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1. Definitions and nomenclature 

Leakage: In this paper leakage is defined as “fugitive”, or unintended emission of shallow gas. It 

is sourced from gas accumulations in the overburden of the deep hydrocarbon reservoir (i.e. in 

the upper 1000 m of sediment), through which the well has been drilled. To the best of our 

knowledge, leakage of shallow gas can be induced by any type of well (production, injection, dry, 

or abandoned). 

 

Well integrity: There is no common global definition of well integrity, but the NORSOK D-010
3
 

definition is widely used for the North Sea. It defines well integrity as an application of technical, 

operational and organizational solution to reduce the risk of uncontrolled release of formation 

fluids throughout the life cycle of the well. Based on this definition, operators and governmental 

agencies perform well integrity surveys, targeting the leakage of formation fluids through the 

cement, casing and completion equipment, having a focus mostly on active wells, as monitoring 

is not mandatory after well abandonment
3
.  

 

Well: According to the Norwegian Petroleum Directorate (NPD) guidelines for designation of 

wells and wellbores
45

, a well is defined as a borehole which is drilled in order to discover or 

delimit a petroleum deposit and/ or to produce petroleum or water for injection purposes, to inject 

gas, water or other media, or to map or monitor well parameters
45

. A well may consist of one or 

several wellbores (well paths) and may have one or several termination points
45

. 

 

Wellbore (well path): A wellbore/well-path designates the location of the well from one 

termination point to the wellhead and may consist of one or more well tracks
45

. 

 



S3 
 

Well track: The well track is the part of a wellbore (well path) which extends from a point of 

drilling out on the existing wellbore (kick-off point) to a new termination point for the well
45

. 

 

Multilateral wells: Multilateral wells have more than one wellbore radiating from the main 

wellbore
45

. In contrast to sidetracked wells, where the first bottom section is plugged back before 

a sidetrack is drilled, multilateral wellbores have more than one wellbore open at the same time
45

. 

Active wells: Operating-/active wells are defined as production or injection wells that are 

currently producing or injecting
45

. 

 

Abandoned wells: Inactive wells may be temporarily or permanently abandoned. According to 

the regulations of the NORSOK D-010 standard
3
, temporarily abandoned wells are defined as all 

wells/ wellbores except all active wells and wells that are permanently plugged and abandoned 

(P&A). Temporarily abandoned wells can be sealed with a mechanical plug, whereas 

permanently plugged and abandoned wells, whose casings and wellhead need to be cut-off at 

least 5 mbsf, are sealed with cement
3
.  

 

2. Supporting Material and Methods 

2.1 Geochemical and seismic data analysis of CH4 leakage at three abandoned gas wells in 

the Central North Sea 

The following section provides a summary of relevant geochemical and seismic analysis of three 

leaky abandoned wells (15/9-13, 16/4-2, and 16/7-2) located in water depths of 81-93 m in the 

Norwegian CNS (Figure 2), earlier published by Vielstädte et al.
20

. The authors
20

 characterized 

the origin of the emanating gases (2.1.1), leakage rates (2.1.2), and initial gas bubble size 

distribution (2.1.) providing a baseline for the extrapolation analysis presented in this study. 

Sections 2.1.4 and 2.1.5 include new geochemical data on CH4 oxidation rates in the water 

column observed at wells 15/9-13 and 16/7-2 and total organic carbon (TOC) and sulfate (SO4) 

concentrations in near surface sediments at a reference site in the CNS, respectively. 
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Figure S1| Gas leakage and gas flow measurements at the three wells investigated in 

Reference
20

 (note that plugging and abandonment regulations in the North Sea require the cut-off 

of wellheads at least 5 m below the seafloor, so that these wells “disappear”). Pictures showing a) 

bacterial mats related to CH4 leakage at well 15/9-13, b) the most intense leakage at well 16/7-2, 

c) gas flow measurement at well 16/4-2, and d) exemplary visualization of optically derived gas 

flow measurement at well 16/4-2 using the funnel attached to the gas sampler. Dimensions of the 

funnel are: m = lateral funnel height, rT = radius of the top plane, and rB = radius of the bottom 

plane. The gas volume was determined by measuring the corresponding dimensions of the gas 

filled frustum of a cone and calculating the height, h (red letters) as described in Reference
20

.  

 

2.1.1 Determining the origin of leaking gases. The origin of the leaking gases was analyzed by 

Vielstädte et al.
20 

combining geochemical and seismic investigations at the three leaky abandoned 
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wells (15/9-13, 16/4-2, and 16/7-2) in the Norwegian Sector of the CNS (Figure 2). Full 

methodological detail on the geochemical analysis of free seep gases and porewaters at the three 

investigated wells is given in Reference
20

. Figure S2 shows the results. 

 

 

Figure S2| Results of geochemical analysis of free seep gases and porewaters at the three 

investigated wells (as published by Vielstädte et al.
20

). (a) Bernard diagram of the molecular and 
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isotopic gas composition (after Bernard et al.
48

) indicating the gas source of the gas at the 

abandoned wells (red dots: porewater (PW) at well 15/9-13, orange rectangle: porewater at well 

16/7-2, triangles: free seep gas (FG) at wells 15/9-13, 16/7-2, and 16/4-2) and the deep 

hydrocarbon reservoirs in the area (black diamonds 
49

). (b) Cross-plot of δ
13

C of DIC versus δ
13

C 

of CH4 in the porewater at well 16/7-2 (orange rectangles), well 15/9-13 (red dots), and the deep 

hydrocarbon reservoirs (black diamonds)
49

. (c) Cross-plot of total alkalinity (TA) and δ
13

C of 

DIC indicating microbial anaerobic oxidation of CH4. 

 

In addition to geochemical analysis, Vielstädte et al.
20

 analyzed industrial 3-D seismic data 

(ST98M3, Statoil ASA) for shallow gas pockets in the area around the three wells by mapping 

high amplitude anomalies
22

 in the upper 1000 m of sediment using Petrel (Schlumberger). The 

locations of identified gas pockets were assigned to stratigraphic units
24

 and correlated with the 

well-paths of the three leaky wells. The authors
20

 found that two of the wells (i.e. 15/9-13 and 

16/7-2) have been drilled through shallow gas in Lower Pliocene (LP) and Top Pliocene (TP) 

stratigraphic units (Figure 2 b). For well 16/4-2, the seismic data did not reveal prominent bright 

spots (i.e. reverse polarity high amplitude anomalies) in the direct vicinity of the well-path, 

indicating that leakage at well 16/4-2 draws gas from larger distances (spatial resolution of the 

seismic data is ~10 m). Additionally, seismic turbidity in near-surface sediments (Figure 2 b, 0.1 

– 0.4 s two-way-travel time TWT) might indicate an unfocussed distribution of gas
50

.  

