8 research outputs found

    Be smart against cancer! A school-based program covering cancer-related risk behavior

    Get PDF
    Background: Several studies suggest that most school-age children are poorly informed about cancer risk factors. This study examines the effectiveness of the ‘Be smart against cancer’ (BSAC) program in promoting cancer awareness and intentions to engage in health-promoting behavior. Methods: 235 seventh-grade students were randomized to either the intervention (N = 152) or the wait-control group (N = 83). The intervention included the modules: “What is cancer?,” “Sun protection,” “Non smoking,” and “Physical activity, Healthy nutrition, and Limited alcohol consumption.” Outcomes measured at baseline and at the end of the one week BSAC program included knowledge of cancer and its behavioral risk factors, health-promoting intentions, and reported risk behavior. Results: BSAC was effective in increasing knowledge about cancer and risk factors for cancer (p < .001), as well as in increasing intentions to engage in health-promoting behavior (p < .001), independent of a student’s risk profile. Knowledge did not serve as a mediator for intention building. Conclusions: The BSAC is an effective school-based program for raising awareness of cancer, associated risk factors and intentions to engage in cancer-preventive behavior. The results indicate that the effectiveness of BSAC is independent of a student’s risk profile. Therefore, it holds considerable promise as a broadly applicable program to raise cancer awareness and promote healthy behavior intentions

    Be smart against cancer! A school-based program covering cancer-related risk behavior

    No full text
    Abstract Background: Several studies suggest that most school-age children are poorly informed about cancer risk factors. This study examines the effectiveness of the &apos;Be smart against cancer&apos; (BSAC) program in promoting cancer awareness and intentions to engage in health-promoting behavior. Methods: 235 seventh-grade students were randomized to either the intervention (N = 152) or the wait-control group (N = 83). The intervention included the modules: &quot;What is cancer?,&quot; &quot;Sun protection,&quot; &quot;Non smoking,&quot; and &quot;Physical activity, Healthy nutrition, and Limited alcohol consumption.&quot; Outcomes measured at baseline and at the end of the one week BSAC program included knowledge of cancer and its behavioral risk factors, health-promoting intentions, and reported risk behavior

    Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of ptch-mutant mice via caMKII

    No full text
    Basal cell carcinoma (BCC) is the most common skin tumor in humans. Although BCCs rarely metastasize, they can cause significant morbidity due to local aggressiveness. Approximately 20% of BCCs show signs of spontaneous regression. The understanding of molecular events mediating spontaneous regression has the potential to reduce morbidity of BCC and, potentially, other tumors, if translated into tumor therapies. We show that BCCs induced in conditional Ptchr flox/floxERT2 +/- knockout mice regress with time and show a more differentiated phenotype. Differentiation is accompanied by Wnt5a expression in the tumor stroma, which is first detectable at the fully developed tumor stage. Coculture experiments revealed that Wnt5a is upregulated in tumor-adjacent macrophages by soluble signals derived from BCC cells. In turn, Wnt5a induces the expression of the differentiation marker K10 in tumor cells, which is mediated by Wnt/Ca 2+ signaling in a CaMKII-dependent manner. These data support a role of stromal Wnt5a in BCC differentiation and regression, which may have important implications for development of new treatment strategies for this tumor. Taken together, our results establish BCC as an easily accessible model of tumor regression. The regression of BCC despite sustained Hedgehog signaling activity seems to be mediated by tumor-stromal interactions via Wnt5a signaling

    Optorheological studies of sheared confined fluids with mesoscopic thickness

    No full text
    Fluids of mesoscopic thickness can be sheared and their molecular orientation probed concurrently with the new instrument described in this paper. The fluid is confined between parallel optically flat windows whose spacing is controlled, using piezoelectric inchworms, from submicrometer thickness to similar to 500 mu m, with no essential lower limit apart from surface roughness. Capacitance sensors or optical interferometry is used to monitor spacing between the windows with submicrometer accuracy. Piezoelectric bimorphs are used to apply periodic shear displacements with amplitude 0.1-10 mu m and frequency 0.1-700 Hz. Shear-induced molecular alignment during sinusoidal shear cycles is determined, with up to 5 mu s time resolution, using step-scan time-resolved infrared spectroscopy. To demonstrate capabilities of this new instrument, we describe an experiment in which shear and electric fields were applied in orthogonal directions to 5-cyanobiphenyl (5CB), a simple nematic Liquid crystal. Provided that the molecule lacked the time to relax during the period of oscillation, the molecule tilted back and forth around the equilibrium orientation under the action of small-amplitude oscillating shear. The shear alignment appeared to be proportional to the shear displacement, not to the effective shear rate
    corecore