19 research outputs found

    Colorado Native Plant Society Newsletter, Vol. 4 No. 5, September-October 1980

    Get PDF
    https://epublications.regis.edu/aquilegia/1164/thumbnail.jp

    Perioperative SARS-CoV-2 infections increase mortality, pulmonary complications, and thromboembolic events : a Dutch, multicenter, matched-cohort clinical study

    Get PDF
    Background: A direct comparison of severe acute respiratory syndrome coronavirus 2 positive patients with a severe acute respiratory syndrome coronavirus 2 negative control group undergoing an operative intervention during the current pandemic is lacking, and a reliable estimate of the assumed difference in morbidity and mortality between both patient categories remains unknown. Methods: We included all consecutive patients with a confirmed pre- or postoperative severe acute respiratory syndrome coronavirus 2 positive status (operated in 27 hospitals) and negative control patients (operated in 4 hospitals) undergoing emergency or elective operations. A propensity score-matched comparison of clinical outcomes was performed between severe acute respiratory syndrome coronavirus 2 positive and negative tested patients (control group). Primary outcome was overall 30-day mortality rate between both groups. Main secondary outcomes were overall, pulmonary, and thromboembolic complications. Results: In total, 161 severe acute respiratory syndrome coronavirus 2 positive and 342 control severe acute respiratory syndrome coronavirus 2 negative patients were included in this study. The 30-day overall postoperative mortality rate was greater in the severe acute respiratory syndrome coronavirus 2 positive cohort compared with the negative control group (16% vs 4% respectively; P = .007). After propensity score matching, the severe acute respiratory syndrome coronavirus 2 positive group consisted of 123 patients (median 70 years of age [interquartile range 59-77] and 55% male) were compared with 196 patients in the matched control group (median 69 years (interquartile range 58-75] and 53% male). The 30-day mortality rate and risk were greater in the severe acute respiratory syndrome coronavirus 2 positive group compared with the matched control group (12% vs 4%; P = .009 and odds ratio 3.4 [95% confidence interval 1.5-8.5]; P = .005, respectively). Overall, pulmonary and thromboembolic complications occurred more often in severe acute respiratory syndrome coronavirus 2 positive patients (P < .01). Conclusion: Patients diagnosed with perioperative severe acute respiratory syndrome coronavirus 2 have an increased risk of 30-day mortality, pulmonary complications, and thromboembolic events. These findings serve as an evidence-based argument to postpone elective surgery and selected emergency cases. (C) 2020 The Author(s). Published by Elsevier Inc

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    LHCb calorimeters: Technical Design Report

    Get PDF

    LHCb RICH: Technical Design Report

    Get PDF

    LHCb magnet: Technical Design Report

    Get PDF

    Simultaneous modeling of reaction times and brain dynamics in a spatial cueing task

    No full text
    Understanding how brain activity translates into behavior is a grand challenge in neuroscientific research. Simultaneous computational modeling of both measures offers to address this question. The extension of the dynamic causal modeling (DCM) framework for blood oxygenation level-dependent (BOLD) responses to behavior (bDCM) constitutes such a modeling approach. However, only very few studies have employed and evaluated bDCM, and its application has been restricted to binary behavioral responses, limiting more general statements about its validity. This study used bDCM to model reaction times in a spatial attention task, which involved two separate runs with either horizontal or vertical stimulus configurations. We recorded fMRI data and reaction times (n= 26) and compared bDCM with classical DCM and a behavioral Rescorla-Wagner model using Bayesian model selection and goodness of fit statistics. Results indicate that bDCM performed equally well as classical DCM when modeling BOLD responses and as good as the Rescorla-Wagner model when modeling reaction times. Although our data revealed practical limitations of the current bDCM approach that warrant further investigation, we conclude that bDCM constitutes a promising method for investigating the link between brain activity and behavior

    Attentional reorientation along the meridians of the visual field: Are there different neural mechanisms at play?