 

2.1.2 Quantifying per-well leakage rates. The in-situ gas flow was quantified at single bubble 

streams (here referred to as seeps) of wells 16/4-2 and 15/9-13 using the ROV-operated gas 

sampler with attached funnel (Figure S1 c,d) as described in Reference
20

. At well 16/7-2, the in-

situ gas flow was derived from bubble size measurements
20

. Each flow measurement lasted about 

10 minutes, thus temporal variations in the gas flux on time-scales longer than that remain 

unknown. Longer time-series will be necessary to better constrain our annual emission estimates. 

Table S1 comprises data of gas flow measurements at the three wells investigated by Vielstädte et 

al.
20

. 
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Here, the gas flow measurements at wells 15/9-13 and 16/4-2
20

 were used for the assessment of 

the North Sea-wide release assignment. We only considered the two lower gas flows measured at 

wells 15/9-13 and 16/4-2
20 

because they are believed to be more typical for shallow gas migration 

than the larger gas flow measured at well 16/7-2, which has been drilled through a seismic 

chimney
20

. 

Table S1| Quantification of seabed gas releases along three abandoned wells in the Central 

North Sea
 
(compiled data based on Vielstädte et al.

20
; a seep here refers to as a single bubble 

stream).  

Well (Water-depth) 

 

QSF (in-situ) 

/ L min
-1

 seep
-1

 of 

CH4 

QSF (STP)  

/ L min
-1

 seep
-1

 of 

CH4 

No. of seeps QSF
a
 

/ t yr
-1

 well
-1

 of 

CH4 

15/9-13 (81 mbsl) 0.09 0.9
f
 2 1 

16/4-2 (93 mbsl) 0.15 /0.17
b
 1.6/1.8

b,d
 8 4 

16/7-2 (83 mbsl) 0.15
c 

1.4
e
 39 19 

a
 based on the average gas flow of 1.4 L min

-1
 seep

-1
 at STP (35 PSU, 25°C, 1 bar) 

b
 based on replicate gas flux measurements at well 16/4-2  

c 
derived from bubble size, due to  lack of direct funnel  measurements 

d
  measured at high tide 

e
  measured at low tide 

f
  measured 2 h after low tide 

 

2.1.3 Measuring initial bubble sizes. Vielstädte et al.
20

 analyzed initial bubble size spectra at the 

three wells from ROV-video sequences applying the image editing software ImageJ
51

. For each 

bubble, the major and minor axes, angle, perimeter, area, circularity, as well as frame number 

were recorded. The corresponding bubble volume, V0=4/3π × re
3
, was calculated from the 

equivalent spherical radius, re= (a
2
b)

1/3
 based on the major, a, and the minor half axes, b, of the 

fitted ellipse as described in Reference
20

.  
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Determined bubble sizes at wells 15/9-13 and 16/4-2 were combined into a common bubble size 

distribution (ψ)
20

 (Figure S5). Given that the gas flow at individual seeps of the wells was low 

such that initial bubble formation processes are primarily controlled by the mechanical properties 

of the surface sediments
 38

, ψ is proposed to be representative for bubbles released from the fine 

to medium-grained clayey sand found at the investigated wells and in wide areas of the North 

Sea
26

. The combined bubble size distribution
 
(ψ)

20 
was thus, used for further extrapolation of CH4 

leakage to the North Sea scale by calculating the fate of leaking CH4 from the seafloor to the 

atmosphere using a numerical bubble dissolution model (SI Section 2.2.2).  

Measurements at well 16/7-2 were excluded for the determination of the combined bubble size 

distribution because bubbles escaped from below a carbonate rock, thereby expelling 

significantly larger bubbles into the water column than bubbles directly released from the sandy 

sediments (i.e. at well 15/9-13 and 16/4-2, for details see Reference
20

).  

 

2.1.4 Quantifying dissolved CH4 and CH4 oxidation (MOx) rates in the water column. 

During cruise CE12010 (July-August 2012), seawater samples were taken with Niskin bottles 

attached to a video-guided CTD or operated by ROV Kiel 6000
53

. At wells 15/9-13 and 16/7-2 

seawater was sampled near the seafloor and additionally through the water column at well 15/9-

13. No water samples were recovered at well 16/4-2. For dissolved gas analysis, subsamples were 

transferred bubble-free into 100 ml headspace vials immediately after recovery of the Niskin 

Water Sampler Rosette. Dissolved gases were released from the seawater samples by headspace 

technique (headspace of 10 ml of Ar 4.5). After adding 50µl of saturated HgCl2-solution the vials 

were stored at 4°C. Concentration determination of CH4 released into the headspace was 

conducted by using onboard gas chromatography (Shimadzu 2010, for results see Table 1 and 

Figure S3).  
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Figure S3| Dissolved CH4 concentrations in 

the water column. Depth profile showing the 

concentration of dissolved CH4 in the water 

column (orange bullets) based on 

measurements during CE12010 31-CTD7 at 

well 15/9-13. The dashed line indicates the 

depth of the thermocline and the blue arrow 

represents the equilibrium concentration of 

CH4 in the surface mixed layer (i.e. 3 nM
30

) 

with respect to the atmospheric partial 

pressure of CH4. 

 

To assess CH4 oxidation rates (rMOx) in the water column, subsamples were transferred bubble-

free into ~23 ml headspace vials and closed with grey bromo-butyl stoppers (Helvoet Pharma, 

Belgium), immediately after recovery of the Niskin bottles. Shortly after sampling, a 6 µl gas 

bubble of 
14

C-CH4:N2 gas (0.25 kBq) was added to the subsamples, which were then incubated 

for 2 days in the dark at in-situ temperature (~8°C). After 2 days, samples were fixed in 4 pellets 

of NaOH and stored at 4°C until rate measurements were performed in the home laboratory. 

Radioactive substrate and product pools were quantified as described by Blees and colleagues
54-55

 

to determine the rate constant. Assuming sufficient oxygen supply during incubation, CH4 

oxidation rates were then calculated according to: 

rMOx = k × [CH4]                                                                                                  Supplement Eq. (1) 

where k is the first-order rate constant and [CH4] denotes the concentration of CH4 in seawater 

(for results see Table 1). All rates were determined in quadruplicates. Killed controls (addition of 

200 µl saturated HgCl2 at the start of the incubation) were analyzed for each incubation period. 

Recovery of the radioactive tracer was >95%. The detection limit of the rate depends on the 

amount of radioactive CH4 added and the initial CH4 concentration and varied between 0.01 and 

6.45 nM day
-1

 depending on the sample. Above well 15/9-13, all rates were below detection 

limit. Above well 16/7-2, one out of three sampling locations showed rates below detection limit. 

