10 research outputs found
High-Fat Diet-Induced Neuropathy of Prediabetes and Obesity: Effect of PMI-5011, an Ethanolic Extract of Artemisia dracunculus L.
Artemisia species are a rich source of herbal remedies with antioxidant and anti-inflammatory properties. We evaluated PMI-5011, an ethanolic extract of Artemisia dracunculus L., on neuropathy in high-sfat diet-fed mice, a model of prediabetes and obesity developing oxidative stress and proinflammatory changes in peripheral nervous system. C57Bl6/J mice fed high-fat diet for 16 weeks developed obesity, moderate nonfasting hyperglycemia, nerve conduction deficit, thermal and mechanical hypoalgesia, and tactile allodynia. They displayed 12/15-lipoxygenase overexpression, 12(S)-hydroxyeicosatetraenoic acid accumulation, and nitrosative stress in peripheral nerve and spinal cord. PMI-5011 (500 mgkg−1d−1, 7 weeks) normalized glycemia, alleviated nerve conduction slowing and sensory neuropathy, and reduced 12/15-lipoxygenase upregulation and nitrated protein expression in peripheral nervous system. PMI-5011, a safe and nontoxic botanical extract, may find use in treatment of neuropathic changes at the earliest stage of disease
Discovery of Strecker-type α-aminonitriles as a new class of human carbonic anhydrase inhibitors using differential scanning fluorimetry
<p>A new type of carbonic anhydrase inhibitors was identified via differential scanning fluorimetry (DSF) screening. The compounds displayed interesting inhibition profile against human carbonic anhydrase isoforms I, II, IX and XII with an obvious selectivity displayed by one compound toward carbonic anhydrase (CA) IX, an established anti-cancer target. A hypothetical mechanism of inhibitory action by the Strecker-type α-aminonitriles has been proposed.</p
Different Roles of 12/15-Lipoxygenase in Diabetic Large and Small Fiber Peripheral and Autonomic Neuropathies
Up-regulation of 12/15-lipoxygenase, which converts arachidonic acid to 12(S)- and 15(S)-hydroxyeicosatetraenoic acids, causes impaired cell signaling, oxidative-nitrosative stress, and inflammation. This study evaluated the role for 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. Control and streptozotocin-diabetic wild-type and 12/15-lipoxygenase-deficient mice were maintained for 14 to 16 weeks. 12/15-lipoxygenase gene deficiency did not affect weight gain or blood glucose concentrations. Diabetic wild-type mice displayed increased sciatic nerve 12/15-lipoxygenase and 12(S)-hydroxyeicosatetraenoic acid levels. 12/15-lipoxygenase deficiency prevented or alleviated diabetes-induced thermal hypoalgesia, tactile allodynia, motor and sensory nerve conduction velocity deficits, and reduction in tibial nerve myelinated fiber diameter, but not intraepidermal nerve fiber loss. The frequencies of superior mesenteric-celiac ganglion neuritic dystrophy, the hallmark of diabetic autonomic neuropathy in mouse prevertebral sympathetic ganglia, were increased 14.8-fold and 17.2-fold in diabetic wild-type and 12/15-lipoxygenase-deficient mice, respectively. In addition, both diabetic groups displayed small (<1%) numbers of degenerating sympathetic neurons. In conclusion, whereas 12/15-lipoxygenase up-regulation provides an important contribution to functional changes characteristic for both large and small fiber peripheral diabetic neuropathies and axonal atrophy of large myelinated fibers, its role in small sensory nerve fiber degeneration and neuritic dystrophy and neuronal degeneration characteristic for diabetic autonomic neuropathy is minor. This should be considered in the selection of endpoints for future clinical trials of 12/15-lipoxygenase inhibitors