246 research outputs found

    Technical Report Scintigraphic Evaluation of Bone Formation in Göttingen Minipigs

    Get PDF
    In experiments and processes requiring the application of nuclear tracers in large animals, statutory provisions  and safety standards as well as a variety of techniques have to be regarded and employed. In order to sufficiently analyze questions pertaining to osseointegration as well as the possibility of ectopic  bone formation in Göttingen minipigs, we decided to use scintigraphic examinations using 99mTc-HDP  (Technetium - hydroxymethane diphosphonate). In this study, metallic implants coated in different forms  with rhBMP-2 (recombinant human bone morphogenetic protein-2) were surgically introduced into the  pigs’ femora. A total of 26 adult female minipigs (Ellegard, Dalmose, Denmark) averaging 40 months in  age were post-surgically evaluated through the application of a radionuclide and its subsequent distribution  using a scintillation camera. Each animal received approximately 10 MBq/kg BW (mega Becquerel per  kilogram bodyweight). This paper describes the procedures of anaesthesia, the quite challenging transvaginal- urethral catheterization,  the application of a catheter in the jugular vein, the radionuclide injection and the disposal of the  sacrificed animals under statutory provisions and safety standards. The technical report reveals that the scintigraphic evaluation in large animal experiments is a practicable  – yet sophisticated – method of examination and also strives to encourage further research groups to implement  this elegant procedure.

    Uma Metodologia para o Desenvolvimento de Ontologias

    Get PDF
     Ontologias são um importante meio de representar, formalizar e compartilhar conhecimento. No contexto da Engenharia de Ontologias, várias metodologias de desenvolvimento são propostas, cada qual com suas características em relação ao ciclo de vida de ontologias. Por conseguinte, não há uma metodologia estabelecida como padrão para o propósito geral de desenvolvimento de ontologias. Por isso, na literatura acadêmica enfatiza-se a combinação de metodologias. Mediante o estudo de algumas metodologias, atentando as características de simplicidade, expressividade e funcionalidade, é abstraído um conjunto de elementos para o desenvolvimento de ontologias. Como resultado, tem-se uma nova metodologia, a qual compreende as atividades, as tarefas e a sugestão de ferramentas em um processo de desenvolvimento de ontologias, sendo que tal metodologia foi validada em pesquisas exploratórias e/ou aplicadas

    Interannual variation patterns of total ozone and temperature in observations and model simulations

    No full text
    International audienceWe report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2002, by TOMS/SBUV), of temperature reanalyses (1958 to 2002, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (?80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (?30 km). It is targeted on processes near the tropopause, and has more levels in this region. Both models reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability, MAECHAM4-CHEM somewhat better than E39/C. Total ozone and lower stratospheric temperature show similar patterns. Main contributions to the interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to ?30 Dobson Units (DU) per decade, or ?1.5 K/decade), the QBO (up to 25 DU, or 2.5 K peak to peak), the intensity of the polar vortices (up to 50 DU, or 5 K peak to peak), and from tropospheric weather (up to 30 DU, or 3 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 25 DU, or 2.5 K), and to ENSO (up to 15 DU, or 1.5 K). Volcanic eruptions have resulted in sporadic changes (up to ?40 DU, or +3 K). Most stratospheric variations are connected to the troposphere, both in observations and simulations. At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high- latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO

    Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations

    Get PDF
    We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO<sub>2</sub>, <i>CFC</i>s, CH<sub>4</sub>, N<sub>2</sub>O, NO<sub>x</sub>), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01&nbsp;hPa (&asymp;80&nbsp;km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10&nbsp;hPa (&asymp;30&nbsp;km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50&nbsp;hPa come from a linear trend (up to -10&nbsp;DU/decade at high northern latitudes, up to -40&nbsp;DU/decade at high southern latitudes, and around -0.7&nbsp;K/decade over much of the globe), from the intensity of the polar vortices (more than 40&nbsp;DU, or 8&nbsp;K peak to peak), the QBO (up to 20&nbsp;DU, or 2&nbsp;K peak to peak), and from tropospheric weather (up to 20&nbsp;DU, or 2&nbsp;K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15&nbsp;DU, or 1&nbsp;K), or to ENSO (up to 10&nbsp;DU, or 1&nbsp;K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to -30&nbsp;DU, or +3&nbsp;K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO

    PATHOGEN-SPECIFIC ANTIBODY PROFILES IN PATIENTS WITH SEVERE SYSTEMIC INFECTIONS

    Get PDF
    Infections are often caused by pathobionts, endogenous bacteria that belong to the microbiota. Trauma and surgical intervention can allow bacteria to overcome host defences, ultimately leading to sepsis if left untreated. One of the main defence strategies of the immune system is the production of highly specific antibodies. In the present proof-of-concept study, plasma antibodies against 9 major pathogens were measured in sepsis patients, as an example of severe systemic infections. The binding of plasma antibodies to bacterial extracellular proteins was quantified using a semi-automated immunoblot assay. Comparison of the pathogen-specific antibody levels before and after infection showed an increase in plasma IgG in 20 out of 37 tested patients. This host-directed approach extended the results of pathogen-oriented microbiological and PCR diagnostics: a specific antibody response to additional bacteria was frequently observed, indicating unrecognised poly-microbial invasion. This might explain some cases of failed, seemingly targeted antibiotic treatment

    Effect of Age of Infusion Site and Type of Rapid-Acting Analog on Pharmacodynamic Parameters of Insulin Boluses in Youth With Type 1 Diabetes Receiving Insulin Pump Therapy

    Get PDF
    OBJECTIVE—The purpose of this study was to examine the effect of type of insulin analog and age of insertion site on the pharmacodynamic characteristics of a standard insulin bolus in youth with type 1 diabetes receiving insulin pump therapy

    Intercomparison of stratospheric chemistry models under polar vortex conditions

    Get PDF
    Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4-80% for different 30-50 days long air parcel trajectories, the mean scatter of model results around these values is only about +/-1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about +/-7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation

    Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes

    Get PDF
    The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 6 0.07 K decade21 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 Kdecade21 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces awestward acceleration of the lower-stratosphericwind over theAntarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade21 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (;70 hPa) increases by almost 2% decade21, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes
    corecore