5,508 research outputs found

    Additional application of the NASCAP code. Volume 1: NASCAP extension

    Get PDF
    The NASCAP computer program comprehensively analyzes problems of spacecraft charging. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Several changes were made to NASCAP, and a new code, NASCAP/LEO, was developed. In addition, detailed studies of several spacecraft-environmental interactions and of the SCATHA spacecraft were performed. The NASCAP/LEO program handles situations of relatively short Debye length encountered by large space structures or by any satellite in low earth orbit (LEO)

    Analysis of the charging of the SCATHA (P78-2) satellite

    Get PDF
    The charging of a large object in polar Earth orbit was investigated in order to obtain a preliminary indication of the response of the shuttle orbiter to such an environment. Two NASCAP (NASA Charging Analyzer Program) models of SCATHA (Satellite Charging at High Altitudes) were used in simulations of charging events. The properties of the satellite's constituent materials were compiled and representations of the experimentally observed plasma spectra were constructed. Actual charging events, as well as those using test environments, were simulated. Numerical models for the simulation of particle emitters and detectors were used to analyze the operation of these devices onboard SCATHA. The effect of highly charged surface regions on the charging conductivity within a photosheath was used to interpret results from the onboard electric field experiment. Shadowing calculations were carried out for the satellite and a table of effective illuminated areas was compiled

    Additional application of the NASCAP code. Volume 2: SEPS, ion thruster neutralization and electrostatic antenna model

    Get PDF
    The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs

    Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    Get PDF
    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data

    Spatio-temporal patterns in a mechanical model for mesenchymal morphogenesis

    Get PDF
    We present an in-depth study of spatio-temporal patterns in a simplified version of a mechanical model for pattern formation in mesenchymal morphogenesis. We briefly motivate the derivation of the model and show how to choose realistic boundary conditions to make the system well-posed. We firstly consider one-dimensional patterns and carry out a nonlinear perturbation analysis for the case where the uniform steady state is linearly unstable to a single mode. In two-dimensions, we show that if the displacement field in the model is represented as a sum of orthogonal parts, then the model can be decomposed into two sub-models, only one of which is capable of generating pattern. We thus focus on this particular sub-model. We present a nonlinear analysis of spatio-temporal patterns exhibited by the sub-model on a square domain and discuss mode interaction. Our analysis shows that when a two-dimensional mode number admits two or more degenerate mode pairs, the solution of the full nonlinear system of partial differential equations is a mixed mode solution in which all the degenerate mode pairs are represented in a frequency locked oscillation

    Translating clinicians' beliefs into implementation interventions (TRACII) : a protocol for an intervention modeling experiment to change clinicians' intentions to implement evidence-based practice

    Get PDF
    Background: Biomedical research constantly produces new findings, but these are not routinely incorporated into health care practice. Currently, a range of interventions to promote the uptake of emerging evidence are available. While their effectiveness has been tested in pragmatic trials, these do not form a basis from which to generalise to routine care settings. Implementation research is the scientific study of methods to promote the uptake of research findings, and hence to reduce inappropriate care. As clinical practice is a form of human behaviour, theories of human behaviour that have proved to be useful in other settings offer a basis for developing a scientific rationale for the choice of interventions. Aims: The aims of this protocol are 1) to develop interventions to change beliefs that have already been identified as antecedents to antibiotic prescribing for sore throats, and 2) to experimentally evaluate these interventions to identify those that have the largest impact on behavioural intention and behavioural simulation. Design: The clinical focus for this work will be the management of uncomplicated sore throat in general practice. Symptoms of upper respiratory tract infections are common presenting features in primary care. They are frequently treated with antibiotics, and research evidence is clear that antibiotic treatment offers little or no benefit to otherwise healthy adult patients. Reducing antibiotic prescribing in the community by the "prudent" use of antibiotics is seen as one way to slow the rise in antibiotic resistance, and appears safe, at least in children. However, our understanding of how to do this is limited. Participants will be general medical practitioners. Two theory-based interventions will be designed to address the discriminant beliefs in the prescribing of antibiotics for sore throat, using empirically derived resources. The interventions will be evaluated in a 2 × 2 factorial randomised controlled trial delivered in a postal questionnaire survey. Two outcome measures will be assessed: behavioural intention and behavioural simulation.This study is funded by the European Commission Research Directorate as part of a multi-partner program: Research Based Education and Quality Improvement (ReBEQI): A Framework and tools to develop effective quality improvement programs in European healthcare. (Proposal No: QLRT-2001-00657)

    Thermodynamics of Heat Shock Response

    Get PDF
    Production of heat shock proteins are induced when a living cell is exposed to a rise in temperature. The heat shock response of protein DnaK synthesis in E.coli for temperature shifts from temperature T to T plus 7 degrees, respectively to T minus 7 degrees is measured as function of the initial temperature T. We observe a reversed heat shock at low T. The magnitude of the shock increases when one increase the distance to the temperature T023oT_0 \approx 23^o, thereby mimicking the non monotous stability of proteins at low temperature. Further we found that the variation of the heat shock with T quantitatively follows the thermodynamic stability of proteins with temperature. This suggest that stability related to hot as well as cold unfolding of proteins is directly implemented in the biological control of protein folding. We demonstrate that such an implementation is possible in a minimalistic chemical network.Comment: To be published in Physical Review Letter
    corecore