For the other two locations above well 16/7-2, rates were 0.19±0.07 and 1.40±0.83 nM day
-1

 

(SEM, N=4). 
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For comparison, maximal MOx rates measured at well 16/7-2 were generally one order of 

magnitude lower than those observed at other highly active natural marine seep sites (e.g. at 

hydrothermal vents at the Juan de Fuca Ridge
56

, cold seeps in the Santa Barbara Channel
57

 at 

Hydrate Ridge
58

 and the Svalbard continental margin
39

), and 2-3 orders of magnitude lower than 

at other, more catastrophic anthropogenic methane release sites (e.g. the Deep Water Horizon oil 

spill where MOx rates were ≤5900 nM d
-1

 
59

 and the North Sea Blowout well 22/4b where MOx 

rates were ≤498 nM d
-1

 
40

). Even though CH4 concentrations were high throughout the water 

column (i.e. 36-1014 nM at well 15/9-13) and there was no limitation in O2, the low activity of 

microbial CH4 oxidation at the investigated wells may be due to changes in the abundance of CH4 

oxidizing bacteria (MOB) caused by water mass exchange. Steinle et al.
39

 found that lateral 

transport of water column MOB away from the CH4 point source reduced water column MOx 

activity at seeps offshore Svalbard. A similar impact of lateral transport was found at the Blowout 

well 22/4b in the British Sector of the North Sea, were MOx rates were significantly higher 

within the seabed crater which was partly shielded against tidal influences and currents
40

. 

 

2.1.5 Quantifying total organic carbon (TOC) and dissolved sulfate (SO4) concentrations in 

surface sediments and associated pore fluids. In summer 2012, surface sediment samples were 

retrieved in the CNS using the Geo-Corer 6000 vibro corer (VC) system provided by the 

Geological Survey of Ireland
53

. VC sediment cores were cut in half and ~3 cm thick slices were 

taken in approximately 20-40 cm intervals. Subsequently, the porewater was extracted at ambient 

room temperature (~19°C) using a low pressure-squeezer (argon at 3-5 bar, sometimes up to 7 

bar). While squeezing, the porewater was filtered through 0.45 μm regenerated cellulose 

Whatman filters and collected in recipient vessels. Concentration determination of SO4 in pore 

fluids and TOC in the sediment was conducted from subsamples using shore-based ion 

chromatography (METROHM 761 Compact IC-System) and the CARLO ERBA Elemental 

Analyzer (NA 1500, operating at 1050°C), respectively. TOC measurements in the sediment 

were made in ~10 cm intervals using freeze-dried and grinded subsamples that were weighed into 

silver cups and acidified with 0.25N hydrochloric acid to remove carbonate carbon, prior to 

combustion.  
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The low TOC concentrations in surface sediments (~0.1 wt %) and high dissolved SO4 

concentrations in associated pore fluids (29 mM) document the low potential for biogenic gas 

formation in CNS surface sediments (see Figure S4). These geochemical observations confirm 

that the biogenic gas emitted at the wells does not originate from microbial gas production in 

ambient surface sediments but from subsurface gas reservoirs. 

 

Figure S4| Total organic carbon (TOC) and dissolved sulfate (SO4) concentrations in the sediment. 

Depth profile showing the concentrations of TOC (orange bullets) and dissolved SO4 (black bullets) in the 

CNS surface sediments based on measurements at a reference station in 88.6 m water depth (CE12010 18-

VC7, 58°35.740'N, 02°05.179'E). Similar values were measured in other sediment cores taken during 

cruise CE12010. 

 

2.2 Extrapolation of drilling-induced CH4 leakage to the North Sea scale 

 

2.2.1 Seismic mapping of shallow gas and the probability of wells to leak. The examination of 

the probability of wells to leak shallow gas is based on the analysis of an industrial 3-D seismic 

data set ST98M3, which is the result of merging seven independently acquired and processed 

sub-datasets. Detailed information regarding processing parameters of the specific subsets are not 

available, while the processing sequence for merging the data included resampling, filtering, 

phase rotation and amplitude adjustments. The final 3-D seismic cube shows positive acoustic 
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impedance contrasts as positive amplitude (blue) followed by negative amplitude (yellow). The 

bin-size is 12.5 m and the vertical resolution is ∼10 m (dominant frequency 45 Hz, seismic 

velocity of ∼1800 m/s for the upper 400 m and ~2000 m/s below). The dataset extends 62 km 

from north to south and 46 km from east to west covering an area of more than 2000 km² (Figure 

2 a).  

Shallow gas pockets in the uppermost 1000 m of sediment, identified by high amplitude 

anomalies in the seismic data
22

, were mapped and assigned to stratigraphic units
24

 using the 

seismic analysis software Petrel (Schlumberger). Assuming that leakage of shallow gas can 

potentially occur along any type of well (producing, injecting, abandoned, dry), as long as there is 

a shallow gas accumulation in its vicinity, an increased permeability induced by the drilling 

operation, and a driving force for gas movement, which could be buoyancy or excess pore 

pressure, we correlated the well paths of a total of 55 wells in the seismic study area with 

locations of shallow gas pockets. 50 sidetracked and multilateral wells were excluded for the 

correlation analysis because they separate from the main well in the deeper subsurface, which 

was not the scope of this study. Further, 55 wells, having platforms at the sea surface, were 

deselected because no 3-D seismic data of the overburden sediments existed. The probability of 

wells to leak shallow gas was then determined by the fraction of wells which penetrate high 

amplitude anomalies in the shallow subsurface (i.e. 18 of 55 selected wells, Figure 2) and is 

required for further extrapolation of CH4 leakage to the North Sea scale (SI Section 2.2.4).  

 

2.2.2 Modeling the fate of leaking CH4. An existing numerical bubble dissolution model
20

 was 

used to calculate the bubble-mediated CH4 flow to the atmosphere by a single rising gas bubble. 

The simulation of a single rising bubble seems to be justified because only single bubble streams 

were observed at the investigated wells (Figure S1) with very little to no interaction between the 

bubbles, or plume dynamics (upwelling). Assuming that the release of single bubble streams is 

representative for leaky wells in the North Sea, the model simulates the shrinking of a gas bubble 

due to dissolution in the water column, its expansion due to decreasing hydrostatic pressure in the 

course of its ascent and gas stripping, and the final gas transport to the atmosphere. A set of 

coupled ordinary differential equations (ODEs) was solved numerically describing these 

processes for each of the involved gas species (CH4, N2, and O2; Eq. S2) and the bubble rise 
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velocity (Eq. S3), thus time being the only independent variable. Thermodynamic and transport 

properties of the gas components, such as molar volume, gas compressibility, and gas solubility 

in seawater, were calculated from respective equations of state
60-63

, and empirical equations for 

diffusion coefficients
64

, mass transfer coefficients
65

, and bubble rise velocities
66

, taking into 

account local pressure, temperature and salinity conditions as measured by CTD casts. 

