315 107 1 405 144

Sh conv 0200–0500 37 664 291

Convect 0230–0730 61 1 007 198

Mixed 1430–2300 103 6 263 822
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are efficient at distinguishing anaprop from precipita-

tion and independent of the meteorology producing

precipitation.

For the purposes of constructing the conditional PDFs,

time periods were chosen where the precipitation sce-

narios exemplified in Fig. 2 were applicable throughout.

These periods were chosen subjectively by examining

sequences of radar images and choosing a subset of

contiguous retrievals such that the precipitation was

similar (in the sense of areal extent and type) in each

volume throughout the interval. Only samples from the

lowest tilt of the volume scan were used to construct

the PDFs. Combined, the precipitation samples con-

sisted of 308 volumes comprising over 9 million separate

reflectivity samples. Histograms of the feature fields

were then constructed for each of the precipitation

scenarios and for anaprop. They are shown in Fig. 6 and

represent the conditional probabilities on the right-

hand side of Eq. (2).

d. Transformation of the conditional PDFs

To implement the conditional PDFs presented in the

preceding section would require the use of a lookup

table. For instance, the feature fields could be evaluated

and a probability determined (via the lookup table) of

that measurement occurring based on whether the clas-

sification was that of anaprop or precipitation. For op-

erational purposes, however, this is unfeasible because of

FIG. 2. PPI radar reflectivity displays of the meteorological cases chosen for the training dataset. Clockwise from

the top left depicts shallow stratiform (Sh strat), a shallow line of convection (Sh conv), deep intense lines of isolated

convection (Convect), and widespread stratiform rain with embedded convection (Mixed). Only reflectivities above

10 dBZ are shown.
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computational limitations. To facilitate the implementa-

tion of the classifier in an operational setting, it would be

beneficial if the conditional probability distributions

presented in Fig. 6 were parameterized by a mathemati-

cal distribution. This is achievable by applying a trans-

formation to the data. One that is well established within

the statistical literature is the Box–Cox transformation,

which can map data to a nearly normal distribution via

a power transform (Wilks 2011). This has the advantage

that the conditional PDFs can be completely described by

the mean m and standard deviation s, requiring minimal

computation.

The Box–Cox transformation is described mathe-

matically by

y(l)5

8><
>:
yl 2 1

l
, if l 6¼ 0

logy, if l5 0

, (6)

where y is the measured variable and l is the trans-

formation parameter. The value of l is evaluated by

maximizing the logarithm of the likelihood function

(Wilks 2011)

f (y,l)52
n

2
ln

(
�
n

i51

[yi(l)2 y(l)]2

n

)
1 (l2 1) �

n

i51

ln(yi) ,

(7)

where y(l) is the arithmetic mean of the data. In

this case, y corresponds to a vector of observations

y5 (y1, y2, y3), where the elements of the vector are

given by the feature fields. The PDF for VPDBZ is

already approximately normal (see Fig. 6) and so the

transformation was only applied to the TDBZ and

SPIN feature fields.

The log-likelihood functions for the TDBZ and

SPIN feature fields were evaluated and the calcula-

tions for the TDBZ field of anaprop are shown in

Fig. 7. The maximum of this parabolic function pro-

vides the optimal value of l for insertion to Eq. (6) so

as to transform the PDFs shown in Fig. 6 to an ap-

proximately normal distribution. Similar calculations

were performed for all meteorological scenarios and

each feature field, the results of which are summarized

in Table 3. Since it cannot be known a priori what the

prevailing meteorology is, an average value applicable

to all precipitation cases lweather was evaluated. These

values are listed in the right-hand side of Table 3 and

were used to transform the conditional PDFs of Fig. 6

via Eq. (6).

The resulting transformed PDFs are shown in Fig. 8.

