18 research outputs found

    Nuclear receptor ligands induce TREM-1 expression on dendritic cells: analysis of their role in tumors

    Get PDF
    Dendritic cells (DCs) initiate adaptive immune responses after their migration to secondary lymphoid organs. The LXR ligands/oxysterols and the RXR ligand 9-cis Retinoic Acid (9-cis RA) were shown to dampen DC migration to lymphoid organs through the inhibition of CCR7 expression. We performed transcriptomics of DCs undergoing maturation in the presence of the LXR ligand 22R-Hydroxycholesterol (22R-HC). The analysis highlighted more than 1500 genes modulated by 22R-HC treatment, including the triggering receptor expressed on myeloid cells (TREM)-1, which was found markedly up-regulated. We tested the effect of other nuclear receptor ligands (NRL) and we reported the induction of TREM-1 following RXR, RAR and VDR activation. From a functional point of view, triggering of TREM-1 induced by retinoids increased TNF\u3b1 and IL-1\u3b2 release, suggesting an active role of NRL-activated TREM-1+ DCs in inflammation-driven diseases, including cancer. Consistently with this hypothesis we detected DCs expressing TREM-1 in pleural effusions and ascites of cancer patients, an observation validated by the induction of TREM-1, LXR and RAR target genes when monocyte-DCs were activated in the presence of tumor-conditioned fluids. Finally, we observed a better control of LLC tumor growth in Trem-1 12/- bone marrow chimera mice as compared to wild type chimera mice. Future studies will be necessary to shed light on the mechanism of TREM-1 induction by distinct NRL, and to characterize the role of TREM-1+ DCs in tumor growth

    Impaired LXRa phosphorylation attenuates progression of fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRα, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet. Mechanistically, this is explained by key histone acetylation (H3K27) and transcriptional changes in pro-fibrotic and pro-inflammatory genes. Furthermore, S196A-LXRα expression reveals the regulation of novel diet-specific LXRα-responsive genes, including the induction of Ces1f, implicated in the breakdown of hepatic lipids. This involves induced H3K27 acetylation and altered LXR and TBLR1 cofactor occupancy at the Ces1f gene in S196A fatty livers. Overall, impaired Ser196-LXRα phosphorylation acts as a novel nutritional molecular sensor that profoundly alters the hepatic H3K27 acetylome and transcriptome during NAFLD progression placing LXRα phosphorylation as an alternative anti-inflammatory or anti-fibrotic therapeutic target

    Pitavastatin effect on ATP binding cassette A1-mediated lipid efflux from macrophages: evidence for liver X receptor (LXR)-dependent and LXR-independent mechanisms of activation by cAMP

    No full text
    The promotion of lipid efflux from macrophages is an important ATP binding cassette A1 (ABCA1)-mediated antiatherosclerotic mechanism that prevents peripheral tissues from foam cell accumulation. Statins exert beneficial antiatherosclerotic effects on cardiovascular disease correlated to the cholesterollowering properties and the pleiotropic activities. In this work, we investigated the ability of statins to modulate ABCA1-mediated lipid efflux from macrophages, where the protein expression was differently induced. Pitavastatin (0.1–10 M) and compactin (10 M) reduced both cholesterol and phospholipid efflux up to 60% from macrophages expressing ABCA1 upon treatment with 8-(4-chlorophenylthio)-cyclic AMP (cpt-cAMP), and this was secondary to a reduction of ABCA1 mRNA and protein content. Conversely, statins did not affect ABCA1 activity when the protein was up-regulated by 22-hydroxycholesterol/ 9-cis-retinoic acid or through cholesterol loading. Statin inhibition of lipid efflux induced by cpt-cAMP was reversed in the presence of mevalonate, 22-hydroxycholesterol, and cholesterol but not geranyl geraniol. In macrophages obtained from liver X receptor (LXR)-deficient mice, cpt-cAMP still promoted cholesterol efflux, but pitavastatin did not exert any effect. The present work shows that statins may inhibit ABCA1-mediated lipid efflux in macrophages only when ABCA1 protein expression is induced by cpt-cAMP and provides evidence that cAMP may activate ABCA1 independently of an increase of intracellular sterol synthesis but through at least two pathways: one independent of LXR and one involving an intracellular sterol(s) acting as LXR ligand(s). In addition, the lack of inhibitory effect on lipid efflux in cholesterol-loaded macrophages is likely to exclude a potential negative pleiotropic effect by statins