Implemented equations and values are provided in Table S2. The ODE system is solved using 

finite difference methods implemented in the NDSolve object of Mathematica (i.e. LSODA)
67

. 

The mass exchange of gas components across the bubble surface is generally described as
66, 68-69

. 

dNi  / dt = 4πreq
2 

 KL,i (Ca,i – Ceq,i)  

 

Supplement Eq. (2) 

where i is the i
th

 gas species, N, is the amount of gas in the bubble, 4πreq
2
 is the  surface area of 

the equivalent spherical bubble, KL is the specific mass transfer rate between gas phase and 

aqueous phase, Ca is the dissolved gas concentration, and Ceq is the gas solubility. All of the 

above variables are functions of the water depth, z, i.e. pressure, temperature and salinity (see 

Table S2 for details and references). The change of the vertical bubble position is related to the 

bubble rise velocity, vb (Table S2): 

 

dz / dt = vb                                                                                                           Supplement Eq. (3) 

Model simulations were performed based on boundary conditions obtained in the CNS from Sea-

Bird 9 plus CTD data of August 2012 (Table S2) and run for different initial bubble sizes 

(ranging between 1.0 to 4.0 mm radius, in accordance to radii of the combined bubble size 

distribution, SI Section 2.1.3), initially containing only CH4. Simulated water depths ranged 

between 20 and 150 m in accordance to those important for the CH4 bubble transport to the 

surface mixed layer (SML) of the North Sea. Larger water depths were not considered because 

additional model runs revealed that the combined bubble size distribution completely loses its 

initial CH4 content in the deep layer of the North Sea when released from more than 150 m depth, 

Figure S5.  

The CH4 emissions from leaky wells to the atmosphere were calculated distinguishing between 

direct emissions via bubble transport and indirect emissions via the diffusive outgassing of CH4 

dissolving in the SML (i.e. the upper 50 m of the North Sea water column)
37

. The direct bubble 
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CH4 transport to the atmosphere was calculated from the remaining/residual amount of CH4 in 

the bubble, when it reaches the sea surface, NS, i.e.  

 𝑁𝑆(𝑟, 𝑧) = 𝑁0(𝑟, 𝑧) − ∫ 𝑑𝑁(𝑟, 𝑧) 𝑑𝑡
𝑡𝑚𝑎𝑥

𝑡=0
         Supplement Eq. (4) 

                        

,where N0 is the initial amount of CH4 in the bubble and tmax is the time required by the gas 

bubble to travel to the sea surface and is determined numerically by the bubble dissolution model. 

The amount of CH4 dissolving in the SML of the North Sea (NSML) was calculated by integrating 

the rate of CH4 bubble dissolution over the time which is needed by the bubble to travel through 

the upper 50 m of the water column (i.e. t50 to tmax, both determined numerically by the bubble 

dissolution model): 

 𝑁𝑆𝑀𝐿(𝑟, 𝑧) = ∫ 𝑑𝑁(𝑟, 𝑧) 𝑑𝑡
𝑡𝑚𝑎𝑥

𝑡50
         Supplement Eq. (5) 

Both, the residual CH4 and the CH4 dissolving in the SML depend on the initial bubble size (r) 

and water depth (z) and were normalized to the corresponding N0. The relative amount of CH4 at 

the sea surface and in the SML with respect to the initial bubble CH4 content, i.e. ΩS(r,z) = 

NS(r,z) / N0(r,z) and ΩSML(r,z) = NSML(r,z) / N0(r,z), are referred to as the transport efficiencies of 

a single gas bubble to the sea surface and to the SML, respectively.  

A transfer function was fitted to numerical results using the non-linear least-squares fit algorithm. 

The fit describes the CH4 transport efficiency of a single bubble to the sea surface as a function of 

the initial bubble size (r) and the leakage depth (z): 

Ω𝑆(𝑟, 𝑧) = 𝑒
−

𝑎

𝑟𝑏 𝑧
 

 

Supplement Eq. (6) 

 Correlation matrix for parameters Least squares estimates Standard deviation 

 a b  of parameters (1-σ) 

a 1 -0.97  -0.156 0.007 

b -0.97 1  1.26 0.04 
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The variance, s
2
 of the residuals is better than 0.00013 and the linear correlation coefficient of the 

fit-curve to the numerical data is better than 0.99. The fit function is valid for initial bubble radii 

ranging between 1 and 4 mm initially containing only CH4 and for the given physicochemical 

properties of the water column obtained in the CNS from Sea-Bird 9 plus CTD data of August 

2012 (Table S2). By applying Supplementary Eq. 6, the mass transfer of gases other than CH4, 

N2, and O2, as well as the development of upwelling flows are considered to be negligible for the 

CH4 transport to the sea surface. 

Because leaky wells expelled a range of initial bubble sizes, the transport efficiencies ΩS(r,z) and 

ΩSML(r,z) were calculated for each bubble size and weighted by its volumetric contribution, V0, to 

the total emitted gas bubble volume, Vψ. Integrating this weighted bubble transport efficiencies 

over the entire bubble size spectrum (ψ)  gives the total CH4 transport efficiency to the SML 

(ΩSML) and to the sea surface (ΩS) with respect to the initial CH4 release at the seafloor, 

respectively:  

Ω𝑆(𝜓, 𝑧) =
1

𝑀𝐼
 ∫ Ω𝑆(𝑟, 𝑧)  

𝑉0 (𝑟)

𝑉𝜓
 𝑑𝑟

𝑟(𝑚𝑎𝑥)

𝑟(𝑚𝑖𝑛)
  

 

Ω𝑆𝑀𝐿(𝜓, 𝑧) =
1

𝑀𝐼
 ∫ Ω𝑆𝑀𝐿(𝑟, 𝑧)  

𝑉0 (𝑟)

𝑉𝜓
 𝑑𝑟

𝑟(𝑚𝑎𝑥)

𝑟(𝑚𝑖𝑛)
       

Supplement Eq. (7) 

 

Supplement Eq. (8) 

 

where, r(min), and r(max) are the minimum and maximum radii of the bubble size spectrum ψ
20

, 

respectively, and  MI is the measurement interval between individual bubble sizes (i.e. 0.1 mm). 