As was found prior to the application of the Box–Cox

transformation, the PDFs are approximately equal for

all precipitation scenarios, and they are distinct from

anaprop for both TDBZ and SPIN. It is also noted that

the Box–Cox transformation has been successful at

transforming the PDFs to approximately normal distri-

butions. The original TDBZ and SPIN fields were

reevaluated from the training dataset and the Box–Cox

transformation applied to it. The m and s of the data

were then evaluated via a two-pass algorithm:

FIG. 3. The texture (TDBZ) and SPIN fields for the anaprop case shown in Fig. 1. Only reflectivities above 10 dBZ

have been included in the calculations.
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m5 �
n

i51

xi/n and

s5

�
n

i51

(xi 2m)2

n2 1
. (8)

These values are summarized in Table 4. The Gaussian

distributions described by these two parameters were

calculated and are plotted in Fig. 9 and also overlaid

with the histograms of Fig. 8. TheGaussian distributions

calculated directly from the mean and standard de-

viation of the data very closely overlay the PDFs of the

original data, and therefore, to a close approximation,

the conditional PDFs can be parameterized via the mean

and standard deviation of the Box–Cox transformation of

the respective feature fields. We label these feature fields

BCTDBZ and BCSPIN.

e. Independence of the feature fields

The linear independence of the input feature fields

is one of the key assumptions of the NBC. Despite

this assumption, it has been proven to be effective

even when the assumption of independence is violated

(Friedman et al. 1997). However, it is worthwhile to

examine the independence assumption between each of

the feature fields. Pearson’s correlation coefficients were

calculated for each combination of the original and

Box–Cox transformed feature fields. The results are

summarized in Table 5. The VPDBZ field is either un-

correlated or very weakly correlated with TDBZ and

SPIN; the same is true for the Box–Cox transformed

FIG. 4. The texture feature field (TDBZ) for each of the precipitation cases as in Fig. 2. Only reflectivities above

10 dBZ have been included in the calculations.
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counterparts BCTDBZ and BCSPIN. This may be ex-

pected as TDBZ and SPIN are measures of fluctuations

of the reflectivity in a horizontal plane, while VPDBZ

measures fluctuations in the vertical plane. However,

the correlation coefficient for TDBZ and SPIN indicates

a modest correlation (0.36) and a slightly greater cor-

relation (0.48) after transformation. The correlation

between TDBZ and SPIN is most likely due to each of

them quantifying the fluctuation of the reflectivity field.

The increased correlation between TDBZ and SPIN

after transformation (for both anaprop and precipita-

tion) is most likely due to the decreased range of the

variables after transformation. For example, SPIN has

values in the range [0, 100], whereas BCSPIN is in the

range [2, 9]. Moreover, the Box–Cox transformation

reduces larger values by a greater proportional amount

than smaller values, thereby increasing the covariance of

a feature field (Wilks 2011).

4. Results and discussion

a. Varying input feature fields on the
training dataset

It was stated in section 3 that the NBC implicitly as-

sumes independence of the input feature fields; how-

ever, a modest degree of correlation between TDBZ

and SPIN was also demonstrated. In this section, we

examine how the NBC performs using differing com-

binations of the feature fields and determine if the

correlation between TDBZ and SPIN affects the pre-

dictive power of the NBC. To illustrate this, we inves-

tigated all possible combinations of TDBZ, SPIN, and

FIG. 5. The SPIN feature field for each of the precipitation cases as in Fig. 2. Only reflectivities above 10 dBZ have

been included in the calculations.
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VPDBZ as input feature fields to the NBC (BCTDBZ,

BCSPIN,VPDBZ,BCTDBZ–BCSPIN, TDBZ–VPDBZ,

SPIN–VPDBZ, and TDBZ–SPIN–VPDBZ) and applied

them to the case presented in Fig. 1 (which was repre-

sentative of the training dataset for anaprop). A visual

inspection was made to determine the least and most

effective combinations, which are shown in Fig. 10.

Returns classified as precipitation are colored blue while

those from anaprop are colored orange. The use of

BCTDBZ alone proved the least effective while the

BCTDBZ–VPDBZ combination proved to the most ef-

fective classifier of anaprop. In general, VPDBZ had the

greatest discriminatory power (combined with BCTDBZ

or BCSPIN) for anaprop and was even quite effective if

used as the sole feature field. The use of either BCTDBZ

or BCSPIN alone was least effective since many range

gates that were anaprop were misclassified as precipitation.

