645 research outputs found

    Rates of species introduction to a remote oceanic island

    Get PDF
    The introduction of species to areas beyond the limits of their natural distributions has a major homogenizing influence, making previously distinct biotas more similar. The scale of introductions has frequently been commented on, but their rate and spatial pervasiveness have been less well quantified. Here, we report the findings of a detailed study of pterygote insect introductions to Gough Island, one of the most remote and supposedly pristine temperate oceanic islands, and estimate the rate at which introduced species have successfully established. Out of 99 species recorded from Gough Island, 71 are established introductions, the highest proportion documented for any Southern Ocean island. Estimating a total of approximately 233 landings on Gough Island since first human landfall, this equates to one successful establishment for every three to four landings. Generalizations drawn from other areas suggest that this may be only one-tenth of the number of pterygote species that have arrived at the island, implying that most landings may lead to the arrival of at least one alien. These rates of introduction of new species are estimated to be two to three orders of magnitude greater than background levels for Gough Island, an increase comparable to that estimated for global species extinctions (many of which occur on islands) as a consequence of human activities

    Methods for microbial DNA extraction from soil for PCR amplification

    Get PDF
    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size

    Dysmetabolic circulating tumor cells are prognostic in metastatic breast cancer

    Get PDF
    Circulating tumor cells (CTCs) belong to a heterogeneous pool of rare cells, and a unequivocal phenotypic definition of CTC is lacking. Here, we present a definition of metabolically-altered CTC (MBA-CTCs) as CD45-negative cells with an increased extracellular acidification rate, detected with a single-cell droplet microfluidic technique. We tested the prognostic value of MBA-CTCs in 31 metastatic breast cancer patients before starting a new systemic therapy (T0) and 3\u20134 weeks after (T1), comparing results with a parallel FDA-approved CellSearch (CS) approach. An increased level of MBA-CTCs was associated with: I) a shorter median PFS pre-therapy (123 days vs. 306; p < 0.0001) and during therapy (139 vs. 266 days; p = 0.0009); ii) a worse OS pre-therapy (p = 0.0003, 82% survival vs. 20%) and during therapy (p = 0.0301, 67% survival vs. 38%); iii) good agreement with therapy response (kappa = 0.685). The trend of MBA-CTCs over time (combining data at T0 and T1) added information with respect to separate evaluation of T0 and T1. The combined results of the two assays (MBA and CS) increased stratification accuracy, while correlation between MBA and CS was not significant, suggesting that the two assays are detecting different CTC subsets. In conclusion, this study suggests that MBA allows detection of both EpCAM-negative and EpCAM-positive, viable and label-free CTCs, which provide clinical information apparently equivalent and complementary to CS. A further validation of proposed method and cut-offs is needed in a larger, separate study

    Using plant volatile traps to estimate the diversity of natural enemy communities in orchard ecosystems

    Get PDF
    In this study we used sticky traps baited with plant volatile lures to monitor the biodiversity of natural enemies in orchard ecosystems in the western U.S. We compared the diversity of predator genera from season total trap catches in 37 different orchards (apple, cherry, pear and walnut) over a two-year period (2010−2011) using standardized Hill number biodiversity indices and community similarity profiles. For a subset of 23 of these orchards we were also able to monitor the change in biodiversity of predator genera over the full growing season in the different orchard crops. A total of 37,854 individuals from 31 different genera of foliage-active generalist predators were collected from all orchards combined. Mean sample coverage was high (0.98) and richness, diversity and evenness differed between crops in 2010, but not in 2011. There was more than 90% similarity in the richness of predator genera among crops and among orchards within crops, but a greater level of differentiation was observed among orchards when variation in their relative abundance and dominance in the communities was taken into account. There was a consistent rise in predator generic richness and diversity through the season in both years for apple, cherry and pear orchards, but in walnut orchards, a steep rise from March to May was followed by a decline through the rest of the season. In an additional component of the study, the species level similarity of predator and parasitoid communities was analyzed for total season trap catch data from six walnut orchards. The rarefied species richness of parasitoids was much greater than that for predators, although the diversity, evenness and dominance of the parasitoid species varied considerably among orchards. The results from this study highlight the fact that natural enemy communities in orchard ecosystems can be effectively monitored using plant volatile traps, and that these communities are surprisingly diverse despite frequent disturbance from pest management intervention

