126 research outputs found
Dead cone effect in charm and bottom quark jets
The evolution of a heavy quark initiated jet is mainly ruled by gluon
bremsstrahlung. As a consequence of the dead-cone effect, this radiation is
suppressed in the forward direction at angles smaller than that proportional to
the heavy quark mass , i.e. at energy of the
primary quark. In this paper, we unveil this effect in charm and bottom quark
jets using DELPHI and OPAL data from Z boson decays in
annihilation at center of mass energy 91.2 GeV. The analysis of the
reconstructed heavy quark fragmentation function in momentum space shows the
strong suppression of hadrons at high momenta in such events compared to light
quark fragmentation by a factor . The amount of this suppression
is well reproduced by perturbative QCD (pQCD) within the Modified Leading
Logarithmic Aproximation and the compact scheme of Local Parton Hadron Duality
(MLLA-LPHD). As a new result, we obtain an almost perfect agreement between the
light quark fragmentation functions expected at from DELPHI
and OPAL data with Pythia8 and shed light on the reasons for the existence of
the ultra-soft gluon excess at small momentum fraction in comparison with pQCD
predictions.Comment: 7 pages, 4 figures, to appear in Nuclear and Particle Physics
Proceedings of QCD23: 26th High-Energy Physics International Conference in
QCD. arXiv admin note: substantial text overlap with arXiv:2303.1334
Wigner functions in covariant and single-time formulations
We will establish the connection between the Lorentz covariant and so-called
single-time formulation for the quark Wigner operator. To this end we will
discuss the initial value problem for the Wigner operator of a field theory and
give a discussion of the gauge-covariant formulation for the Wigner operator
including some new results concerning the chiral limit. We discuss the gradient
or semi-classical expansion and the color and spinor decomposition of the
equations of motion for the Wigner operator. The single-time formulation will
be derived from the covariant formulation by taking energy moments of the
equations for the Wigner operator. For external fields we prove that only the
lowest energy moments of the quark Wigner operator contain dynamical
information.Comment: 92 pages, to appear in Annals of Physics (N.Y.
MALDI mass spectrometry imaging workflow for the aquatic model organisms Danio rerio and Daphnia magna
Lipids play various essential roles in the physiology of animals. They are also highly dependent on cellular metabolism or status. It is therefore crucial to understand to which extent animals can stabilize their lipid composition in the presence of external stressors, such as chemicals that are released into the environment. We developed a MALDI MS imaging workflow for two important aquatic model organisms, the zebrafish (Danio rerio) and water flea (Daphnia magna). Owing to the heterogeneous structure of these organisms, developing a suitable sample preparation workflow is a highly non-trivial but crucial part of this work and needs to be established first. Relevant parameters and practical considerations in order to preserve tissue structure and composition in tissue sections are discussed for each application. All measurements were based on high mass accuracy enabling reliable identification of imaged compounds. In zebrafish we demonstrate that a detailed mapping between histology and simultaneously determined lipid composition is possible at various scales, from extended structures such as the brain or gills down to subcellular structures such as a single axon in the central nervous system. For D. magna we present for the first time a MALDI MSI workflow, that demonstrably maintains tissue integrity during cryosectioning of non-preserved samples, and allows the mapping of lipids in the entire body and the brood chamber inside the carapace. In conclusion, the lipid signatures that we were able to detect with our method provide an ideal basis to analyze changes caused by pollutants in two key aquatic model organisms
Valve disease in chronic venous disorders: a quantitative ultrastructural analysis by transmission electron microscopy and stereology
INTRODUCTION: The ultrastructure of venous valves and walls in chronic venous disease was investigated.
METHODS: Consecutive patients were categorised into one of three groups (group A: patients with C1 venous disease in accordance with CEAP (Clinical severity, Etiology, Anatomy, Pathophysiology); group B: C2 and C3; group C: C4, C5 and C6). The terminal or preterminal valve and adjacent vessel wall was harvested from the great saphenous vein. Sections were examined with a transmission electron microscope. The volumes of elastin and of collagen per unit surface area of valve were assessed, as well as the surface endothelium of valve and vessel wall.
RESULTS: The study population consisted of 17 patients. The elastin ratio was analysed by means of stereology. Mean values were: in group A, 0.45 μm3/m2; in group B, 0.67 μm3/m2; in group C, 0.97 μm3/m2. The ratio was similar for collagen (A, 15.7 μm3/m2; B, 26.8 μm3/m2; C, 30.1 μm3/m2). Surface analysis of the valve endothelium and the adjacent vessel wall endothelium showed a trend towards increasing damage with more severe disease.