FIG. 6. Probability distribution functions of the feature fields

TDBZ, SPIN, and VPDBZ. PDFs are shown for each of the me-

teorological situations and for anaprop. These PDFs represent the

likelihood function in the Bayes formula [Eq. (2)]. Note the loga-

rithmic axes for TDBZ.Only reflectivities above 10 dBZ have been

included in the calculations.

FIG. 7. The log-likelihood as a function of l [see Eq. (7)]. The

value of l, which maximizes the log-likelihood function, provides

the best value to transform the data to an approximately normal

distribution via Eq. (6). The dotted lines represent the 95% con-

fidence interval for l. This curve is the log-likelihood function

evaluated for the TDBZ field of the anaprop case. Values for

TDBZ and SPIN for each case are presented in Table 3.

TABLE 3. Calculated values of l for the Box–Cox transformation

described by Eq. (6) for anaprop and each of the precipitation

cases. The last column shows the average value of l for all pre-

cipitation cases combined.

Anaprop

Sh

strat

Sh

conv Convect Mixed lprecipitation

TDBZ 20.11 20.34 20.2 20.22 20.24 20.25

SPIN 0.3 0.25 0.25 0.26 0.29 0.26
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Including all three feature fields resulted in little or no

improvement over using either BCTDBZ or BCSPIN

combined with VPDBZ.

The possible NBC feature field combinations were

evaluated using the precipitation cases from the train-

ing dataset. In all cases, the TDBZ–VPDBZ combi-

nation obtained similar results to the application of

all three feature fields, while the SPIN–VPDBZ com-

bination performed poorly. The addition of the SPIN

feature field may not have enhanced the efficacy of the

NBC because of the independence assumption of

TDBZ and SPIN being violated. That the SPIN–VPDBZ

combination performed worse than the TDBZ–VPDBZ

combination may be due to the application of the kernel

in Eqs. (3) and (4) being only evaluated in the radial

direction. A kernel size of 20 was chosen, so as to allow

a sufficient dynamic range in the evaluation of the SPIN

(a kernel size of 20 will give a minimum discrete interval

of 5% in the evaluation of SPIN). However, a kernel size

of 20 equates to a radial range of 5 km, which may have

the unintended consequence of smearing over precip-

itation and nonprecipitation pixels. The inclusion of

azimuths in the evaluation of SPIN, whichwill enable the

kernel size to be kept the same while decreasing the ra-

dial extent, is needed to evaluate the effectiveness of

evaluating SPIN in one dimension only. Despite this, it

appeared that using TDBZ and VPDBZ gave similar

results to the application of all three feature fields and

for this reason the BCTDBZ–VPDBZ combination will

be used to present the NBC results herein.

The image, which was transmitted for public display

by the bureau corresponding to the anaprop presented

in Fig. 1, is shown in the left-hand side of Fig. 11. The

NBC provides a substantial improvement over the cur-

rent clutter mitigation system employed at the bureau.

The current scheme uses basic thresholds of reflectivity

and vertical height to censor data. However, in the im-

age shown, the reflectivity and height thresholds were

exceeded, allowing them to be included. The problem

becomes more pronounced at greater distances from the

radar because beam propagation causes the beam to be

above the minimum height threshold once a certain

range is reached.

b. Verification of the classifier

After conducting a visual evaluation of the best

combination of feature fields to input to the NBC, the

FIG. 8. Probability distribution functions of the feature fields TDBZ and SPIN after transformation according to the Box–Cox power law

given by Eq. (6). Note that the distributions are now approximately normal.

TABLE 4. Mean m and standard deviation s of the feature

fields for anaprop and precipitation. The values in the precipitation

column are an average of each of the precipitation scenarios. They

were obtained by applying the Box–Cox transformation to the

feature fields of the training data and then computing m and s of

the transformed distribution.