    An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals

    Get PDF
    Pollen is at once intimately part of the reproductive cycle of seed plants and simultaneously highly relevant for the environment (pollinators, vector for nutrients, or organisms), people (food safety and health), and climate (cloud condensation nuclei and climate reconstruction). We provide an interdisciplinary perspective on the many and connected roles of pollen to foster a better integration of the currently disparate fields of pollen research, which would benefit from the sharing of general knowledge, technical advancements, or data processing solutions. We propose a more interdisciplinary and holistic research approach that encompasses total environmental pollen diversity (ePD) (wind and animal and occasionally water distributed pollen) at multiple levels of diversity (genotypic, phenotypic, physiological, chemical, and functional) across space and time. This interdisciplinary approach holds the potential to contribute to pressing human issues, including addressing United Nations Sustainable Development Goals, fostering social and political awareness of these tiny yet important and fascinating particles

    Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1

    Get PDF
    Background: Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD. Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked. Conclusions/Significance: These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications

    Honey bee foraging distance depends on month and forage type

    Get PDF
    To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    From planning to execution to the future: An overview of a concerted effort to enhance biological control in apple, pear, and walnut orchards in the western U.S.

    Get PDF
    We embarked on a large project designed to help enhance biological control in apple, pear and walnut orchards in the western U.S., where management programs were in the midst of a transition from older organo-phosphate insecticides to mating disruption and newer reduced-risk insecticides. A “pesticide replacement therapy” approach resulted in unstable management programs with unpredictable outbreaks of spider mites and aphids. Our project was designed to provide growers and pest managers with information on the effects of newer pesticide chemistries on a suite of representative natural enemies in both the laboratory and field, potential of new monitoring tools using herbivore-induced plant volatiles and floral volatiles, phenology of the key natural enemy species, economic consequences of using an enhanced biological control program, and value of an outreach program to get project outcomes into the hands of decision-makers. We present an overview of both the successes and failures of the project and of new projects that have spun off from this project to further enhance biological control in our systems in the near future

    Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield

    Get PDF
    How insects promote crop pollination remains poorly understood in terms of the contribution of functional trait differences between species. We used meta-analyses to test for correlations between community abundance, species richness and functional trait metrics with oilseed rape yield, a globally important crop. While overall abundance is consistently important in predicting yield, functional divergence between species traits also showed a positive correlation. This result supports the complementarity hypothesis that pollination function is maintained by non-overlapping trait distributions. In artificially constructed communities (mesocosms), species richness is positively correlated with yield, although this effect is not seen under field conditions. As traits of the dominant species do not predict yield above that attributed to the effect of abundance alone, we find no evidence in support of the mass ratio hypothesis. Management practices increasing not just pollinator abundance, but also functional divergence, could benefit oilseed rape agriculture.This study was funded by the Natural Environment Research Council (NERC) under research programme NE/N018125/1 ASSIST–Achieving Sustainable Agricultural Systems www.assist.ceh.ac.uk. ASSIST is an initiative jointly supported by NERC and the Biotechnology and Biological Sciences Research Council (BBSRC). Additional funding for field studies was from the Wessex Biodiversity Ecosystem Services Sustainability (NE/J014680/1) project within the NERC BESS programme. Other data sets were generated from research funded by: (a) the Insect Pollinators Initiative programme funded by BBSRC, Defra, NERC, the Scottish Government and the Wellcome Trust, under the Living with Environmental Change Partnership; (b) Defra project BD5005: Provision of Ecosystem services in the ES scheme; and (c) Irish Government under the National Development Plan 2007–2013 administered by the Irish EPA
    corecore