25 research outputs found

    Investigation of a 1-D Fluid Probe Model for Mach Probe Measurements

    Get PDF
    In this paper we show how a two dimensional fluid model can be used to interpret data obtained from an inclined Mach-probe or a Gundestrup probe. We use an analytical approximation of the solution of the differential equations describing the relation between the plasma flow and the measured ion saturation currents at the probe's surface. The parameters of this analytical solution are determined by comparison with the exact numerical solution of the equations. In this way we are able to measure the parallel as well as the perpendicular Mach numbers over the whole parameter range with a minimum accuracy of 90%.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Untersuchung zur Lernkultur in Online-Kursen

    Full text link
    Ausgehend von einer veränderten, durch Lern- und Kompetenzorientierung geprägten Lernkultur analysieren die Autorinnen zwölf mehrwöchige Online-Kurse mit insgesamt 130 Teilnehmer/innen. Die Autorinnen nehmen ein Klima der hohen Wertschätzung unter den Lernenden wahr sowie gegenseitiges Feedback in den Reflexions- und Diskussionsprozessen, welches das Lernen verstärkt. Die Hypothese, dass in rein virtuellen, mehrwöchigen Weiterbildungskursen eine veränderte Lernkultur gefördert und gelebt wird, wird mittels halbstrukturierter Interviews sowie qualitativer Inhaltsanalyse der Beiträge in den Diskussionsforen untersucht. (DIPF/ Orig.

    A new Disruption Mitigation System for deuterium–tritium operation at JET

    No full text
    Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent a significant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has been established as a disruption mitigation method. As a “last resort” measure it reduces thermal and electromagnetic loads during disruptions which can potentially have a serious impact on the beryllium and tungsten plasma-facing materials of the main chamber and divertor. For the planned deuterium–tritium experiments, a new Disruption Mitigation System (DMS) has been designed and installed and is presented in this article. The new DMS at JET consists of an all metal gate valve compatible with gas injections, a fast high pressure eddy current driven valve, a high voltage power supply and a gas handling system providing six supply lines for pure and mixed noble and flammable gases (Ar, Ne, Kr, D2, etc.). The valve throughput varies with the injection pressure and gas type (efficiency – injected/charged gas 50–97%); the maximum injected amount of gas is approximately 4.6 kPa m3 (at maximum system pressure of 5.0 MPa)

    Correlation of surface chemical states with hydrogen isotope retention in divertor tiles of JET with ITER-Like Wall

    Get PDF
    To understand the fuel retention mechanism correlation of surface chemical states and hydrogen isotope retention behavior determined by XPS (X-ray photoelectron spectroscopy) and TDS (Thermal desorption spectroscopy), respectively, for JET ITER-Like Wall samples from operational period 2011–2012 were investigated. It was found that the deposition layer was formed on the upper part of the inner vertical divertor area. At the inner plasma strike point region, the original surface materials, W or Mo, were found, indicating to an erosion-dominated region, but deposition of impurities was also found. Higher heat load would induce the formation of metal carbide. At the outer horizontal divertor tile, mixed material layer was formed with iron as an impurity. TDS showed the H and D desorption behavior and the major D desorption temperature for the upper part of the inner vertical tile was located at 370 °C and 530 °C. At the strike point region, the D desorption temperature was clearly shifted toward higher release temperatures, indicating the stabilization of D trapping by higher heat loadPeer reviewe

    Implementation of a new Disruption Mitigation System into the control system of JET

    No full text
    A new Disruption Mitigation System (DMS) based on Massive Gas Injections (MGI) has been installed at the JET-tokamak. The key component of this system is a fast eddy current driven valve, which is capable of injecting up to 4.6 × 10−3 MPa m3 in less than 5 ms. Along with this valve a new gas handling system has been installed, whose control had to be integrated into the JET-operation. The operation of the DMS requires interaction with several other systems. Although Massive Gas Injections are used to ameliorate potentially severe damage to the tokamak plant and plasma facing components caused by disruptions, they introduce a high risk for example to auxiliary heating systems or diagnostics, which could be damaged by high vacuum pressures. In addition to this, the presence of high pressure (of noble and flammable gases) in combination with high voltages represents a risk not only to the actual DMS plant itself (in case of a failure) but also to personnel in the vicinity. These varieties of risks have been addressed and are described in this article

    Formation and Propagation of Pre-ELM Footprint Structures at JET

    No full text
    Recent resonant magnetic perturbation experiments at JET have shown the formation of pre-ELM footprint structures. Theses structures appear as a divertor heat load pattern a few milliseconds before and continuing until the ELM crash. The excitation of the pre-ELM structures is accompanied by a drop of the edge electron temperature. A dynamic nature of these structures was found and studied for different edge safety factors. A thermoelectric current model shows that current filaments in the plasma edge can cause a strong topology change, leading to the creation and propagation of such structures. Comparisons between the experimental findings and the modelling approach, are discussed

    Use of the disruption mitigation valve in closed loop for routine protection at JET

    No full text
    Disruptions are a major concern for next-generation tokamaks, including ITER. Heat loads, electromagnetic forces and runaway electrons generated by disruptions have to be mitigated for a reliable operation of future machines. Massive gas injection is one of the methods proposed for disruption mitigation. This article reports the first use of massive gas injection as an active disruption protection system at JET. During the 2011–2012 campaigns, 67 disruptions have been mitigated by the disruption mitigation valve (DMV) following a detection by mode lock amplitude and loop voltage changes. Most of disruptions where the valve was intended to be used were successfully mitigated by the DMV, although at different stages of the typical slow disruptions of the ITER-like wall. The fraction of magnetic and thermal energy radiated during the disruption was found to be increased by the action of the DMV. Vertical forces dispersion was also reduced. No non-sustained breakdown was observed following pulses terminated by the disruption mitigation valve

    Correlation of surface chemical states with hydrogen isotope retention in divertor tiles of JET with ITER-Like Wall

    No full text
    To understand the fuel retention mechanism, correlation of surface chemical states and hydrogen isotope retention behavior determined by XPS (X-ray photoelectron spectroscopy) and TDS (Thermal desorption spectroscopy), respectively, for JET ITER-Like Wall samples from operational period 2011-2012 were investigated. It was found that the deposition layer was formed on the upper part of the inner vertical divertor area. At the inner plasma strike point region, the original surface materials, W or Mo, were found, indicating to an erosion-dominated region, but deposition of impurities was also found. Higher heat load would induce the formation of metal carbide. At the outer horizontal divertor tile, mixed material layer was formed with iron as an impurity. TDS showed the H and D desorption behavior and the major D desorption temperature for the upper part of the inner vertical tile was located at 370 °C and 530 °C. At the strike point region, the D desorption temperature was clearly shifted toward higher release temperatures, indicating the stabilization of D trapping by higher heat load.2nd Asia-Pacific Symposium on Tritium scienc
    corecore