    No full text
    Hemispatial neglect, after unilateral lesions to parietal brain areas, is characterized by an inability to respond to unexpected stimuli in contralesional space. As the visual field's horizontal meridian is most severely affected, the brain networks controlling visuospatial processes might be tuned explicitly to this axis. We investigated such a potential directional tuning in the dorsal and ventral frontoparietal attention networks, with a particular focus on attentional reorientation. We used an orientation‐discrimination task where a spatial precue indicated the target position with 80% validity. Healthy participants (n = 29) performed this task in two runs and were required to (re‐)orient attention either only along the horizontal or the vertical meridian, while fMRI and behavioral measures were recorded. By using a general linear model for behavioral and fMRI data, dynamic causal modeling for effective connectivity, and other predictive approaches, we found strong statistical evidence for a reorientation effect for horizontal and vertical runs. However, neither neural nor behavioral measures differed between vertical and horizontal reorienting. Moreover, models from one run successfully predicted the cueing condition in the respective other run. Our results suggest that activations in the dorsal and ventral attention networks represent higher‐order cognitive processes related to spatial attentional (re‐)orientating that are independent of directional tuning and that unilateral attention deficits after brain damage are based on disrupted interactions between higher‐level attention networks and sensory areas

    INFRAFRONTIER-providing mutant mouse resources as research tools for the international scientific community

    No full text
    The laboratory mouse is a key model organism to investigate mechanism and therapeutics of human disease. The number of targeted genetic mouse models of disease is growing rapidly due to high-throughput production strategies employed by the International Mouse Phenotyping Consortium (IMPC) and the development of new, more efficient genome engineering techniques such as CRISPR based systems. We have previously described the European Mouse Mutant Archive (EMMA) resource and how this international infrastructure provides archiving and distribution worldwide for mutant mouse strains. EMMA has since evolved into INFRAFRONTIER (http://www.infrafrontier.eu), the pan-European research infrastructure for the systemic phenotyping, archiving and distribution of mouse disease models. Here we describe new features including improved search for mouse strains, support for new embryonic stem cell resources, access to training materials via a comprehensive knowledgebase and the promotion of innovative analytical and diagnostic techniques

    Mutation in the mouse histone gene <em>Hist2h3c1</em> leads to degeneration of the lens vesicle and severe microphthalmia.

    Get PDF
    During an ENU (N-ethyl-N-nitrosourea) mutagenesis screen, we observed a dominant small-eye mutant mouse with viable homozygotes. A corresponding mutant line was established and referred to as Aey69 (abnormality of the eye #69). Comprehensive phenotyping of the homozygous Aey69 mutants in the German Mouse Clinic revealed only a subset of statistically significant alterations between wild types and homozygous mutants. The mutation causes microphthalmia without a lens but with retinal hyperproliferation. Linkage was demonstrated to mouse chromosome 3 between the markers D3Mit188 and D3Mit11. Sequencing revealed a 358 A- &gt; C mutation (I1e120Leu) in the Hist2h3c1 gene and a 71 T- &gt; C (Val24Ala) mutation in the Gja8 gene. Detailed analysis of eye development in the homozygous mutant mice documented a perturbed lens development starting -from the lens vesicle stage including decreasing expression of crystallins as well as of lens-specific transcription - factors like PITX3 and FOXE3. In contrast, we observed an early expression of retinal progenitor cells characterized by several markers including BRN3 (retinal ganglion cells) and OTX2 (cone photoreceptors). The changes in the retina at the early embryonic stages of E11.5-E15.5 happen in parallel with apoptotic processes in the lens at the respective stages. The excessive retinal hyperproliferation is characterized by an increased level of Ki67. The hyperproliferation, however, does not disrupt the differentiation and appearance of the principal retinal cell types at postnatal stages, even if the overgrowing retina covers finally the entire bulbus of the eye. Morpholino-mediated knock-down of the hist2h3ca1 gene in zebrafish leads to a specific perturbation of lens development. When injected into zebrafish zygotes, only the mutant mouse mRNA leads to severe malformations, ranging from cyclopia to severe microphthalmia. The wild-type Hist2h3c1 mRNA can rescue the morpholino-induced defects corroborating its specific function in lens development. Based upon these data, it is concluded that the ocular function of the Hist2h3c1 gene (encoding a canonical H3.2 variant) is conserved throughout evolution. Moreover, the data highlight also the importance of Hist2h3c1 in the coordinated formation of lens and retina during eye development
    corecore