68 research outputs found

    Au+Au Reactions at the AGS: Experiments E866 and E917

    Full text link
    Particle production and correlation functions from Au+Au reactions have been measured as a function of both beam energy (2-10.7AGeV) and impact parameter. These results are used to probe the dynamics of heavy-ion reactions, confront hadronic models over a wide range of conditions and to search for the onset of new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Event-plane-dependent Dihadron Correlations With Harmonic Vn Subtraction In Au + Au Collisions At S Nn =200 Gev

    Get PDF
    STAR measurements of dihadron azimuthal correlations (Δφ) are reported in midcentral (20-60%) Au+Au collisions at sNN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane, φs=|φt-ψEP|. The elliptic (v2), triangular (v3), and quadratic (v4) flow harmonic backgrounds are subtracted using the zero yield at minimum (ZYAM) method. The results are compared to minimum-bias d+Au collisions. It is found that a finite near-side (|Δφ|π/2) correlation shows a modification from d+Au data, varying with φs. The modification may be a consequence of path-length-dependent jet quenching and may lead to a better understanding of high-density QCD. © 2014 American Physical Society.894DOE; U.S. Department of EnergyArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02. 130;Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03. 084;Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03. 085;Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Heinz, U., Kolb, P.F., (2002) Nucl. Phys. A, 702, p. 269. , NUPABL 0375-9474 10.1016/S0375-9474(02)00714-5Wang, X.-N., Gyulassy, M., (1992) Phys. Rev. Lett., 68, p. 1480. , PRLTAO 0031-9007 10.1103/PhysRevLett.68.1480Adler, S., (2003) Phys. Rev. Lett., 91, p. 072301. , (PHENIX Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.91. 072301;Adams, J., (2003) Phys. Rev. Lett., 91, p. 072304. , (STAR Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.91.072304;Adler, C., (2003) Phys. Rev. Lett., 90, p. 082302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.90.082302Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301;Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Adams, J., (2004) Phys. Rev. Lett., 93, p. 252301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.93.252301Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Alver, B., (2008) Phys. Rev. C, 77, p. 014906. , PRVCAN 0556-2813 10.1103/PhysRevC.77.014906Feng, A., (2008), Ph.D. thesis, Institute of Particle Physics, CCNU, (unpublished);Konzer, J., (2013), Ph.D. thesis, Purdue University, (unpublished)Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Ackermann, K.H., (2003) Nucl. Instrum. Meth., A499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Borghini, N., Dinh, P.M., Ollitrault, J.Y., (2000) Phys. Rev. C, 62, p. 034902. , PRVCAN 0556-2813 10.1103/PhysRevC.62.034902Adams, J., (2005) Phys. Rev. C, 72, p. 014904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.72.014904Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Bielcikova, J., (2004) Phys. Rev C, 69, p. 021901. , (R) () PRVCAN 0556-2813 10.1103/PhysRevC.69.021901;Konzer, J., Wang, F., (2009) Nucl. Instrum. Meth., A606, p. 713. , NIMAER 0168-9002 10.1016/j.nima.2009.05.011Mishra, A.P., (2008) Phys. Rev. C, 77, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.77.064902;Alver, B., Roland, G., (2010) Phys. Rev. C, 81, p. 054905. , PRVCAN 0556-2813 10.1103/PhysRevC.81.054905Alver, B., Roland, G., (2010) Phys. Rev. C, 82, p. 039903. , 0556-2813 10.1103/PhysRevC.82.039903Xu, J., Ko, C.M., (2011) Phys. Rev. C, 84, p. 014903. , PRVCAN 0556-2813 10.1103/PhysRevC.84.014903Petersen, H., (2010) Phys. Rev. C, 82, p. 041901. , PRVCAN 0556-2813 10.1103/PhysRevC.82.041901Takahashi, J., (2009) Phys. Rev. Lett., 103, p. 242301. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.242301;Andrade, R.P.G., (2012) Phys. Lett. B, 712, p. 226. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.04.044;Qian, W.L., (2013) Phys. Rev. C, 87, p. 014904. , PRVCAN 0556-2813 10.1103/PhysRevC.87.014904Schenke, B., Jeon, S., Gale, C., (2011) Phys. Rev. Lett., 106, p. 042301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.042301;Qiu, Z., Heinz, U.W., (2011) Phys. Rev. C, 84, p. 024911. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024911;Song, H., (2011) Phys. Rev. Lett., 106, p. 192301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.192301;Schenke, B., Jeon, S., Gale, C., (2012) Phys. Rev. C, 85, p. 024901. , PRVCAN 0556-2813 10.1103/PhysRevC.85.024901;Schenke, B., Tribedy, P., Venugopalan, R., (2012) Phys. Rev. Lett., 108, p. 252301. , PRLTAO 0031-9007 10.1103/PhysRevLett.108.252301Adare, A., (2011) Phys. Rev. Lett., 107, p. 252301. , (PHENIX Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.107.252301Adamczyk, L., (2013) Phys. Rev. C, 88, p. 014904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.88.014904Abelev, B.I., (2008) Phys. Rev. Lett., 101, p. 252301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.101.252301Teaney, D., Yan, L., (2011) Phys. Rev. C, 83, p. 064904. , PRVCAN 0556-2813 10.1103/PhysRevC.83.064904Pandit, Y., (2013) J. Phys. Conf. Ser., 446, p. 012012. , (STAR Collaboration),. 1742-6596 10.1088/1742-6596/446/1/012012Ajitanand, N.N., (2005) Phys. Rev. C, 72, p. 011902. , PRVCAN 0556-2813 10.1103/PhysRevC.72.011902Agakishiev, G., (2012) Phys. Rev. C, 86, p. 064902. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.86.064902Adler, C., (2002) Phys. Rev. C, 66, p. 034904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.66.034904Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration), () PRVCAN 0556-2813 10.1103/PhysRevC.80.064912;Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Adler, S.S., (2006) Phys. Rev. Lett., 97, p. 052301. , (PHENIX Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.97. 052301;Adare, A., (2008) Phys. Rev. C, 78, p. 014901. , (PHENIX Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.78.014901Stoecker, H., (2005) Nucl. Phys. A, 750, p. 121. , NUPABL 0375-9474 10.1016/j.nuclphysa.2004.12.074;Casalderrey-Solana, J., Shuryak, E.V., Teaney, D., (2005) J. Phys. Conf. Ser., 27, p. 22. , 1742-6588 10.1088/1742-6596/27/1/003;Ruppert, J., Müller, B., (2005) Phys. Lett. B, 618, p. 123. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.04.075Betz, B., (2010) Phys. Rev. Lett., 105, p. 222301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.222301;Ma, G.L., Wang, X.N., (2011) Phys. Rev. Lett., 106, p. 162301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.162301Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Adamczyk, L., (2014) Phys. Rev. Lett., 112, p. 122301. , (STAR Collaboration),. 10.1103/PhysRevLett.112.12230