Anaprop Precipitation

m s m s

BCTDBZ 2.6 0.62 1.69 0.45

BCSPIN 5.96 1.42 4.71 1.24

VPDBZ 16.69 8.49 0.74 5.30
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performance of the NBC was quantified. To achieve this

we applied the NBC to each of the training datasets,

which we assumed a priori consisted entirely of either

anaprop or precipitation samples. The data were used to

construct the conditional probability PDFs presented in

Fig. 8 and therefore, if the NBC was perfect, would

classify each pixel correctly. The total number of pixels

classified as either anaprop or precipitation was calcu-

lated for each of the training datasets and the results are

presented as a contingency table in Table 6. The num-

bers differ from those in Table 2 because all of the pixels

in a volume were used to construct the contingency ta-

ble, while only those from the lowest tilt were used to

train the NBC. The raw values are presented above and

the proportional values are presented below in the

brackets. There are many different skill scores that can

be derived from the contingency table; however, the

dimensionality of the table is three and all the infor-

mation contained in it can be summarized with three

statistics (Wilks 2011). Three that are commonly used

are the hit rate [H5 a/(a1 c)], the false alarm rate

[F5 b/(b1 d)], and the base rate [P(c) or sample cli-

matological relative frequency] of the class in question.

Each of these scalar attributes can be quoted for each

class (i.e., anaprop or precipitation), but we will quote

only the values for anaprop: H 5 0.981, F 5 0.098, and

P(c)5 0.095. This means that about 98% of the anaprop

pixels were correctly detected, and about 10% of the

precipitation pixels were misclassified as anaprop. The

sample climatological relative frequency of anaprop

was about 10%, which is probably substantially larger

than the actual climatological frequency of anaprop.

In other words, the NBC is very good (98%) at classi-

fying anaprop correctly; however, 10% of the time it

incorrectly classifies a precipitation pixel as anaprop.

For the purposes of QPE or NWP assimilation, this is

a more desirable characteristic than the opposite (i.e.,

misclassifying 10% of anaprop as precipitation).

c. Application to the training dataset precipitation
cases

The results of applying the NBC to the precipitation

cases, using the BCTDBZ–VPDBZ feature fields as

FIG. 9. As in Fig. 8, including the best-fit normal curves determined from the mean and standard deviation of the Box–Cox

transformed training datasets.

TABLE 5. Pearson coefficient of correlation for anaprop con-

ditions and the differing precipitation cases. All possible co-

efficients are shown for the original feature fields (TDBZ, SPIN,

and VPDBZ) and the Box–Cox transformed values (BCTDBZ,

BCSPIN, and VPDBZ).

Anaprop

Sh

strat

Sh

conv Convect Mixed

TDBZ–SPIN 0.36 0.36 0.37 0.28 0.46

TDBZ–VPDBZ 20.01 0.03 20.15 20.05 20.1

SPIN–VPDBZ 0.02 20.03 20.09 20.02 20.06

BCTDBZ–BCSPIN 0.48 0.46 0.49 0.42 0.53

BCTDBZ–VPDBZ 0.15 0.04 20.13 20.06 20.0

BCSPIN–VPDBZ 0.05 20.03 20.08 20.01 20.05
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discriminators, are shown in Fig. 12. For the shallow

stratocumulus case (top left) the NBC has identified

most (;70%) reflectivities larger than about 15 dBZ

as precipitation. The formation of precipitation-sized

droplets is indicated at radar reflectivities of about

5–10 dBZ for a C-band radar (Knight and Miller 1993),

so the NBC has been particularly effective at identifying

the shallow precipitation bands within these stratocu-

mulus. We also note that the current method employed

at the bureau to eliminate anaprop, which relies solely

FIG. 10. The results of the NBC applied to the anaprop training dataset presented in Fig. 1. (left) The image was

obtained using BCTDBZ only for classification, while (right) the image used BCTDBZ and VPDBZ.

FIG. 11. Images transmitted for public display using the bureau’s current clutter mitigation system. The images correspond to the

anaprop data presented in Fig. 1 and the shallow stratiform case presented in Fig. 2. It can be seen that the current system is

ineffective at removing anaprop, especially far from the radar, while it also removes many genuine precipitation pixels, especially

close to the radar.
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on examining the vertical profile of reflectivity, rejected

