202 research outputs found

    Conventional and Reciprocal Approaches to the Forward and Inverse Problems of Electroencephalography

    Full text link
    Le problĂšme inverse en Ă©lectroencĂ©phalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu gĂ©nĂ©rĂ©s par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problĂšme direct en EEG. Pour rĂ©soudre le problĂšme direct, des modĂšles sont requis Ă  la fois pour la configuration de source sous-jacente, soit le modĂšle de source, et pour les tissues environnants, soit le modĂšle de la tĂȘte. Cette thĂšse traite deux approches bien distinctes pour la rĂ©solution du problĂšme direct et inverse en EEG en utilisant la mĂ©thode des Ă©lĂ©ments de frontiĂšres (BEM): l’approche conventionnelle et l’approche rĂ©ciproque. L’approche conventionnelle pour le problĂšme direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre cĂŽtĂ©, l’approche rĂ©ciproque dĂ©termine d’abord le champ Ă©lectrique aux sites des sources dipolaires quand les Ă©lectrodes de surfaces sont utilisĂ©es pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ Ă©lectrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche rĂ©ciproque promet un nombre d’avantages par rapport Ă  l’approche conventionnelle dont la possibilitĂ© d’augmenter la prĂ©cision des potentiels de surface et de rĂ©duire les exigences informatiques pour les solutions inverses. Dans cette thĂšse, les Ă©quations BEM pour les approches conventionnelle et rĂ©ciproque sont dĂ©veloppĂ©es en utilisant une formulation courante, la mĂ©thode des rĂ©sidus pondĂ©rĂ©s. La rĂ©alisation numĂ©rique des deux approches pour le problĂšme direct est dĂ©crite pour un seul modĂšle de source dipolaire. Un modĂšle de tĂȘte de trois sphĂšres concentriques pour lequel des solutions analytiques sont disponibles est utilisĂ©. Les potentiels de surfaces sont calculĂ©s aux centroĂŻdes ou aux sommets des Ă©lĂ©ments de discrĂ©tisation BEM utilisĂ©s. La performance des approches conventionnelle et rĂ©ciproque pour le problĂšme direct est Ă©valuĂ©e pour des dipĂŽles radiaux et tangentiels d’excentricitĂ© variable et deux valeurs trĂšs diffĂ©rentes pour la conductivitĂ© du crĂąne. On dĂ©termine ensuite si les avantages potentiels de l’approche rĂ©ciproquesuggĂ©rĂ©s par les simulations du problĂšme direct peuvent ĂȘtres exploitĂ©s pour donner des solutions inverses plus prĂ©cises. Des solutions inverses Ă  un seul dipĂŽle sont obtenues en utilisant la minimisation par mĂ©thode du simplexe pour Ă  la fois l’approche conventionnelle et rĂ©ciproque, chacun avec des versions aux centroĂŻdes et aux sommets. Encore une fois, les simulations numĂ©riques sont effectuĂ©es sur un modĂšle Ă  trois sphĂšres concentriques pour des dipĂŽles radiaux et tangentiels d’excentricitĂ© variable. La prĂ©cision des solutions inverses des deux approches est comparĂ©e pour les deux conductivitĂ©s diffĂ©rentes du crĂąne, et leurs sensibilitĂ©s relatives aux erreurs de conductivitĂ© du crĂąne et au bruit sont Ă©valuĂ©es. Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus prĂ©cises pour une conductivitĂ© du crĂąne supposĂ©ment plus rĂ©aliste, les deux approches, conventionnelle et rĂ©ciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipĂŽles trĂšs excentriques. Les approches rĂ©ciproques produisent le moins de variations en prĂ©cision des solutions directes pour diffĂ©rentes valeurs de conductivitĂ© du crĂąne. En termes de solutions inverses pour un seul dipĂŽle, les approches conventionnelle et rĂ©ciproque sont de prĂ©cision semblable. Les erreurs de localisation sont petites, mĂȘme pour des dipĂŽles trĂšs excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, Ă  cause de la nature non linĂ©aire des solutions inverses pour un dipĂŽle. Les deux approches se sont dĂ©montrĂ©es Ă©galement robustes aux erreurs de conductivitĂ© du crĂąne quand du bruit est prĂ©sent. Finalement, un modĂšle plus rĂ©aliste de la tĂȘte est obtenu en utilisant des images par resonace magnĂ©tique (IRM) Ă  partir desquelles les surfaces du cuir chevelu, du crĂąne et du cerveau/liquide cĂ©phalorachidien (LCR) sont extraites. Les deux approches sont validĂ©es sur ce type de modĂšle en utilisant des vĂ©ritables potentiels Ă©voquĂ©s somatosensoriels enregistrĂ©s Ă  la suite de stimulation du nerf mĂ©dian chez des sujets sains. La prĂ©cision des solutions inverses pour les approches conventionnelle et rĂ©ciproque et leurs variantes, en les comparant Ă  des sites anatomiques connus sur IRM, est encore une fois Ă©valuĂ©e pour les deux conductivitĂ©s diffĂ©rentes du crĂąne. Leurs avantages et inconvĂ©nients incluant leurs exigences informatiques sont Ă©galement Ă©valuĂ©s. Encore une fois, les approches conventionnelle et rĂ©ciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses Ă  un seul dipĂŽle sont robustes de maniĂšre inhĂ©rente au manque de prĂ©cision dans les solutions directes, mais dĂ©pendent de l’activitĂ© superposĂ©e d’autres sources neurales. Contrairement aux attentes, les approches rĂ©ciproques n’amĂ©liorent pas la prĂ©cision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques rĂ©duites en temps et en espace sont les avantages principaux des approches rĂ©ciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale rĂ©fractaire qui ont souvent dĂ©jĂ  fait un EEG et IRM.The inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach. The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions. In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities. We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed. While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise. Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed. Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed

    Evaluation de la méthode conventionnelle et de la méthode réciproque pour la résolution du problÚme direct en électroencéphalographie

    Get PDF
    ÉlectroencĂ©phalographie -- Localisation de sites Ă©pileptiques -- Équations fondamentales -- MĂ©thode conventionnelle pour la rĂ©solution du problĂšme direct -- MĂ©thode rĂ©ciproque pour la rĂ©solution du probĂšme direct -- MĂ©thode conventionnelle pour la rĂ©solution du problĂšme direct -- DĂ©rivation des Ă©quations -- DiscrĂ©tisation des Ă©quations -- MĂ©thode rĂ©ciproque pour la rĂ©solution du problĂšme direct -- DĂ©rivation des Ă©quations -- DiscrĂ©tisation des Ă©quations -- RĂ©solution du systĂšme matricielle -- ModĂšle Ă  trois sphĂšres concentriques -- MĂ©thodes conventionnelle pour la rĂ©solution du problĂšme direct -- MĂ©thode rĂ©ciproque pour la rĂ©solution du problĂšme direct

    Immunogenicity Studies in Carnivores Using a Rabies Virus Construct with a Site-Directed Deletion in the Phosphoprotein

    Get PDF
    Different approaches have been applied to develop highly attenuated rabies virus vaccines for oral vaccination of mesocarnivores. One prototype vaccine construct is SAD dIND1, which contains a deletion in the P-gene severely limiting the inhibition of type-1 interferon induction. Immunogenicity studies in foxes and skunks were undertaken to investigate whether this highly attenuated vaccine would be more immunogenic than the parental SAD B19 vaccine strain. In foxes, it was demonstrated that SAD dIND1 protected the animals against a rabies infection after a single oral dose, although virus neutralizing antibody titres were lower than in foxes orally vaccinated with the SAD B19 virus as observed in previous experiments. In contrast, skunks receiving 107.5 FFU SAD dIND1 did not develop virus neutralizing antibodies and were not protected against a subsequent rabies infection

    Influence of Formulation Parameters on Redispersibility of Naproxen Nanoparticles from Granules Produced in a Fluidized Bed Process