V0 and Vψ refer to optical size measurements at individual gas streams of the investigated wells, 

which were conducted to determine the combined bubble size spectrum
20 

(Figure S5). Applying 

Supplementary Eq. 7 and 8, we assume that there is no change in the weighted volumetric 

contribution of each bubble size to the total emitted bubble volume (i.e. V0(r) / Vψ = const.), so 

that the relative distribution of bubble sizes is considered to be constant, although the release 

frequency of bubbles may change due to a variability of the seabed gas flow. This means that at a 

constant mass flow (i.e. per-well leakage rate) a decrease in the hydrostatic pressure (i.e. leakage 

depth) increases the rate of bubble formation but not their size distribution, as generally validated 

for seeps with a low gas flow
38

. Transfer functions were fitted to numerical results of 

Supplementary Equation 7 and 8, respectively using the non-linear least-squares fitting algorithm 

“NonlinearModelFit” of Mathematica (Figure S5). The fit-curves describe the transport 
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efficiency of the bubble size distribution to the sea surface (Eq. S9) and to the SML (Eq. S10) 

with respect to the seabed CH4 flow and as a function of the leakage depth (z), respectively:  

 

ΩS(ψ,z) = e 
–a

 
 z
 

 

Supplement Eq. (9) 

 

Parameter Least squares estimates of parameter Standard deviation (1-σ) 

a 0.0435 0.0007 

 

 

Ω𝑆𝑀𝐿(𝜓, 𝑧) =
1

1 + 𝑒𝑧−50
 𝑎 × 𝑧0.5 +

1

1 + 𝑒50−𝑧

×
1

𝑏 + 𝑐 × 𝑧4.6
 

Supplement Eq. (10) 

 

 Correlation matrix for parameters Least squares estimates 

of parameters 

Standard deviation 

(1-σ) 
 a b c 

a 1 0.3 -0.2 0.127 0.003 

b 0.3 1 -0.8 0.73 0.04 

c -0.2 -0.8 1 6.1×10
-9

 4×10
-10

 

 

The variance, s
2
, of the fits is 0.0001 and 0.0005 for the transport efficiency to the sea surface and 

to the SML, respectively. The numerical accuracy of the model, determined from mass balance 

errors, was overall better than 99.9%. Supplementary Eq. 9 and 10 are required for the North Sea-

wide extrapolation of drilling-induced CH4 emissions from the seafloor into the atmosphere (SI 

Section 2.2.4). 
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Table  S2| Parameterization of numerical model. 

Parameterization Range Variance Reference 

a
 Diffusion coeff.: Di / m

2
 s

-1
    

DO2=1.05667×10
-9

+4.24×10
-11×T T:0-25°C 1.00×10

-21
 Boudreau

64
 

DN2=8.73762×10
-10

+3.92857×10
-11×T T:0-25°C 2.94×10

-23
 Boudreau

64
 

DCH4=7.29762×10
-10

+3.31657×10
-11×T T:0-25°C 5.70×10

-24
 Boudreau

64
 

Mass transfer coefficient: KL,i / m s
-1

    

KL=0.013(vb×10
2
/(0.45+0.4 r×10

2
))

0.5×Di 
0.5

  r≤ 2.5 mm  Zheng and Yapa
65

 

KL=0.0694×Di 
0.5

  2.5< r ≤ 6.5 mm  Zheng and Yapa
65

 

KL=0.0694 (2r×10
-2

)
-0.25

 × Di
0.5

  r< 6.5 mm  Zheng and Yapa
65

 

Fit to CTD data as function of z    

T(z)=8+7/(1+e 
0.375 (-21.7512+z)

) Z: 0-150 m 3.99×10
-2

  

S(z)=35.12-0.67/(1+e 
0.4125 (-20.1595+z)

) Z: 0-150 m 4.97×10
-4

  

Density of SW: φSW/ kg m
-3

    

φSW(z)=1027.7-2.150/(1+e 
0.279 (-21.612+z)

) Z: 0-150 m 6.8×10
-3

 Unesco
70

 

Bubble rise velocity: vb / m s
-1

    

vb=4474×r
1.357

  r< 0.7 mm  Wüest et al.
66

 

vb=0.23  0.7≤ r < 5.1 mm  Wüest et al.
66

 

vb=4.202× r
0.547  r≥ 5.1 mm  Wüest et al.

66
 

Gas solubility: ci  / mM    

cN2=0.622+0.0721 z Z:0-150 m 2.5×10
-3

 Mao and Duan
63

 

cO2=1.08+0.1428 z Z:0-150 m 9.8×10
-3

 Geng and Duan
62

 

cCH4=1.44+0.1671 z Z:0-150 m 2.4×10
-2

 Duan and Mao
61
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CH4 molar volume: MVCH4 / L mol
-1

    

MVCH4=1/(0.0418+0.0044 z) Z:0-150 m 3.0×10
-2

 Duan et al.
60

 

Hydrostatic Pressure: Phydro/ bar    

Phydro=1.013 + φSW  × g × z     

a
 The parameterization of the diffusion coefficients is based on a seawater salinity of 35 PSU. Pressure effects have 

been neglected because at the given water depths (<150 m) the resulting error is less than 1%. 
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Figure S5| Numerical results of the bubble dissolution model. Model results show the CH4 

bubble transport efficiency to the surface mixed layer (ΩSML) and to the sea surface (ΩS) of the 

North Sea, respectively as a function of the leakage depth (z) and for initial bubble radii ranging 

between 1.7 to 3.7 mm (in accordance to bubble sizes of the combined bubble size distribution 

measured at the three investigated leaky wells
20

; upper right corner showing the measured bubble 

release frequency (F) versus bubble radius (r), and Gaussian fit (black line) for the combined 
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bubble size spectrum
20

). The CH4 transport efficiency of the combined bubble size distribution 

(black curve) was determined by fit curves to the data using the non-linear least-squares fitting 

algorithm “NonlinearModelFit” of Mathematica. The variance, s
2
, of the fit-curves is better than 

0.001 and 0.005 for ΩS(ψ,z) and ΩSML(ψ,z), respectively. 

 

2.2.3 The well inventory and bathymetry of the North Sea. To extrapolate CH4 leakage to the 

North Sea scale, all 15 781 offshore wellbore data (including the well identification, location, 

status, and type) were incorporated into a database created in ArcGIS (v10.1), sourced from 

online datasets published by governmental energy departments and regulation agencies in 2012 to 

2013 (Table S3, Figure S6). Filters (queries) were applied to categorize and identify the wells for 

analysis (Table S4). As leakage of shallow gas can potentially occur along any type of well, 

whether it is producing hydrocarbons, injecting fluid into a reservoir, was dry, or has been 

abandoned, we selected all types of wells (i.e. 11 122 wells, see Table S4), excluding extra 

sidetracked and multilateral wells which tend to separate from the main well in the deeper 

subsurface (i.e. < 1000 m). Sidetracked and multilateral wells were deselected manually from the 

database following the guidelines for designation of wells and wellbores
45

. In addition, the 

EMODnet North Sea bathymetry with a spatial resolution of 5 minutes (available at: 

http://www.emodnet-bathymetry.eu; Figure S6) was incorporated into the ArcGIS database. 