these echoes in near entirety as anaprop (see the right-

hand side of Fig. 11). This was because the precipitation

was mainly confined below the height threshold de-

signed to eliminate anaprop. The NBC represents a

substantial improvement for the identification of shal-

low precipitation. Shallow cumulus convection is also

well distinguished; however, some precipitation echoes,

especially those at the edge of the radar volume, have

been incorrectly classified as anaprop. This is due to the

spread of the radar beam with distance and the use of

VPDBZ as a classifier. In this case, cloud-top height was

between 4 and 5 km and at large distances from the ra-

dar; two vertically aligned range gates were sufficiently

large to overshoot cloud top, resulting in a VPDBZ

value greater than zero, which is typical of anaprop (see

Fig. 6). We note that the NBC using BCTDBZ only as

the input feature field identified all of the returns as

precipitation suggesting that, in the case of shallow

precipitation, the use of BCTDBZ alone may perform

better. The inclusion of BCSPIN degraded the perfor-

mance of the NBC. However, since it is not known a

priori what the source of returns is and the NBC cannot

adapt its input feature fields accordingly, the use of the

most effective combination over all precipitation types

(BCTDBZ–VPDBZ) is preferable. The classification of

the deeper precipitation, whether stratus or convective

in nature (Convect and Mixed), has been mostly (88%

and 94%, respectively) successful. Given that the cur-

rent numerical weather prediction model used at the

bureau—the Australian Community Climate and Earth-

System Simulator (ACCESS; Puri et al. 2013)—has a grid

spacing of 5km, the raw radar reflectivity needs to be

thinned (using superobservations); this level of accuracy is

most likely suitable for data assimilation or QPE/QPF

(Weng and Zhang 2012).

d. Application to a case of rain embedded in anaprop

We now evaluate the NBC on a case other than the

training dataset. Consider Fig. 13, which is a particularly

interesting example as the image contains returns from

both anaprop and precipitation. The returns in the

northeast quadrant of the image are from anaprop,

while those in the southeast are from convective storms.

This becomes apparent when examining the PPI ob-

tained at the second radar elevation (top right), where

the returns originating from anaprop have disappeared

as the radar beam is no longer internally reflected at the

temperature and humidity inversion. This is further em-

phasized when the RHIs at 408 and 1128 (reconstructed
from the volume scan) are examined; the RHI at 408 only
has returns in the lowest elevation, while the RHI at 1128
indicates the presence of a well-developed convective

storm containing reflectivities greater than 25 dBZ ex-

tending above 7 km. The simultaneous presence of both

anaprop and precipitation in the same image provides

a useful example with which to evaluate the efficacy of

the NBC.

Figure 14 shows the results of applying the NBC to

this scene using BCTDBZ and VPDBZ as input fea-

ture fields. The PPI images (top row) show that the

NBC is effective at distinguishing anaprop from pre-

cipitation; however, some precipitation pixels have been

misclassified as anaprop. This is further illustrated by

the RHI images (bottom row) again at 408 and 1128,
which indicate that while the NBC has positively iden-

tified anaprop, some precipitation signals have been

misclassified.

e. The effect of the reflectivity threshold

For the preceding analysis, the minimum reflectivity

threshold used (for the evaluation of the feature fields,

their conditional PDFs, and for classification) was

10 dBZ, which, for a C-band radar, is near the value one

would expect for the initiation of precipitation-sized

droplets (Knight and Miller 1993). If values below this

are included, then clear-air returns from insects and

Bragg scattering from humidity gradients in the atmo-

sphere become enhanced. The effect of setting a mini-

mum reflectivity threshold at 230 dBZ (the smallest

value returned by the radar) is shown in the left panel

of Fig. 15. There is an increased number of returns close

by the radar, especially over land, most likely due to

the presence of insects and Bragg scattering. Condi-

tions conducive to Bragg scattering would be expected

since the same temperature and humidity gradient that

TABLE 6. Contingency table constructed from the anaprop and precipitation training datasets.Aminimum reflectivity threshold of 10 dBZ

was applied. The raw values are presented first, and the proportional values are given after in parentheses.