    Get PDF
    The particle size reduction of active pharmaceutical ingredients is an ecient method to overcome challenges associated with a poor aqueous solubility. With respect to stability and patient’s convenience, the corresponding nanosuspensions are often further processed to solid dosage forms. In this regard, the influence of several formulation parameters (i.e., type of carrier material, type and amount of additional polymeric drying excipient in the nanosuspension) on the redispersibility of naproxen nanoparticle-loaded granules produced in a fluidized bed process was investigated. The dissolution rate of the carrier material (i.e., sucrose, mannitol, or lactose) was identified as a relevant material property, with higher dissolution rates (sucrose > mannitol > lactose) resulting in better redispersibility of the products. Additionally, the redispersibility of the product granules was observed to improve with increasing amounts of polymeric drying excipient in the nanosuspension. The redispersibility was observed to qualitatively correlate with the degree of nanoparticle embedding on the surface of the corresponding granules. This embedding was assumed to be either caused by a partial dissolution and subsequent resolidification of the carrier surface dependent on the dissolution rate of the carrier material or by resolidification of the dissolved polymeric drying excipient upon drying. As the correlation between the redispersibility and the morphology of the corresponding granules was observed for all investigated formulation parameters, it may be assumed that the redispersibility of the nanoparticles is determined by their distance in the dried state

    Quantitative Multi-Parameter Mapping Optimized for the Clinical Routine

    Get PDF
    Using quantitative multi-parameter mapping (MPM), studies can investigate clinically relevant microstructural changes with high reliability over time and across subjects and sites. However, long acquisition times (20 min for the standard 1-mm isotropic protocol) limit its translational potential. This study aimed to evaluate the sensitivity gain of a fast 1.6-mm isotropic MPM protocol including post-processing optimized for longitudinal clinical studies. 6 healthy volunteers (35 +/- 7 years old; 3 female) were scanned at 3T to acquire the following whole-brain MPM maps with 1.6 mm isotropic resolution: proton density (PD), magnetization transfer saturation (MT), longitudinal relaxation rate (R1), and transverse relaxation rate (R2*). MPM maps were generated using two RF transmit field (B1+) correction methods: (1) using an acquired B1+ map and (2) using a data-driven approach. Maps were generated with and without Gibb's ringing correction. The intra-/inter-subject coefficient of variation (CoV) of all maps in the gray and white matter, as well as in all anatomical regions of a fine-grained brain atlas, were compared between the different post-processing methods using Student's t-test. The intra-subject stability of the 1.6-mm MPM protocol is 2-3 times higher than for the standard 1-mm sequence and can be achieved in less than half the scan duration. Intra-subject variability for all four maps in white matter ranged from 1.2-5.3% and in gray matter from 1.8 to 9.2%. Bias-field correction using an acquired B1+ map significantly improved intra-subject variability of PD and R1 in the gray (42%) and white matter (54%) and correcting the raw images for the effect of Gibb's ringing further improved intra-subject variability in all maps in the gray (11%) and white matter (10%). Combining Gibb's ringing correction and bias field correction using acquired B1+ maps provides excellent stability of the 7-min MPM sequence with 1.6 mm resolution suitable for the clinical routine

    Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO₂

    Get PDF
    We report that TiO₂ coatings formed via atomic layer deposition (ALD) may tune the activity of IrO₂, RuO₂, and FTO for the oxygen-evolution and chlorine-evolution reactions (OER and CER). Electrocatalysts exposed to ∌3–30 ALD cycles of TiO₂ exhibited overpotentials at 10 mA cm⁻ÂČ of geometric current density that were several hundred millivolts lower than uncoated catalysts, with correspondingly higher specific activities. For example, the deposition of TiO₂ onto IrO₂ yielded a 9-fold increase in the OER-specific activity in 1.0 M H₂SO₄ (0.1 to 0.9 mA cm_(ECSA)⁻ÂČ at 350 mV overpotential). The oxidation state of titanium and the potential of zero charge were also a function of the number of ALD cycles, indicating a correlation between oxidation state, potential of zero charge, and activity of the tuned electrocatalysts
    • 

    corecore