Bathymetric data were required to estimate CH4 emissions into the atmosphere, which are depth-

dependent. 

 

Table S3| Source data of the North Sea well inventory. 

Country Data Source (Date) Link 

Norway Norwegian Petroleum Directorate  

(Sept. 2013) 

http://factpages.npd.no/ReportServer?/FactPages/ge

ography/geography_all&rs:Command=Render&rc:

Toolbar=false&rc:Parameters=f&IpAddress=1&Cul

tureCode=en 

United 

Kingdom 

Department of Energy and Climate 

Change (Aug. 2013) 

https://www.gov.uk/oil-and-gas-offshore-maps-and-
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gis-shapefiles 

Germany Niedersächsisches Landesamt für 

Bergbau, Energie und Geologie  

(Jul. 2013)  

http://nibis.lbeg.de/cardomap3/?TH=BOHRKW 

Denmark Danish Energy Agency (Jan. 2012) http://www.ens.dk/en/oil-gas/oil-gas-related-

data/wells 

Netherland Netherland Oil and Gas Portal  

(Jun. 2013) 

http://www.nlog.nl/en/activity/activity.html 

 

Table S4| Classification of wells in the North Sea (as of 2012-2013). 

Well Status Main Wells/Wellheads Additional sidetracked & 

multilateral wells 

Total number 

Active
a
 2818 1629 4447 

Inactive
b
 7498 2637 10 135 

Shut-in
c
 5636 1696 7332 

Unknown status
d
 806 393 1199 

Total 11 122
e
 4659 15 781 

a
 including injection, production, and open wells  

b
 including temporarily and permanently plugged and abandoned wells 

c 
including only permanently plugged and abandoned/ shut-in wells; excluding wells in the Danish Sector 

because here no well status was  reported in the source data 

d
 including wells where no well status or type was reported, and Norwegian wells which have been 

completed to well, or predrilled with no further specification 

e
 selected for analysis 
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Figure S6| Bathymetric map of the North Sea and the surface location of the 11 122 wells 

(grayish diamonds). The maps geographic coordinate system refers to WGS84 UTM Zone 31N 

and is displayed in Mercator Projection. 
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2.2.4 Extrapolation of drilling-induced CH4 leakage to the North Sea scale. CH4 leakage 

from wells into the North Sea and atmosphere was calculated by extrapolating data obtained in 

the CNS (leakage rates, initial bubble size distributions, and the likelihood of wells to leak) and 

results of a numerical bubble dissolution model (SI Section 2.2.2) on the EMODnet North Sea 

bathymetry and combining publicly available data on drilled wells (SI Section 2.2.3) using the 

geographical information system software ArcGIS v10.1.  

In total, 11 122 active and inactive wells were selected for the North Sea-wide CH4 release 

quantification excluding sidetracks of wells (Table S4). The North Sea was subdivided into equal 

area polygons of 5×5 km
2
 using a Cylindric Equal Area projection and the “Fishnet” tool of 

ArcGIS v.10.1. Spatial joining of the selected wells and bathymetric data gives each polygon a 

summary of numeric attributes that fall inside it, i.e. the average water depth (z) and a count field 

showing how many points fall inside it, i.e. the number of wells. 

The seabed CH4 flow (QSF) was calculated for each of these polygons multiplying the leakage 

probability (LP) of 33 ± 6% for the wells (SI Section 2.2.1), the number of wells located inside 

each polygon (AF, activity factor), and the potential range of per-well CH4 leakage rates (LR) of 

1-4 t yr
-1

: 

 

QSF = AF×LP×LR Supplement Eq. (11) 

 

For each polygon, the resulting CH4 flow from the surface water into the atmosphere (QAtm) was 

then estimated applying a transfer function describing the CH4 bubble transport efficiency to the 

sea surface and to the SML of the North Sea (SI Section 2.2.2, Eq. S9 and S10) as a function of 

the seabed CH4 flow (QSF) and average water depth of the polygon (z): 

 

QAtm,i = QSF,i × ΩSML,i/ S,i(ψ.z)                                                                             Supplement Eq. (12) 

 

, where i is the leakage range (considering either the lower or upper range of possible leakage 

rates), and ψ is the common bubble size distribution (SI Section 2.1.3). Applying Supplementary 

Eq. 12, we assume no variation of initial bubble sizes over the extended area of the North Sea (SI 

Section 2.1.3) and that essentially all of the CH4 reaching the SML will be transferred into the 

atmosphere. 
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All determined flow estimates of individual polygons, were added to calculate the potential range 

of the total CH4 ebullition from the seafloor and into the atmosphere. Reported values of CH4 

leakage into the North Sea and the atmosphere are expressed in kilo tonnes of CH4 per year (kt 

yr
-1

 of CH4), considering the potential range of per-well leakage rates of 1-4 t yr
-1

 of CH4 (N = 

2)
20 

and an uncertainty in the leakage frequency of 6% for the wells (N = 55). 

 

2.2.5 Leakage from oil and gas infrastructure in a North Sea CH4 context.  We recalculated 

the CH4 budget of the North Sea compiling quantitative literature data on major sources and sinks 

for marine CH4 and adding the so-far unrecognized release of shallow gas along leaky wells 

quantified in this study (for results see Figure 3 and Table S5).  

Existing estimates on North Sea-wide CH4 emissions into the atmosphere are based on the 

extrapolation of point measurements of CH4 concentrations in the near-surface seawater and the 

atmosphere
27, 30, 36

. The reported diffusive emissions into the atmosphere range from 10-50 kt yr
-1

 

and are believed to already include the diffusive contribution of leaky wells (1-5 kt yr
-1

), because 

their CH4 anomalies are distributed over a broad area of the North Sea (Figure 4) and have thus, 

likely been detected during the measurement campaigns. In contrast, the blowout well 22/4b 

constitutes a very local, high flow CH4 source in the British Sector. It was created in 1990, when 

Exxon Mobile accidently drilled into an over-pressurized shallow gas pocket. Its contribution to 

the atmospheric CH4 flow was detected in only one
30

 of the three surveys
27,30,36

, 3.5 years after 

the incident occurred. According to the data of Rehder et al.
30

, well 22/4b contributed 7-12 kt yr
-1 

to the total atmospheric flux of 50 kt yr
-1 30

. More recent studies suggest that the blowout well 

releases 2-25 kt yr
-1

 of CH4 from the seabed
41-42

, without transporting gas directly into the 

atmosphere
71

. The lack of direct bubble transport suggests that essentially all of the CH4 released 

from the seabed dissolves in the water column where it is partly (~1-3%) oxidized by microbes
40

. 

