45 research outputs found

    Comparative study of the growth of sputtered aluminum oxide films on organic and inorganic substrates

    Full text link
    We present a comparative study of the growth of the technologically highly relevant gate dielectric and encapsulation material aluminum oxide in inorganic and also organic heterostructures. Atomic force microscopy studies indicate strong similarities in the surface morphology of aluminum oxide films grown on these chemically different substrates. In addition, from X-ray reflectivity measurements we extract the roughness exponent \beta of aluminum oxide growth on both substrates. By renormalising the aluminum oxide roughness by the roughness of the underlying organic film we find good agreement with \beta as obtained from the aluminum oxide on silicon oxide (\beta = 0.38 \pm 0.02), suggesting a remarkable similarity of the aluminum oxide growth on the two substrates under the conditions employed

    Strain-gradient-induced magnetic anisotropy in straight-stripe mixed-phase bismuth ferrites: An insight into flexomagnetic phenomenon

    Full text link
    Implementation of antiferromagnetic compounds as active elements in spintronics has been hindered by their insensitive nature against external perturbations which causes difficulties in switching among different antiferromagnetic spin configurations. Electrically-controllable strain gradient can become a key parameter to tune the antiferromagnetic states of multiferroic materials. We have discovered a correlation between an electrically-written straight-stripe mixed-phase boundary and an in-plane antiferromagnetic spin axis in highly-elongated La-5%-doped BiFeO3_{3} thin films by performing polarization-dependent photoemission electron microscopy in conjunction with cluster model calculations. Model Hamiltonian calculation for the single-ion anisotropy including the spin-orbit interaction has been performed to figure out the physical origin of the link between the strain gradient present in the mixed phase area and its antiferromagnetic spin axis. Our findings enable estimation of the strain-gradient-induced magnetic anisotropy energy per Fe ion at around 5×\times10−12^{-12} eV m, and provide a new pathway towards an electric-field-induced 90∘^{\circ} rotation of antiferromagnetic spin axis at room temperature by flexomagnetism.Comment: 32 pages, 5 figure

    Uncovering the (un-)occupied electronic structure of a buried hybrid interface

    Get PDF
    The energy level alignment at organic/inorganic (o/i) semiconductor interfaces is crucial for any light-emitting or -harvesting functionality. Essential is the access to both occupied and unoccupied electronic states directly at the interface, which is often deeply buried underneath thick organic films and challenging to characterize. We use several complementary experimental techniques to determine the electronic structure of p -quinquephenyl pyridine (5P-Py) adsorbed on ZnO(1 0   −1 0). The parent anchoring group, pyridine, significantly lowers the work function by up to 2.9 eV and causes an occupied in-gap state (IGS) directly below the Fermi level EF. Adsorption of upright-standing 5P-Py also leads to a strong work function reduction of up to 2.1 eV and to a similar IGS. The latter is then used as an initial state for the transient population of three normally unoccupied molecular levels through optical excitation and, due to its localization right at the o/i interface, provides interfacial sensitivity, even for thick 5P-Py films. We observe two final states above the vacuum level and one bound state at around 2 eV above EF, which we attribute to the 5P-Py LUMO. By the separate study of anchoring group and organic dye combined with the exploitation of the occupied IGS for selective interfacial photoexcitation, this work provides a new pathway for characterizing the electronic structure at buried o/i interfaces.Deutsche Forschungsgemeinschafthttps://doi.org/10.13039/501100001659Peer Reviewe

    Which taxa are alien? Criteria, applications, and uncertainties

    Get PDF
    Human activities such as the transport of species to new regions and modifications of the environment are increasingly reshaping the distribution of biota. Accordingly, developing robust, repeatable, and consistent definitions of alien species that serve scientific and policy purposes has become of prime importance. We provide a set of classification criteria that are widely applicable across taxa and realms and offer guidance on their use in practice. The criteria focus on (a) acknowledging the role of assessment uncertainty, (b) incorporating time since introduction, (c) considering infraspecific taxonomic ranks, and (d) differentiating between alien species whose survival depends on explicit human assistance from those that survive without such assistance. Furthermore, we make recommendations for reducing assessment uncertainty, suggest thresholds for species assessment, and develop an assessment scheme. We illustrate the application of the assessment criteria with case studies. Finally, the implications for alien species management, policy, and research are discussed

    The National Early Warning Score and its subcomponents recorded within ±24 hours of emergency medical admission are poor predictors of hospital-acquired acute kidney injury

    Get PDF
    YesBackground: Hospital-acquired Acute Kidney Injury (H-AKI) is a common cause of avoidable morbidity and mortality. Aim: To determine if the patients’ vital signs data as defined by a National Early Warning Score (NEWS), can predict H-AKI following emergency admission to hospital. Methods: Analyses of emergency admissions to York hospital over 24-months with NEWS data. We report the area under the curve (AUC) for logistic regression models that used the index NEWS (model A0), plus age and sex (A1), plus subcomponents of NEWS (A2) and two-way interactions (A3). Likewise for maximum NEWS (models B0,B1,B2,B3). Results: 4.05% (1361/33608) of emergency admissions had H-AKI. Models using the index NEWS had the lower AUCs (0.59 to 0.68) than models using the maximum NEWS AUCs (0.75 to 0.77). The maximum NEWS model (B3) was more sensitivity than the index NEWS model (A0) (67.60% vs 19.84%) but identified twice as many cases as being at risk of H-AKI (9581 vs 4099) at a NEWS of 5. Conclusions: The index NEWS is a poor predictor of H-AKI. The maximum NEWS is a better predictor but seems unfeasible because it is only knowable in retrospect and is associated with a substantial increase in workload albeit with improved sensitivity.The Health Foundatio

    Real-time studies of thin film growth of organic semiconductors

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Plant community assembly at small scales: spatial versus environmental factors in a central European grassland

    Get PDF
    Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15 × 15, 12 × 12 and 12×12 m in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions.At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition

    Real-time X-ray diffraction measurements of structural dynamics and polymorphism in diindenoperylene growth

    Get PDF
    We investigate the temperature-dependent polymorphs in diindenoperylene (DIP) thin films on sapphire and silicon oxide substrates using in situ X-ray scattering. On both substrates the DIP unit cell is very similar to the high-temperature phase of bulk crystals, with the substrate stabilising this structure well below the temperature where a phase transition to a low-temperature phase is observed in the bulk. Lowering the substrate temperature for DIP growth leads to a change in molecular orientation and an additional polymorph appears, with both these effects being more pronounced on sapphire as compared to silicon oxide. Using real-time reciprocal-space mapping we observe an expansion of the in-plane unit cell during DIP growth, which may be due to changes in molecular orientation as well as strain in the first monolayers
    corecore