575 research outputs found

    Regulation of neuronal ion channels via P2Y receptors

    Get PDF
    Within the last 15 years, at least 8 different G protein-coupled P2Y receptors have been characterized. These mediate slow metabotropic effects of nucleotides in neurons as well as non-neural cells, as opposed to the fast ionotropic effects which are mediated by P2X receptors. One class of effector systems regulated by various G protein-coupled receptors are voltage-gated and ligand-gated ion channels. This review summarizes the current knowledge about the modulation of such neuronal ion channels via P2Y receptors. The regulated proteins include voltage-gated Ca2+ and K+ channels, as well as N-methyl-d-aspartate, vanilloid, and P2X receptors, and the regulating entities include most of the known P2Y receptor subtypes. The functional consequences of the modulation of ion channels by nucleotides acting at pre- or postsynaptic P2Y receptors are changes in the strength of synaptic transmission. Accordingly, ATP and related nucleotides may act not only as fast transmitters (via P2X receptors) in the nervous system, but also as neuromodulators (via P2Y receptors). Hence, nucleotides are as universal transmitters as, for instance, acetylcholine, glutamate, or γ-aminobutyric acid

    Peripheral sensitisation of nociceptors via G-proteindependent potentiation of mechanotransduction currents

    Get PDF
    Mechanical stimuli impinging on the skin are converted into electrical signals by mechanically gated ion channels located at the peripheral nerve endings of dorsal root ganglion (DRG) neurons. Under inflammatory conditions sensory neurons are commonly sensitised to mechanical stimuli; a putative mechanism that may contribute to such sensitisation of sensory neurons is enhanced responsiveness of mechanotransduction ion channels. Here we show that the algogens UTP and ATP potentiate mechanosensitive RA currents in peptidergic nociceptive DRG neurons and reduce thresholds for mechanically induced action potential firing in these neurones. Pharmacological characterisation suggests that this effect is mediated by the Gq-coupled P2Y2 nucleotide receptor. Moreover, using the in vitro skin nerve technique, we show that UTP also increases action potential firing rates in response to mechanical stimuli in a subpopulation of skin C-fibre nociceptors. Together our findings suggest that UTP sensitises a subpopulation of cutaneous C-fibre nociceptors via a previously undescribed G-protein-dependent potentiation of mechanically activated RA-type currents

    Functional and Molecular Characterization of Mechanoinsensitive "Silent" Nociceptors.

    Get PDF
    Mechanical and thermal hyperalgesia (pain hypersensitivity) are cardinal signs of inflammation. Although the mechanism underlying thermal hyperalgesia is well understood, the cellular and molecular basis of mechanical hyperalgesia is poorly described. Here, we have identified a subset of peptidergic C-fiber nociceptors that are insensitive to noxious mechanical stimuli under normal conditions but become sensitized to such stimuli when exposed to the inflammatory mediator nerve growth factor (NGF). Strikingly, NGF did not affect mechanosensitivity of other nociceptors. We show that these mechanoinsensitive "silent" nociceptors are characterized by the expression of the nicotinic acetylcholine receptor subunit alpha-3 (CHRNA3) and that the mechanically gated ion channel PIEZO2 mediates NGF-induced mechanosensitivity in these neurons. Retrograde tracing revealed that CHRNA3+ nociceptors account for ∼50% of all peptidergic nociceptive afferents innervating visceral organs and deep somatic tissues. Hence, our data suggest that NGF-induced "un-silencing" of CHRNA3+ nociceptors significantly contributes to the development of mechanical hyperalgesia during inflammation

    Overview of the FLUKA code

    Get PDF
    Abstract The capabilities and physics models implemented inside the FLUKA code are briefly described, with emphasis on hadronic interaction. Examples of the performances of the code are presented including basic (thin target) and complex benchmarks, and radiation detector specific applications. In particular the ability of FLUKA in describing existing calorimeter performances and in predicting those of future ones, as well as the use of the code for neutron and mixed field radiation detectors will be demonstrated with several examples

    Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1−/CD34+/CD24+ Adipose Stem/Progenitor Cells

    Get PDF
    We explore the status of quiescence, stemness and adipogenic differentiation capacity in adipose stem/progenitor cells (ASCs) ex vivo, immediately after isolation from human subcutaneous white adipose tissue, by sorting the stromal vascular fraction into cell-surface DLK1+/CD34−, DLK1+/CD34dim and DLK1−/CD34+ cells. We demonstrate that DLK1−/CD34+ cells, the only population exhibiting proliferative and adipogenic capacity, express ex vivo the bonafide quiescence markers p21Cip1, p27Kip1 and p57Kip2 but neither proliferation markers nor the senescence marker p16Ink4a. The pluripotency markers NANOG, SOX2 and OCT4 are barely detectable in ex vivo ASCs while the somatic stemness factors, c-MYC and KLF4 and the early adipogenic factor C/EBPβ are highly expressed. Further sorting of ASCs into DLK1−/CD34+/CD24− and DLK1−/CD34+/CD24+ fractions shows that KLF4 and c-MYC are higher expressed in DLK1−/CD34+/CD24+ cells correlating with higher colony formation capacity and considerably lower adipogenic activity. Proliferation capacity is similar in both populations. Next, we show that ASCs routinely isolated by plastic-adherence are DLK1−/CD34+/CD24+. Intriguingly, CD24 knock-down in these cells reduces proliferation and adipogenesis. In conclusion, DLK1−/CD34+ ASCs in human sWAT exist in a quiescent state, express high levels of somatic stemness factors and the early adipogenic transcription factor C/EBPβ but senescence and pluripotency markers are barely detectable. Moreover, our data indicate that CD24 is necessary for adequate ASC proliferation and adipogenesis and that stemness is higher and adipogenic capacity lower in DLK1−/CD34+/CD24+ relative to DLK1−/CD34+/CD24− subpopulations