The remaining CH4 pool may reach the atmosphere by diffusive outgassing or may be exported 

to the Atlantic. In summertime, when the water column is stratified, most (~97%) of the CH4 

released at well 22/4b was found to not immediately reach the atmosphere, because it is trapped 

in the deep layer below the thermocline
41

. However, newly released CH4 and the trapped, non-

oxidized CH4 pool are believed to be transported rapidly to the sea surface and emitted into the 

atmosphere in wintertime when the water column becomes well mixed as well as during storm 

events
41

. Current annual atmospheric emissions of well 22/4b are thus, believed to be similar to 
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those quantified by Rehder et al.
30

 in their earlier conservative study. To incorporate our new data 

of drilling-induced CH4 leakage, we recalculated the budget. Total emissions from the North Sea 

into the atmosphere comprise the range of existing quantifications on the diffusive gas exchange 

(10-50 kt yr
-1

 of CH4) and direct bubble ebullition from leaky wells (0-2 kt yr
-1

 of CH4) (Table 

S5). 

The high super-saturation of the North Sea surface waters and the resulting atmospheric 

degassing of CH4 constitute the major sink in the marine CH4 budget (Table S5). Measured CH4 

oxidation rates in the water column were very low (Table 1), such that the microbial sink for CH4 

is expected to be negligible (Table S5). Adding direct bubble ebullition from leaky wells (0-2 kt 

yr
-1

 of CH4) and the amount of CH4, which is exported to the North Atlantic Ocean (8 kt yr
-1

)
30

, 

the sinks for CH4 are almost 20-times larger than the known natural sources (rivers, the Waddden 

Sea, and natural seeps). The North Sea-wide CH4 input from drilling-induced leakage (leaky 

wells and blowout well 22/4b), thus likely contributes significantly to the CH4 budget (see Figure 

3 and Table S5).  It should be noted that our estimate of CH4 seepage from natural seeps is based 

on the few available quantitative measurements that are currently available (Table S5). The 

numerous natural gas seeps with unknown emission rates that are present in the North Sea may 

add more CH4 and contribute significantly to the overall CH4 input
23

.  

 

Table S5 |Sources and sinks for CH4 in the North Sea. Bold values have been taken to recalculate 

the CH4 budget of the North Sea. 

CH4 Sources Input/ t yr
-1

 

of CH4 

Reference 

Natural seeps   

Scanner Pockmark Field* 

 

0.1-13 Judd and Hovland 
31

 and references therein; 

Hovland et al. 
34

 and references therein
 
 

UK Block 15/25 

 

7±? Judd 
33

 and references therein 

Anvil Point UK 

 

68±? Judd 
33

 and references therein
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Torre Bay Firth of   Fourth  1-2 Judd 
33

 and references therein 

Tommeliten 26-42 Schneider von Deimling et al.
32

 (lower bound); 

Judd 
33

 (upper bound) 

Norwegian Block 1/9 Ekosfisk** 52±? Judd and Hovland 
31

 and references therein; 

Hovland et al. 
34

 and references therein 

Total input via seeps >0.2×10
3
  

 

Rivers 

  

Rhine 339 Upstill-Goddard et al. 
27

 

Weser 86 Grunwald et al. 
28

 

Wash 61 Upstill-Goddard et al. 
27

 

Elbe 35 Rehder et al. 
30

; Grunwald et al. 
28

 and references 

therein 

Humber 5 Upstill-Goddard et al. 
27

 

Tyne 2 Upstill-Goddard et al. 
27

 

Sheldt 22-34 Scranton and McShane 
29

 

Total riverine input 0.6±? ×10
3
  

 

Wadden Sea 

  

Spiekeroog Island back barrier area 53 Grunwald et al. 
28

 

East Frisian back barrier area 125 Grunwald et al. 
28

 

Entire back barrier tidal flats*** 1.0-2.1 ×10
3
 Based on Grunwald et al. 

28
 and references therein 

Hydrocarbon infrastructure   

Blowout well 22/4b 2-25 ×10
3
 Sommer et al.

 41 
(lower bound); Leifer

42
 (upper 

bound) 
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Shallow gas migration 3-17 ×10
3
  This study 

Total HC infrastructure 

 

5-43 ×10
3
  

CH4 sinks Loss/ t yr
-1

 

of CH4 

Reference 

Atmosphere   

Diffusive gas exchange (excl. 

22/4b) 

 

Diffusive gas exchange (incl. 

22/4b) 

10-34 ×10
3 

 

 

30-50 ×10
3
 

Bange et al. 
36

 and Upstill-Goddard et al. 
27

 (lower 

bound); Rehder et al. 
30

 (upper bound) 

 

Rehder et al. 
30

 

  

Diffusive contribution from 

shallow gas migration along wells 

 

 

1-5 ×10
3 

 

 

This study (Range considering a per-well leakage 

rates of 1-4 t yr
-1

 of CH4 and an uncertainty in the 

leakage frequency of 6%) 

 

Direct ebullition from shallow gas 

migration along wells  

0-2 ×10
3
 This study (Range considering a per-well leakage 

rates of 1-4 t yr
-1

 of CH4 and an uncertainty in the 

leakage frequency of 6%) 

Total losses into the atmosphere 10-52 ×10
3
 This study  (diffusive gas exchange and direct 

ebullition) 

Microbial CH4 oxidation at leaky 

wells**** 

0.02 ×10
3
±? This study 

Microbial CH4 oxidation at 

blowout well 22/4b 

0.02-0.8×10
3
 Steinle et al. 

40
 (considering that 1-3% of recent 

oceanic emissions of well 22/4b are oxidized) 

 

CH4 export to North Atlantic 

Ocean  

 

8 ×10
3
 

 

Rehder et al. 
30

 

Total CH4 Budget Total CH4 

sources  

Total CH4 sinks 

 

 

kt yr
-1

 of CH4 7-46 18-60   
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*Assuming a gas flow of 5.7 L h
-1

seep
-1

 at STP
 31

 and 3 active seeps
 34

, the Scanner Pockmark field emits 

0.1 t yr
-1

of CH4 (lower bound). Assuming a seabed gas flow of 1 m
3
 d

-1
 seep

-1
 
34

, a molar volume of CH4 of 

1.34 L mol
-1

 at 160 m water depth, and 3 active seeps
 34

, the Scanner Pockmark field emits ~13 t yr
-1

 of 

CH4 (upper bound). 

** Based on a seabed emission of ~24 m
3
 d

-1
 of CH4 

31, 34
 and assuming a molar volume of CH4 of 2.69 L 

mol
-1

 at 75 water depth, the Norwegian Block 1/9 emits ~52 t yr
-1

 of CH4. 