Obs

Anaprop Precipitation Marginal totals (forecasts)

NBC classification Anaprop 6 267 195 (0.047) 5 927 313 (0.044) 12 194 508 (0.091)

Precipitation 120 005 (9 3 1024) 54 680 422 (0.41) 54 800 427 (0.41)

Marginal totals (obs) 6 387 200 (0.048) 60 607 735 (0.452) Total no. of samples

133 989 870
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produced anaprop over the sea would be prevalent,

although to a lesser extent, over land. Despite the extra

returns, when the reflectivity threshold is lowered the

NBC did not classify most of the extra returns as pre-

cipitation. Since data below 10dBZwere excluded during

development of the NBC, it is interesting that most of the

clear-air echoes have been classified as anaprop. Ex-

amination of a time sequence of images revealed that

the echoes over land close to the radar (corresponding

to those classified as precipitation) were due to Bragg

scattering while those farther away (classified as anaprop)

were caused by insects present after sunset. The NBC

may therefore also prove useful in identifying insects

and boundary layer humidity gradients; however, this

will require further investigation. Nevertheless, for the

purposes of data assimilation and QPE, setting a re-

flectivity threshold near 10 dBZ is advisable and will

help mitigate this problem. However, the use of the

FIG. 12. The results of the NBC applied to the precipitation cases from the training dataset. The original reflectivity images are

shown in Fig. 2.
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Doppler wind field (e.g., Rennie et al. 2011) is advisable

to identify insect echoes and such research is being

undertaken concurrently at the bureau. Furthermore,

software is being developed within the bureau that will

enable selecting regions of interest and subjectively

defining an a priori class to them to determine if and how

PDFs of feature fields for insects (for instance) differ

from those of anaprop.

f. Application to radars other than Kurnell

It is feasible that the texture and SPIN variables may

be sensitive to radar operating characteristics such as

wavelength, beamwidth, height above mean sea level

(MSL), and range resolution. The Kurnell radar (64m

MSL) is ideally situated to test this hypothesis as two

bureau radars are located to the north and south of it,

each with differing operating characteristics. The Terrey

Hills radar is an S-band (10 cm) 18 beamwidth radar

located about 40 km to the north of the Kurnell radar at

195mMSL, while the Wollongong radar is an S-band 28
beamwidth radar located about 55 km to the south at

449m MSL. Together, the radars are a combination of

5- and 10-cm wavelengths and 18 and 28 beamwidth

operating parameters.

Figure 16a is an example of shallow maritime con-

vection and anaprop observed by each of the radars at

approximately the same time. The same gross features

are evident with many convective elements present over

the ocean. The convection was very shallow and con-

fined mostly below 4 km altitude. Consider the small

convective element just east of the Kurnell radar, which

is circled. It is clearly visible in all three radars; much

anaprop is evident in the Kurnell and Wollongong ra-

dar images, however. Figure 16b shows the results of

applying the NBC to the PPIs. It can be seen that the

anaprop surrounding the convection in the Kurnell and

Wollongong images has been correctly distinguished. It

is encouraging that the NBC has managed to perform

well when applied to radars with different operating

characteristics and gives us confidence that the NBC can

be directly applied to other radars around the country. It

is unclear why more anaprop is present in the Kurnell

FIG. 13. An example of anaprop and a convective storm obtained from the Kurnell radar on 22 Jan 2010. Anaprop

is present in the northeast and a convective storm in the southeast. (top left) A PPI image obtained at the lowest

elevation (0.78); (top right) a PPI image obtained at the next highest elevation (1.58). Note the absence of anaprop in

the higher elevation. (bottom left)AnRHI obtained at an azimuth of 408 through the anaprop; (bottom right) anRHI

at 1128, showing the presence of a convective system extending to nearly 10-km height.
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and Wollongong radars compared to Terrey Hills. It

may be due to the altitude of the radar; however,

Terrey Hills is at an altitude midway between the other

two indicating no obvious decrease in anaprop as

a function of the height of the radar as may be ex-

pected. The radar beamwidth may be a contributing

factor since Wollongong (with a 28 beamwidth) ex-

hibits a greater amount of anaprop compared with the

other two radars. In particular, tests of the NBC on ra-

dars at other locations around Australia reveal that the

feature fields may be susceptible to beamwidth and

range resolution. Another factor that may influence the

NBC may be the climatic region for which it was tuned;

that is, it may not perform so well in the tropical north of

the country or in the temperate regions farther south.