    Activation of liver X receptor regulates substrate oxidation in white adipocytes

    No full text
    Liver X receptors (LXRs) are nuclear receptors with established roles in cholesterol, lipid, and carbohydrate metabolism, although their function in adipocytes is not well characterized. Increased adipose tissue mass in obesity is associated with increased adipocyte lipolysis. Fatty acids (FA) generated by lipolysis can be oxidized by mitochondrial beta-oxidation, reesterified, or released from the adipocyte. The latter results in higher circulating levels of free FAs, in turn causing obesity-related metabolic complications. However, mitochondrial beta-oxidation can at least in part counteract an increased output of FA into circulation. In this study, we provide evidence that activation of LXRs up-regulates mitochondrial beta-oxidation in both human and murine white adipocytes. We also show that the expression of a kinase regulating the cellular fuel switch, pyruvate dehydrogenase kinase 4 (PDK4), is up-regulated by the LXR agonist GW3965 in both in vitro differentiated human primary adipocytes and differentiated murine 3T3-L1 cells. Moreover, activation of LXR causes PDK4-dependent phosphorylation of the pyruvate dehydrogenase complex, thereby decreasing its activity and attenuating glucose oxidation. The specificity of the GW3965 effect on oxidation was confirmed by RNA interference targeting LXRs. We propose that LXR has an important role in the regulation of substrate oxidation and the switch between lipids and carbohydrates as cellular fuel in both human and murine white adipocytes

    Liver X receptor beta deficiency attenuates autoimmune-associated neuroinflammation in a T cell-dependent manner

    Get PDF
    The initiation and progression of autoimmune disorders such as multiple sclerosis (MS) is linked to aberrant cholesterol metabolism and overt inflammation. Liver X receptors (LXR) are nuclear receptors that function at the crossroads of cholesterol metabolism and immunity, and their activation is considered a promising therapeutic strategy to attenuate autoimmunity. However, despite clear functional heterogeneity and cell-specific expression profiles, the impact of the individual LXR isoforms on autoimmunity remains poorly understood. Here, we show that LXRα and LXRβ have an opposite impact on immune cell function and disease severity in the experimental autoimmune encephalomyelitis model, an experimental MS model. While Lxrα deficiency aggravated disease pathology and severity, absence of Lxrβ was protective. Guided by flow cytometry and by using cell-specific knockout models, reduced disease severity in Lxrβ-deficient mice was primarily attributed to changes in peripheral T cell physiology and occurred independent from alterations in microglia function. Collectively, our findings indicate that LXR isoforms play functionally non-redundant roles in autoimmunity, potentially having broad implications for the development of LXR-based therapeutic strategies aimed at dampening autoimmunity and neuroinflammation

    Tumor-mediated liver X receptor-\u3b1 activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses

    No full text
    Sterol metabolism has recently been linked to innate and adaptive immune responses through liver X receptor (LXR) signaling. Whether products of sterol metabolism interfere with antitumor responses is currently unknown. Dendritic cells (DCs) initiate immune responses, including antitumor activity after their CC chemokine receptor-7 (CCR7)-dependent migration to lymphoid organs. Here we report that human and mouse tumors produce LXR ligands that inhibit CCR7 expression on maturing DCs and, therefore, their migration to lymphoid organs. In agreement with this observation, we detected CD83 + CCR7 DCs within human tumors. Mice injected with tumors expressing the LXR ligand-inactivating enzyme sulfotransferase 2B1b (SULT2B1b) successfully controlled tumor growth by regaining DC migration to tumor-draining lymph nodes and by developing overt inflammation within tumors. The control of tumor growth was also observed in chimeric mice transplanted with bone marrow from mice lacking the gene encoding LXR-\u3b1 (Nr1h3 / mice) Thus, we show a new mechanism of tumor immunoescape involving products of cholesterol metabolism. The manipulation of this pathway could restore antitumor immunity in individuals with cancer

    The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils

    No full text
    Tumor-infiltrating immune cells can be conditioned by molecules released within the microenvironment to thwart antitumor immune responses, thereby facilitating tumor growth. Among immune cells, neutrophils play an important protumorigenic role by favoring neoangiogenesis and/or by suppressing antitumor immune responses. Tumor-derived oxysterols have recently been shown to favor tumor growth by inhibiting dendritic cell migration toward lymphoid organs. We report that tumor-derived oxysterols recruit protumor neutrophils in a liver X receptor (LXR)-independent, CXCR2-dependent manner, thus favoring tumor growth by promoting neoangiogenesis and immunosuppression. We demonstrate that interfering with the oxysterol-CXCR2 axis delays tumor growth and prolongs the overall survival of tumor-bearing mice. These results identify an unanticipated protumor function of the oxysterol-CXCR2 axis and a possible target for cancer therap
    corecore