*** We extrapolated the CH4 export of the East Frisian back barrier area (125 t yr
-1 

of CH4 per 197 km
2 28

 

on the entire back barrier tidal flat area from Den Helder to Esbjerg (1188-3364 km
2
)

28 
assuming that the 

CH4 concentrations and the water outflow of the Spiekeroog study area
28

 are representative. 

**** We estimated the loss of CH4 by methanotrohic communities at leaky wells, based on the maximum 

measured CH4 oxidation rate of 1.4 nM d
-1

(this study), a leakage area of 10 m
2
 well

-1 20
, and an average 

leakage depth of 80 m (in accordance to the spatial distribution of wells and the North Sea bathymetry). 

 

2.2.6 Sources of uncertainty in our estimates. The range of uncertainty of shallow gas leakage 

in the North Sea is substantial, as might be expected from the current state of knowledge of leaky 

wells, mainly depending on the representativeness of data obtained in the Norwegian CNS. There 

is a large uncertainty in our estimates related to the unknown temporal and spatial variability of 

per-well leakage rates that might, in addition to sediment properties and tidal pressure 

fluctuations, be driven by overpressure in the shallow gas reservoir, or by differences in the gas 

supply. Further uncertainty is associated to the probability of wells to leak shallow gas. Assuming 

a binomial distribution from a Bernoulli process, the uncertainty in the frequency of leakage that 

a sample size of 55 wells would produce in the larger population of wells is believed to be small 

(i.e. ± 6% 1-σ) compared to the uncertainty in the leakage rate per well.  Our estimate for CH4 

leakage from hydrocarbon wells in the North Sea is based on the two lower leakage rates and the 

assumption that wells poking through shallow gas pockets will leak, which is corroborated by 

observed ebullition of biogenic gas at wells 15/9-13 and 16/7-2
20

 as well as 15/9-11 and 15/9-

16
43

. Surveying for leaky wells and quantifying their ebullition rates (including longer time-

series) is clearly needed in order to better constrain the North Sea CH4 budget.  

Atmospheric emission estimates bear further uncertainty arising from three additional factors: (1) 

temporal and spatial variability of the bubble chain dynamics (upwelling), (2) variability of initial 
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bubble sizes, and (3) seasonal/ inter-annual changes of seawater conditions. The latter may 

significantly affect the diffusive outgassing of CH4 due to the seasonal deepening and breakdown 

of the thermocline
30, 32,37,41 

and the efficient ventilation of the entire water column during frequent 

fall and winter storms, which both should aid annual diffusive CH4 emissions. No significant 

inter-annual variability is expected in the rate of direct CH4 ebullition to the atmosphere because 

the bubble CH4 transport is independent of the water column stratification and also nearly 

temperature-independent. This is because the increase in gas transfer velocity (KL) compensates 

the decrease in gas solubility at elevated temperature. The approach to estimate atmospheric 

emissions is thus, believed to be conservative because the gas transport to the atmosphere might 

has been underestimated due to the seasonal increase in the ventilation of the water column or the 

evidence of upwelling flows at high-emitting seeps. Uncertainties related to initial bubble sizes 

remain, which might, in addition to spatial heterogeneities in the sediment properties, be driven 

by variations in the seabed gas flow, or bottom current intensity, or changes in the hydrostatic 

pressure
38

.   

 

2.2.7 Generality of our approach for assessing CH4 emissions along wells in other regions 

that have undergone extensive offshore drilling. Shallow gas migration along hydrocarbon 

wells has not received much attention yet and data on leakage rates are limited to those observed 

at the three abandoned gas wells in the North Sea
20

. Given the small sample size and unknown 

temporal and spatial variability of per-well leakage rates, the uncertainties behind annual, 

regional flux estimates are generally large (as discussed above). Due to regional differences in 

geology, the leakage rates (1-19 t yr
-1

 of CH4 per well)
20

 and leakage frequency of wells (33 ± 

6%) observed in the North Sea might not be appropriate for extrapolation to other regions that are 

rich in shallow gas and have undergone extensive offshore drilling. More measurements 

(including longer time series) are clearly needed to better constrain leakage rates and leakage 

pathways (i.e. gas migration along the well vs. well annulus leakage), both onshore and offshore. 

Our numerical results to estimate atmospheric CH4 emissions from submarine gas leaks indicate 

that wells (and seeps) located in water depths larger than 150 m generally do not contribute 

significant CH4 to the atmosphere (see Figure S5, justified for initial bubble radii up to 4 mm), 

but rather contribute to CH4 in the deep-water layer where it is transported by ocean currents and 

prone to microbial oxidation. Some unknown fraction of this deeply dissolved CH4 may be mixed 
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into the surface mixed layer during storms and seasonal or inter-annual deepening and breakdown 

of the thermocline. The gas bubble dissolution rate is rather temperature-independent (see SI 

Section 2.2.6), suggesting that our numerical results (i.e. Supplementary Eq. 6, 9 and 10) are 

applicable for assessing approximate atmospheric CH4 contributions in a variety of coastal (≤ 150 

m water depth) marine and lacustrine regions (e.g. from the Gulf of Mexico to the Arctic). 

Supplementary Eq. 6 describes the transport efficiency of CH4 bubbles to the sea surface with 

respect to the seabed CH4 flow and as a function of the initial bubble size (justified for initial 

radii of 1-4 mm) and the leakage depth. Supplementary Eq. 9 and 10 describe the transport 

efficiency of CH4 bubbles with a specific bubble size distribution (i.e. re=2.6 mm
20

, SI Figure S5) 

to the sea surface (Eq. S9) and to the SML (Eq. S10) with respect to the seabed CH4 flow and as 

a function of the leakage depth, respectively. Their application is generally justified in marine 

regions up to 150 m water depth, where clean CH4 bubbles, that initially contain only CH4, rise in 

the absence of bubble plume dynamics (i.e. by the release of single bubble streams that do not 

induce upwelling). The general applicability of Eq. S10 to estimate the diffusive outgassing of 

CH4 is limited due to regional differences in water column stratification and mixing (i.e. Eq. S10 

considers the diffusive outgassing of CH4 dissolved in the upper 50 m of the water column).  

 

Our transfer functions (Eq. S6, S9, S10) are not suitable for assessing atmospheric CH4 emissions 

in regions where gas bubbles are coated with oil, hydrates, and/or other surfactants, which 

generally prevent the gas exchange with ambient seawater and thus, favor the bubble-driven 

transport of seabed CH4 to the surface. Further limitations are related to bubble plumes that 

generate upwelling, turbulences
71

, and/or spiral movement
72

, which affect the rate of bubble 

dissolution and have not been considered in our numerical simulations. 
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