CONCLUSIONS: With progression of venous disease, the valve elastin content, assessed morphologically, seems to increase, and the endothelium of the venous valve and the vein wall tend to show more damage
A zero-exposure time test on an erratic boulder: evaluating the problem of pre-exposure in Surface Exposure Dating
Die Oberflächendatierung mittels in-situ produzierten kosmogenen Nukliden hat sich in den letzten Jahren in der Quartärgeologie zu einer wichtigen und häufig angewandten Methode entwickelt. Eine Anwendung ist die Altersbestimmung von erratischen Blöcken auf Moränen. Ein wesentliches Problem ist jedoch die Ermittlung einer eventuellen vorherigen Bestrahlungsperiode eines Blockes. Wir haben dies getestet, indem wir alle Seiten eines kürzlich exponierten Blockes beprobten und die Proben auf schon vorhandene Nuklide hin untersuchten. Der untersuchte Block liegt auf der rechten lateralen Moräne des jüngsten Gletschervorstoßes des Glacier de Tsijiore Nouve im Val d’Arolla in der Schweiz. Die holozänen Gletscherschwankungen wurden durch eine Kartierung rekonstruiert. Durch die ideale geometrische Verteilung von Akkumulations- und Ablationsgebiet reagiert dieser Gletscher schnell auf Änderungen der Massenbilanz. Daher ist er besonders gut für einen solchen Test geeignet. Der beprobte Block wurde 1991 durch den Gletscher abgelagert. Durch die Annahme, dass er vorher keiner kosmogenen Strahlung ausgesetzt war, sollte seine Nuklidkonzentration annähernd null sein. Die gemessenen 10Be/9Be Verhältnisse der fünf Proben waren innerhalb der Fehler nicht zu unterscheiden von Blindprobenwerten. Dies zeigt, dass die Proben keiner Vorbestrahlung ausgesetzt waren. Gemessene 21Ne/20Ne und 22Ne/20Ne Verhältnisse bei drei Proben sind ähnlich derer in der Luft, mit keiner nachweisbaren vorhergehenden kosmogenen Ne Anreicherung.researc
Entropy production by resonance decays
We investigate entropy production for an expanding system of particles and
resonances with isospin symmetry -- in our case pions and mesons --
within the framework of relativistic kinetic theory. A cascade code to simulate
the kinetic equations is developed and results for entropy production and
particle spectra are presented.Comment: 17 pages, 10 ps-figures included, only change: preprint number adde
Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro
AimsWe explored the use of highly purified murine and human pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) to generate functional bioartificial cardiac tissue (BCT) and investigated the role of fibroblasts, ascorbic acid (AA), and mechanical stimuli on tissue formation, maturation, and functionality.Methods and resultsMurine and human embryonic/induced PSC-derived CMs were genetically enriched to generate three-dimensional CM aggregates, termed cardiac bodies (CBs). Addressing the critical limitation of major CM loss after single-cell dissociation, non-dissociated CBs were used for BCT generation, which resulted in a structurally and functionally homogenous syncytium. Continuous in situ characterization of BCTs, for 21 days, revealed that three critical factors cooperatively improve BCT formation and function: both (i) addition of fibroblasts and (ii) ascorbic acid supplementation support extracellular matrix remodelling and CB fusion, and (iii) increasing static stretch supports sarcomere alignment and CM coupling. All factors together considerably enhanced the contractility of murine and human BCTs, leading to a so far unparalleled active tension of 4.4 mN/mm2 in human BCTs using optimized conditions. Finally, advanced protocols were implemented for the generation of human PSC-derived cardiac tissue using a defined animal-free matrix composition.ConclusionBCT with contractile forces comparable with native myocardium can be generated from enriched, PSC-derived CMs, based on a novel concept of tissue formation from non-dissociated cardiac cell aggregates. In combination with the successful generation of tissue using a defined animal-free matrix, this represents a major step towards clinical applicability of stem cell-based heart tissue for myocardial repair. © 2013 The Author
Self-consistent Study on Color Transport in the Quark Gluon Plasma at Finite Chemical Potential
We calculate the relaxation time self-consistently to study the damping of
collective color modes and the color conductivity in a QGP by deriving
self-consistent equations for the damping rates of gluons and quarks to leading
order QCD by TFD including a chemical potential for quarks. We show that the
damping rates are not sensitive to the chemical potential whereas color
conductivity is enhanced considerably.Comment: Latex, 11 pages, 4 Postscript figure
Human alveolar progenitors generate dual lineage bronchioalveolar organoids
Mechanisms of epithelial renewal in the alveolar compartment remain incompletely understood. To this end, we aimed to characterize alveolar progenitors. Single-cell RNA-sequencing (scRNA-seq) analysis of the HTII-280+/EpCAM+ population from adult human lung revealed subclusters enriched for adult stem cell signature (ASCS) genes. We found that alveolar progenitors in organoid culture in vitro show phenotypic lineage plasticity as they can yield alveolar or bronchial cell-type progeny. The direction of the differentiation is dependent on the presence of the GSK-3β inhibitor, CHIR99021. By RNA-seq profiling of GSK-3β knockdown organoids we identified additional candidate target genes of the inhibitor, among others FOXM1 and EGF. This gives evidence of Wnt pathway independent regulatory mechanisms of alveolar specification. Following influenza A virus (IAV) infection organoids showed a similar response as lung tissue explants which confirms their suitability for studies of sequelae of pathogen-host interaction
- …