These points need further examination and will be the

focus of future studies of the applicability of the NBC to

the bureau’s radars.

g. A strength of classification index

The NBC has proven successful in distinguishing

anaprop from precipitation and would be a useful tool

for an operational forecaster or for the layperson viewing

publicly available radar images. However, for the pur-

poses of assimilation or QPE/QPF, it would prove

beneficial to have some knowledge of the confidence one

has in data being precipitation. This could take the form

of an absolute probability by evaluating the a priori

probability for each class P(c); however, as detailed in

section 3 that would require a climatological dataset to

determine P(c) for each bin in the radar volume, which

is contrary to the efficiency inherent in using the NBC.

To this end, we constructed an SOC. The SOC is a

measure of the relative proportion by which the condi-

tional probability [the left-hand side of Eq.(2)] of pre-

cipitation exceeds that of anaprop as a proportion of the

maximum possible difference after both of the a poste-

riori probabilities have been scaled to be in the range

[0, 1]. Mathematically this is expressed as

SOC5
P(pr j xi)

maxfP(pr j xi)g
2

P(ap j xi)
maxfP(ap j xi)g

,

where, maxfP(c j xi)g5max

(
P
n

i51

P(xi j c)
)
. (9)

FIG. 14. The results of theNBC applied to Fig. 13 usingBCTDBZandVPDBZas input feature fields. TheNBChas

classified the anaprop correctly, completely eliminating the returns in the northeast; however, some pixels that are

returns from precipitation have been incorrectly classified as clutter.
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The SOC therefore scales in the range [21, 1], where

0 indicates that the likelihood of precipitation and

anaprop is equal, and 1 indicates that the likelihood of

anaprop was zero and for precipitation was a maximum

(which is unity after scaling). The sign of this number is

determined by the order of the terms in Eq. (9) and an

equivalent index could be constructed for anaprop. In

practice, if a pixel has been identified as anaprop, then

it is discarded as we are interested only in the SOC for

precipitation, that is, values in the range [0, 1].

An example of the evaluation of the SOC applied to

the precipitation training datasets is shown in Fig. 17.

The color scale has been truncated at 0.5 as most values

appear to be confined below this. To quantify the range

of the SOC, PDFs of the training set data were con-

structed and are presented in Fig. 18. The SOC index

is mainly confined to values below about 0.5. The PDFs

of SOC exhibit a maximum at the first bin (0–0.05)

showing that the majority of pixels identified as pre-

cipitation have only had a slightly higher a posteriori

probability of precipitation than anaprop. However,

the PDFs for each of the weather cases are relatively

flat above an SOC of about 0.05. It is anticipated that

the assimilation and QPE communities would be

able to set a minimum value of the SOC, above which

data pixels would be accepted. Increasing the SOC

results in a decrease in the amount of information

that can be assimilated; however, the flatness of the

PDFs in Fig. 18 suggests that the information loss

is approximately linear above an SOC threshold of

about 0.05.

5. Summary and conclusions

In this study, a naı̈ve Bayes classifier was developed

and tested. TheNBC is an extension of Bayes’s theorem,

which classifies radar echoes into two classes, c1 and c2,

based on a series of feature vectors, x1, . . . , xn, by

maximizing the a posteriori probability p(ci j xi). The
classes were designated to be either anomalous propaga-

tion (anaprop) or precipitation, and the feature fields in-

vestigated were the texture of reflectivity (TDBZ), spin

change variable (SPIN; Steiner and Smith 2002), and

vertical profile of reflectivity (VPDBZ).

The NBC is a supervised learning technique, which

requires a training dataset of examples in which the

classification is known a priori. The training dataset

consisted of five subclasses: one of anaprop and four

distinct precipitation regimes consisting of shallow strat-

iform, shallow convection, deep convection, and deep

stratiform precipitation with embedded convection.

Probability distribution functions of the feature fields

were evaluated for anaprop and each of the pre-

cipitation subclasses. The PDFs of the precipitation

subclasses were found to be similar despite distinct

meteorological forcingmechanisms.Moreover, the PDFs

of the feature fields for anaprop were distinct from the

PDFs of the precipitation subclasses, suggesting that they

convey information that allows the categorization of

precipitation and anaprop.