    Neuropathic pain caused by miswiring and abnormal end organ targeting

    Get PDF
    Nerve injury leads to chronic pain and exaggerated sensitivity to gentle touch (allodynia) as well as a loss of sensation in the areas in which injured and non-injured nerves come together1-3. The mechanisms that disambiguate these mixed and paradoxical symptoms are unknown. Here we longitudinally and non-invasively imaged genetically labelled populations of fibres that sense noxious stimuli (nociceptors) and gentle touch (low-threshold afferents) peripherally in the skin for longer than 10 months after nerve injury, while simultaneously tracking pain-related behaviour in the same mice. Fully denervated areas of skin initially lost sensation, gradually recovered normal sensitivity and developed marked allodynia and aversion to gentle touch several months after injury. This reinnervation-induced neuropathic pain involved nociceptors that sprouted into denervated territories precisely reproducing the initial pattern of innervation, were guided by blood vessels and showed irregular terminal connectivity in the skin and lowered activation thresholds mimicking low-threshold afferents. By contrast, low-threshold afferents-which normally mediate touch sensation as well as allodynia in intact nerve territories after injury4-7-did not reinnervate, leading to an aberrant innervation of tactile end organs such as Meissner corpuscles with nociceptors alone. Genetic ablation of nociceptors fully abrogated reinnervation allodynia. Our results thus reveal the emergence of a form of chronic neuropathic pain that is driven by structural plasticity, abnormal terminal connectivity and malfunction of nociceptors during reinnervation, and provide a mechanistic framework for the paradoxical sensory manifestations that are observed clinically and can impose a heavy burden on patients.The research leading to these results has received funding from the following sources: an ERC Advanced Investigator grant to R.K. (Pain Plasticity 294293); grants from the Deutsche Forschungsgemeinschaft to R.K. (SFB1158, projects B01, B06), to T.K. (SFB1158, project B08), to S.G.L. (SFB1158, project A01) and to V.G. (SFB1158, project A03); a grant to B.O. (project number 371923335); and grant CIDEGENT/2020/052 from Generalitat Valenciana to F.J.T. R.K. is a member of the Molecular Medicine Partnership Unit of the European Molecular Biology Laboratory and Medical Faculty Heidelberg. V.G. and T.A.N. were partially supported by a post-doctoral fellowship and physician scientist fellowship, respectively, from the Medical Faculty Heidelberg. D.M. was partially supported by a post-doctoral fellowship from Excellence Cluster CellNetworks. We acknowledge support from the Interdisciplinary Neurobehavioral Core (INBC) for the behavioural experiments, the data storage service SDS@hd and bwMLS&WISO HPC supported by the state of Baden-Württemberg and the German Research Foundation (DFG) through grants INST 35/1314-1 FUGG and INST 35/1134-1 FUGG, respectively.Peer reviewe

    The Wooster Voice (Wooster, OH), 1949-12-08

    Get PDF
    Dr. T. Cuyler Young addresses the campus during the annual Wooster Day celebration. Dr. Delbert Lean will give his 40th annual reading of Charles Dickens\u27 Christmas Carol. Plans to build a darkroom for student publications are announced. Additionally, Wooster host the fall conference of the Ohio division of the National Student Association.https://openworks.wooster.edu/voice1941-1950/1204/thumbnail.jp

    USH2A is a Meissner’s corpuscle protein necessary for normal vibration sensing in mice and humans

    Get PDF
    Fingertip mechanoreceptors comprise sensory neuron endings together with specialized skin cells that form the end-organ. Exquisitely sensitive, vibration-sensing neurons are associated with Meissner’s corpuscles in the skin. In the present study, we found that USH2A, a transmembrane protein with a very large extracellular domain, was found in terminal Schwann cells within Meissner’s corpuscles. Pathogenic USH2A mutations cause Usher’s syndrome, associated with hearing loss and visual impairment. We show that patients with biallelic pathogenic USH2A mutations also have clear and specific impairments in vibrotactile touch perception, as do mutant mice lacking USH2A. Forepaw rapidly adapting mechanoreceptors innervating Meissner’s corpuscles, recorded from Ush2a−/− mice, showed large reductions in vibration sensitivity. However, the USH2A protein was not found in sensory neurons. Thus, loss of USH2A in corpuscular end-organs reduced mechanoreceptor sensitivity as well as vibration perception. Thus, a tether-like protein is required to facilitate detection of small-amplitude vibrations essential for the perception of fine-grained tactile surfaces.The present study was funded by grants from the Deutsche Forschungsgemeinshaft (grant nos. SFB665-B6 to G.R.L., SFB1315 to J.F.A.P. and SFB1158-A01 to S.G.L.) and grants from the European Research Council (grant nos. 789128 to G.R.L. and ERC-2015-CoG-682422 to J.F.A.P.). Additional funding was from the Institute of Health Carlos III (Spanish Ministry of Science and Innovation, grant no. FIS PI16/00539 to J.M.).Peer reviewe

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
    corecore