19 research outputs found

    Photodynamics of potent antioxidants: ferulic and caffeic acids

    Get PDF
    The dynamics of ferulic acid (3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid) and caffeic acid (3-(3,4-dihydroxyphenyl)-2-propenoic acid) in acetonitrile, dioxane and water at pH 2.2 following photoexcitation to the first excited singlet state are reported. These hydroxycinnamic acids display both strong ultraviolet absorption and potent antioxidant activity, making them promising sunscreen components. Ferulic and caffeic acids have previously been shown to undergo trans–cis photoisomerization via irradiation studies, yet time-resolved measurements were unable to observe formation of the cis-isomer. In the present study, we are able to observe the formation of the cis-isomer as well as provide timescales of relaxation following initial photoexcitation

    Excited-State Dynamics of a Two-Photon-Activatable Ruthenium Prodrug

    Get PDF
    We present a new approach to investigate how the photodynamics of an octahedral ruthenium(II) complex activated through two-photon absorption (TPA) differ from the equivalent complex activated through one-photon absorption (OPA). We photoactivated a RuII polypyridyl complex containing bioactive monodentate ligands in the photodynamic therapy window (620–1000 nm) by using TPA and used transient UV/Vis absorption spectroscopy to elucidate its reaction pathways. Density functional calculations allowed us to identify the nature of the initially populated states and kinetic analysis recovers a photoactivation lifetime of approximately 100 ps. The dynamics displayed following TPA or OPA are identical, showing that TPA prodrug design may use knowledge gathered from the more numerous and easily conducted OPA studies

    Controlled fabrication of osmium nanocrystals by electron, laser and microwave irradiation and characterisation by microfocus X-ray absorption spectroscopy

    Get PDF
    YesOsmium nanocrystals can be fabricated by electron (3–50 nm, formed by atom migration), 785–815 nm laser (20–50 nm, in micelle islands), and microwave (ca. 1 nm in arrays, >100 mg scale) irradiation of a polymer-encapsulated OsII carborane; microfocus X-ray absorption studies at the Os LIII-edge show differences between the three preparation methods, suggesting that the electron-beam irradiated materials have a significant support interaction and/or surface oxidation, while the laser and microwave samples are more like metallic osmium.Royal Society (University Research Fellowship No. UF150295 to NPEB), the Leverhulme Trust (Early Career Fellowship No. ECF-2013-414 to NPEB), the ERC (Grant No. 247450 to PJS), EPSRC (Grant No. EP/F034210/1 to PJS and EP/ J007153/1 to VGS), Diamond Light Source (Beam-time grant number SP11314)

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics

    No full text
    We summarize how gas-phase ultrafast charged-particle spectroscopy has been used to provide an understanding of the photophysics of DNA building blocks. We focus on adenine and discuss how, following UV excitation, specific interactions determine the fates of its excited states. The dynamics can be probed using a systematic bottom-up approach that provides control over these interactions and that allows ever-larger complexes to be studied. Starting from a chromophore in adenine, the excited state decay mechanisms of adenine and chemically substituted or clustered adenine are considered and then extended to adenosine mono-, di-, and trinucleotides. We show that the gas-phase approach can offer exquisite insight into the dynamics observed in aqueous solution, but we also highlight stark differences. An outlook is provided that discusses some of the most promising developments in this bottom-up approach

    Wave-packet isotope separation using phase-locked pulses

    No full text
    The possibility of employing phase-locked pairs of optical pulses to separate mixtures of two or three isotopes was demonstrated. In particular, the time scale of isotope separation based on spatially separated wave packets was improved by exploiting phase-locked pairs of pulse instead of a single short laser pulse

    Base-Specific Ionization of Deprotonated Nucleotides by Resonance Enhanced Two-Photon Detachment

    Get PDF
    The intrinsic ionization energy of a base in DNA plays a critical role in determining the energies at which damage mechanisms may emerge. Here, a two-photon resonance-enhanced ionization scheme is presented that utilizes the 1ππ* transition, localized on the DNA base, to elucidate the base-specific ionization in a deprotonated nucleotide. In contrast to previous reports, the scheme is insensitive to competing ionization channels arising from the sugar–phosphate backbone. Using this approach, we demonstrate that for all bases except guanine, the lowest electron detachment energy corresponds to detachment from the sugar–phosphate backbone and allows us to determine the lowest adiabatic ionization energy for the other three bases for the first time in an isolated nucleotide

    Controlling the angular momentum composition of a Rydberg electron wave packet

    No full text
    Sequences of phase-locked laser pulses have been employed to control the orbital angular momentum character of an electron wave packet, which is initially created from a superposition of s and d Rydberg series. By an intelligent choice of phase, which depends on the excitation energy and the quantum defects, we are able to selectively pump down either all or a fraction of one or other angular momentum component, and by employing multichannel quantum-defect theory we are able to analyze the quantum-state distribution in detail

    Controlling the radial dynamics of Rydberg wavepackets in Xe using phase-locked optical pulse sequences

    No full text
    We employ a sequence of two phase-locked optical pulses, separated by half a classical orbit period, to control the radial dynamics of electron wavepackets in Xe. We eliminate either even or odd principal quantum number states from the wavepacket and distinguish between these systems by looking at the wavepacket spectrum at different partial revivals. The experimentally observed dynamics are compared with calculations based on multichannel quantum defect theory and the observations are interpreted in terms of the time and phase evolution of the population amplitudes of the Rydberg states contributing to the wavepacke
    corecore