The feature field PDFs were found to be nonnormal,

which, if used in their native form, would require the use

of look-up tables to evaluate the conditional probability

FIG. 15. (left) PPI image of mixed anaprop and precipitation using a minimum reflectivity threshold of 230 dBZ.

Note the increase in returns over land close to the radar compared to Fig. 13. These returns were most likely due to

Bragg scattering. (right) Results of the NBC using 230 dBZ as the minimum reflectivity threshold.
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in Bayes’s theorem. To parameterize the conditional

PDFs they were transformed to approximately normal

distributions via a Box–Cox transformation, which al-

lowed them to be specified completely via the mean and

standard deviation.

All (seven) possible combinations of the feature fields

were investigated on the training datasets to evaluate

the most effective combination, which was found to be

TDBZ and VPDBZ. The use of all three feature fields

did not, as a rule, add any benefit to the NBC and in

some cases caused it to perform worse. This was attrib-

uted to TDBZ and SPIN not being linearly independent

as they are both measures of the variability of the

reflectivity field.When considered individually, VPDBZ

was found to be the most effective feature field at dis-

tinguishing anaprop from precipitation.

The NBC was then applied to an independent case

where precipitation and anaprop were present in the

same region. The BCTDBZ–VPDBZ combination of

feature fields proved most effective at classifying pixels

correctly. Some pixels were incorrectly classified, but

given the current data resolution required for purposes

of data assimilation or QPE these errors were consid-

ered minimal. Some sensitivity to the reflectivity thresh-

old was found, whereby returns from clear air appeared

as the threshold was decreased. However, when the

threshold was set at a reasonable level to distinguish

most clear-air returns from the smallest precipitation-

sized drops, (around 5 dBZ for a C-band radar) this

problem was circumvented. The NBC, however, shows

some promise in being able to distinguish Bragg echoes

from insect echoes.

The NBC was extended via a strength of classification

(SOC) index, which was constructed as a measure of the

confidence with which a pixel was classified as pre-

cipitation. It was formulated as the difference of the

scaled (to be in the range [0, 1]) a posteriori probabilities

of weather and anaprop expressed as a proportion of the

maximum possible difference. Formulated in this way,

the SOC has a range [21, 1]; however, since we are only

interested in determining the confidence we have in

identifying precipitation pixels, negative values (which

FIG. 16. Shallow maritime cumulus convection observed with three different radars. (a) The reflectivity images; (b) the corresponding

classification images obtained using the NBC. The three radars (Terrey Hills, Kurnell, andWollongong) each have a differing wavelength

and/or beamwidth. The NBC has performed well on data obtained with each radar despite having been trained with data obtained from

the Kurnell radar.
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correspond to anaprop) are discarded so the SOC is in

the range [0, 1]. In practice, however, it was found that

the SOC was confined to values below about 0.5. The

PDF of SOC exhibited relatively constant values in the

range [0.05, 0.5]. The SOC can be used to remove data

below a specified threshold before processing in appli-

cations such as assimilation or QPE. Because of the

relatively constant values of the PDF of SOC, increasing

the SOC threshold in the range [0.05, 05] will result in

an approximately linear decrease in the amount of ac-

cepted data.

The use of an NBC was found to be an effective

method of distinguishing anaprop from precipitation. It

should also be noted that it was effective using only a few

derived feature fields and single-polarization data. This

makes it useful for the bureau’s radar network, which

currently consists of single-polarized radars, a few of

which have Doppler capability. At present, only cor-

rected reflectivity and Doppler velocity are transmitted

from the radar; however, plans exist to extend this to

include spectrum width and uncorrected reflectivity.

The inclusion of these variables and their associated

feature fields should improve the capability of the

NBC. At present, no dual-polarized radars exist in the

bureau’s operational network; however, the extension of

the NBC to include polarimetric variables could be

readily accomplished. The bureau now owns the CP2

dual-polarimetric research radar (previously owned by

NCAR) so we plan to investigate the use of the NBC

with polarimetric variables in the future.

FIG. 17. The strength of the classification index evaluated for each of the precipitation cases from the training dataset.

A larger value indicates a larger confidence that a pixel is precipitation.
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