    Measurement Of Charge Multiplicity Asymmetry Correlations In High-energy Nucleus-nucleus Collisions At Snn =200 Gev

    Get PDF
    A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at sNN=200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, Δ, between the like- and unlike-sign up/down-left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic v2obs), where Δ=[1.3±1.4(stat)-1.0+4.0(syst)]×10- 5+[3.2±0.2(stat)-0.3+0.4(syst)]×10-3v2obs for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed. © 2014 American Physical Society.894NRF-2012004024; National Research FoundationArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02.130Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.084Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.085Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Lee, T.D., (1973) Phys. Rev. D, 8, p. 1226. , 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9, p. 2291. , 0556-2821 10.1103/PhysRevD.9.2291Morley, P.D., Schmidt, I.A., (1985) Z. Phys. C, 26, p. 627. , ZPCFD2 0170-9739 10.1007/BF01551807Kharzeev, D., Pisarski, R.D., Tytgat, M.H.G., (1998) Phys. Rev. Lett., 81, p. 512. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.512Kharzeev, D., (2006) Phys. Lett. B, 633, p. 260. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.11.075Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys. A, 797, p. 67. , NUPABL 0375-9474 10.1016/j.nuclphysa.2007.10.001Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78, p. 074033. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.074033Kharzeev, D.E., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys. A, 803, p. 227. , NUPABL 0375-9474 10.1016/j.nuclphysa.2008.02.298Voloshin, S.A., (2004) Phys. Rev. C, 70, p. 057901. , PRVCAN 0556-2813 10.1103/PhysRevC.70.057901Abelev, B.I., (2009) Phys. Rev. Lett., 103, p. 251601. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.103.251601Abelev, B.I., (2010) Phys. Rev. C, 81, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.054908Abelev, B., (2013) Phys. Rev. Lett., 110, p. 012301. , (ALICE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.012301Wang, Q., (2012), http://drupal.star.bnl.gov/STAR/theses/phd/quanwang, Ph.D. thesis, Purdue University, arXiv:1205.4638Ackermann, K.H., (2003) Nucl. Instrum. Methods A, 499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Bieser, F.S., (2003) Nucl. Instrum. Methods A, 499, p. 766. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01974-5Adler, C., (2003) Nucl. Instrum. Methods A, 499, p. 433. , NIMAER 0168-9002 10.1016/j.nima.2003.08.112Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Anderson, M., (2003) Nucl. Instrum. Methods A, 499, p. 659. , NIMAER 0168-9002 10.1016/S0168-9002(02)01964-2Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Wang, G., (2005), http://drupal.star.bnl.gov/STAR/theses/ph-d/gang-wang, Ph.D. thesis, UCLAAdamczyk, L., (2012) Phys. Rev. Lett., 108, p. 202301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.108.202301Wang, F., (2010) Phys. Rev. C, 81, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064902Pratt, S., Schlichting, S., Gavin, S., (2011) Phys. Rev. C, 84, p. 024909. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024909Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.80.064912Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Petersen, H., Renk, T., Bass, S.A., (2011) Phys. Rev. C, 83, p. 014916. , PRVCAN 0556-2813 10.1103/PhysRevC.83.014916Adamczyk, L., (2013) Phys. Rev. C, 88, p. 064911. , (STAR Collaboration),. 10.1103/PhysRevC.88.064911Asakawa, M., Majumder, A., Müller, B., (2010) Phys. Rev. C, 81, p. 064912. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064912Bzdak, A., Koch, V., Liao, J., (2010) Phys. Rev. C, 81, pp. 031901R. , PRVCAN 0556-2813 10.1103/PhysRevC.81.031901Liao, J., Koch, V., Bzdak, A., (2010) Phys. Rev. C, 82, p. 054902. , PRVCAN 0556-2813 10.1103/PhysRevC.82.054902Ma, G.-L., Zhang, B., (2011) Phys. Lett. B, 700, p. 39. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.04.057Voloshin, S.A., (2010) Phys. Rev. Lett., 105, p. 172301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.17230

    Dr. Arboleda-Florez and H.L. Holley Reply

    No full text
    corecore