194 research outputs found

    Chemical synthesis of site-selective advanced glycation end products in α-synuclein and its fragments

    Get PDF
    \ua9 2024 The Royal Society of Chemistry.Advanced glycation end products (AGEs) arise from the Maillard reaction between dicarbonyls and proteins, nucleic acids, or specific lipids. Notably, AGEs are linked to aging and implicated in various disorders, spanning from cancer to neurodegenerative diseases. While dicarbonyls like methylglyoxal preferentially target arginine residues, lysine-derived AGEs, such as N(6)-(1-carboxymethyl)lysine (CML) and N(6)-(1-carboxyethyl)lysine (CEL), are also abundant. Predicting protein glycation in vivo proves challenging due to the intricate nature of glycation reactions. In vitro, glycation is difficult to control, especially in proteins that harbor multiple glycation-prone amino acids. α-Synuclein (aSyn), pivotal in Parkinson\u27s disease and synucleinopathies, has 15 lysine residues and is known to become glycated at multiple lysine sites. To understand the influence of glycation in specific regions of aSyn on its behavior, a strategy for site-specific glycated protein production is imperative. To fulfill this demand, we devised a synthetic route integrating solid-phase peptide synthesis, orthogonal protection of amino acid side-chain functionalities, and reductive amination strategies. This methodology yielded two disease-related N-terminal peptide fragments, each featuring five and six CML and CEL modifications, alongside a full-length aSyn protein containing a site-selective E46CEL modification. Our synthetic approach facilitates the broad introduction of glycation motifs at specific sites, providing a foundation for generating glycated forms of synucleinopathy-related and other disease-relevant proteins

    Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis.

    Get PDF
    SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins

    Structure, gating and interactions of the voltage-dependent anion channel

    Get PDF
    The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel’s function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the β-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol

    Insights into the molecular mechanism of amyloid filament formation: Segmental folding of α-synuclein on lipid membranes

    Get PDF
    Recent advances in the structural biology of disease-relevant α-synuclein fibrils have revealed a variety of structures, yet little is known about the process of fibril aggregate formation. Characterization of intermediate species that form during aggregation is crucial; however, this has proven very challenging because of their transient nature, heterogeneity, and low population. Here, we investigate the aggregation of α-synuclein bound to negatively charged phospholipid small unilamellar vesicles. Through a combination of kinetic and structural studies, we identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early fibrillar intermediates. By using solid-state nuclear magnetic resonance, we show the gradual buildup of structural features in an α-synuclein fibril filament, revealing a segmental folding process. We identify distinct membrane-binding domains in α-synuclein aggregates, and the combined data are used to present a comprehensive mechanism of the folding of α-synuclein on lipid membranes

    Cooperativity of membrane-protein and protein–protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis

    Get PDF
    Membrane remodeling is a critical process for many membrane trafficking events, including clathrin-mediated endocytosis. Several molecular mechanisms for protein-induced membrane curvature have been described in some detail. Contrary, the effect that the physico-chemical properties of the membrane have on these processes is far less well understood. Here, we show that the membrane binding and curvature-inducing ENTH domain of epsin1 is regulated by phosphatidylserine (PS). ENTH binds to membranes in a PI(4,5)P2-dependent manner but only induces curvature in the presence of PS. On PS-containing membranes, the ENTH domain forms rigid homo-oligomers and assembles into clusters. Membrane binding and membrane remodeling can be separated by structure-to-function mutants. Such oligomerization mutants bind to membranes but do not show membrane remodeling activity. In vivo, they are not able to rescue defects in epidermal growth factor receptor (EGFR) endocytosis in epsin knock-down cells. Together, these data show that the membrane lipid composition is important for the regulation of protein-dependent membrane deformation during clathrin-mediated endocytosis

    Crystalline inclusion of wheel-and-axle diol hosts featuring benzo[b]thiophene units as a lateral construction element

    Get PDF
    By applying the “wheel-and-axle” host concept and incorporating a previously developed heteroaromatic substitution strategy, a new type of diol host featuring two di(benzo[b]thien-2-yl)hydroxymethyl units attached to both ends of a central ethynylene (3) and 1,4-phenylene (4) moiety is reported. The syntheses of the host compounds are described, and solvent inclusion formation via crystallization has extensively been studied showing a remarkable inclusion capability of the compounds. X-ray diffraction analysis of relevant crystal structures have been performed and comparatively discussed. Vapor sorption behavior of the compounds as solid receptor films coated on a quartz crystal microbalance considering a variety of solvent vapors has been scrutinized, indicating potential application as mass sensitive materials

    Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+

    Get PDF
    An α-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2′-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2′-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times

    Epistemic injustice: A role for recognition?

    Get PDF
    © The Author(s) 2017. My aim in this article is to propose that an insightful way of articulating the feminist concept of epistemic injustice can be provided by paying significant attention to recognition theory. The article intends to provide an account for diagnosing epistemic injustice as a social pathology and also attempts to paint a picture of some social cure of structural forms of epistemic injustice. While there are many virtues to the literature on epistemic injustice, epistemic exclusion and silencing, current discourse on diagnosing as well as explicating and overcoming these social pathologies can be improved and enriched by bringing recognition theory into the conversation: under recognition theory, social normative standards are constructed out of the moral grammar of recognition attributions. I shall argue that the failure to properly recognize and afford somebody or a social group the epistemic respect they merit is an act of injustice in the sense of depriving individuals of a progressive social environment in which the epistemic respect afforded to them plays a significant role in enabling and fostering their self-confidence as rational enquirers. Testimonial injustice is particularly harrowing, because it robs a group or an individual of the status of a rational enquirer, thereby creating an asymmetrical cognitive environment in which that group or individual is not deemed one’s conversational peer. Hermeneutical injustice is particularly harrowing, because asymmetrical cognitive environments further entrench the normative power of ideology
    • …
    corecore