CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro
Authors
Azadeh Azizian
Julia Dahlmann
+15 more
Gerald Dräger
Anke Gawol
Ina Gruh
Axel Haverich
Jan Hegermann
George Kensah
Andreas Krause
Angelica Roa Lara
Lars S. Maier
Ulrich Martin
Matthias Ochs
Kristin Schwanke
David Skvorc
Stefan Wagner
Robert Zweigerdt
Publication date
26 October 2012
Publisher
Oxford : Oxford University Press
Doi
Cite
Abstract
AimsWe explored the use of highly purified murine and human pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) to generate functional bioartificial cardiac tissue (BCT) and investigated the role of fibroblasts, ascorbic acid (AA), and mechanical stimuli on tissue formation, maturation, and functionality.Methods and resultsMurine and human embryonic/induced PSC-derived CMs were genetically enriched to generate three-dimensional CM aggregates, termed cardiac bodies (CBs). Addressing the critical limitation of major CM loss after single-cell dissociation, non-dissociated CBs were used for BCT generation, which resulted in a structurally and functionally homogenous syncytium. Continuous in situ characterization of BCTs, for 21 days, revealed that three critical factors cooperatively improve BCT formation and function: both (i) addition of fibroblasts and (ii) ascorbic acid supplementation support extracellular matrix remodelling and CB fusion, and (iii) increasing static stretch supports sarcomere alignment and CM coupling. All factors together considerably enhanced the contractility of murine and human BCTs, leading to a so far unparalleled active tension of 4.4 mN/mm2 in human BCTs using optimized conditions. Finally, advanced protocols were implemented for the generation of human PSC-derived cardiac tissue using a defined animal-free matrix composition.ConclusionBCT with contractile forces comparable with native myocardium can be generated from enriched, PSC-derived CMs, based on a novel concept of tissue formation from non-dissociated cardiac cell aggregates. In combination with the successful generation of tissue using a defined animal-free matrix, this represents a major step towards clinical applicability of stem cell-based heart tissue for myocardial repair. © 2013 The Author
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Institutionelles Repositorium der Leibniz Universität Hannover
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repo.uni-hannover.de:1...
Last time updated on 02/12/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1093%2Feurheartj%2...
Last time updated on 04/12/2019