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5 Conclusions

Inthis paper ve have presented the NPen™™ sys-
tem a connectionist recogni zer for witer 1 ndependent
on-line cursive handwiting recognition. This system
coni nes a robust input representation, which pre-
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< integrating recognition and segnantation in
ranavork. This architecture has been showmn
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7 3.3 Training algorithm

/Q Dring traimng the goal is to determmne a set of
paranaters ¢ that wll naximze the posterior proba-
bility p(w|®d,0) for all traininginput sequences. Bit
p inorder to make that naximmzation conputationally
;t}easible even for a large dictionary systemve had
o sinplify that naximuma posteriori approach to
naxi uml 1 kel 1 hood training procedure that naxi-
Tl |wo) for all vords instead.
st _step of our naxi mml i kel 1 hood training
rap the recognizer using a subset of ap-
of the tralmng set that vere
thCvtD{ a:rac 1 boundari es to ad-
W)rd]i%yer correctly Ater train
ed data, the recognizer is used
set of unl abel ed training data.
itel RErsetds processed by the
srdeflermned autonatical ly
e target vord umt serve
Then, in the second
| on both data sets to
recogni zer.

lts

srent witer 1nde-
ging froml, 000
linthe dic-

r case let-

y 5, 700

7 80



2 .m .m 5 g £
“ - g €3
D [ I I ] D.D [ | "I DDD nmEn D
ml,f.:
bl I:Hmummu:::EHHHH . e ... =
_ \\\\\\\\\\\\\\\\\\\\\\ e _______ | BRI
e, . ™  u s
| |
o [ ]
N i e e "
c 5
” ¥ L3
X “““““““““““““ L e | ,Nﬂ
vl | o 1
z
[ -r ] - [ ]
r ] ] [ ] T
IIII II1 } f— W
m X SR -
i [ - - i ’m
l L ! | ]
H jﬂ - 2 L

time

18Ae Induy

K gure 3: The Mil ti-State TN architecture, consisting of a 3-1ayer TINNto estimate the a posteriori prob-
abilities of the character states conbined wth word units, whose scores are derived fromthe vord nodels by a

iterbi approximation of the 1ikelihoods.

ndove in each layer. In the curmesti mafpl emetit the diog 11 kel 1 hoods of the feature vector
system a TOWw th 15 i nput senuesced@inmt she vord nodel w, i.e. logfxl |w) is
n layer, and 78 state out papproxt mate didwyd.

ne del ays in the input 1ayer and 5 S%B

den 1 ayer. ‘4
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on the LCDtablet or digitizer [10]. The systemis de-
signed tomnmake heavy use of this tenmporal information.
NPen™ (Figure 1) conbines a neural network rec-
ognizer, which was originally proposed for continu
speechrecognitiontasks [7, 8], wit
ing techni ques, wh

of
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Abstract

In this paper we describe the I\
for writer independent on-line handuri
tion. Thas recogm zer needs no trainming for
wlar writer and can recogmze any comon writis
style (cursive, hand-printed, or a maxture of both).
The neural network architecture, vhich uvas original ly
proposed for continuous speech recogmtion tasks, and
the preprocessing techniques of NPe n ™1 are designed
to make heavy use of the dynamc writing @ nform-
tion, 1.e. the tenporal sequence of data points recorded
on a LCD tablet or digitizer. We present result.
the writer independent recognition of isola
Tested on different dictionary sizes fi
100, 000 words, recognition rates r
the 1,000 word dictionary to 9
dictionary and 82. 9%for the

Mo language nodel s are u
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