146 research outputs found

    Современные клинико-эволютивные аспекты острой диареи у грудных детей осложненной токсико-инфекционной энцефалопатией

    Get PDF
    Department of Pediatrics, Pediatrics from Municipal Clinical Hospital of children No 1, Nicolae Testemitanu State Medical and Pharmaceutical University, Congresul III al Medicilor de Familie din Republica Moldova, 17–18 mai, 2012, Chişinău, Republica Moldova, Conferinţa Naţională „Maladii bronhoobstructive la copii”, consacrată profesorului universitar, doctor habilitat Victor Gheţeul, 27 aprilie, Chişinău, Republica MoldovaAcute diarrheal disease is ranked second after the morbidity and mortality place in early childhood by WHO. Toxic infectious encephalopathy complication has an incidence of 56.6% (in our survey it is 18.6%), prevalent in children with neurological compromise substrate and disturbance of background states with direct input from these indices. So it is a major health and social problem by high mortality and serious social impact.По данным Всемирной Организации Здравоохранения острые диареи занимают второе место в структуре заболеваемости и третье место в структуре смертности детей раннего возраста. Осложнение в виде токсико-инфекционной энцефалопатии встречается в 56,6% случаев (в нашем исследовании – 18,6%), у детей с патологическим преморбидным фоном, неврологической патологией, представляя собой серьезную медицинскую и социальную проблему из-за высокой смертности и тяжелых последствий

    Silicon pools, fluxes and the potential benefits of a silicon soil amendment in a nitrogen-enriched tidal marsh restoration

    Get PDF
    Tidal marshes are important sites of silicon (Si) transformation, where dissolved Si (DSi) taken up by macrophytic vegetation and algal species is converted to biogenic silica (BSi), which can accumulate in the soil, be recycled within the marsh, or be exported to adjacent coastal waters. The role of restored and created tidal marshes in these processes is not well understood, nor is the impact of nutrient enrichment at either the plant or ecosystem level. Here, Si fluxes were examined to develop a Si mass balance in a nitrogen (N)-enriched marsh created with fine-grained dredged material from the Chesapeake Bay, United States. In addition, the effectiveness of Si soil amendments to ameliorate the negative effects of excess nitrogen on Spartina alterniflora was examined through laboratory and field experiments. Silicon was exported to the estuary as DSi (49 g m−2 y−1) and BSi (35 g m−2y−1) in stoichiometric excess of nitrogen and phosphorus. Rapid recycling of Si within both marsh and the tidal creeks appeared to be important in the transformation of Si and export from the marsh. Enhanced macrophyte SiO2 tissue concentrations were observed in the field experiment, with end-of-season mean values of 2.20–2.69% SiO2 in controls and 2.49–3.24% SiO2 in amended plots, among the highest reported for S. alterniflora; however, improved plant fitness was not detected in either experiment. Thus, tidal marshes created with a fine-grained, N-rich dredged material appear to function as a rich source of Si to the restored marsh and local estuarine environment, an overlooked ecosystem service. Soil Si amendments, however, did not appear likely to alleviate N-induced stress in S. alterniflora

    Endophyte microbiome of banana roots reveals high diversity and potential for agricultural uses

    Get PDF
    Similar to humans, plants are populated with different sets of microorganisms with potential roles on host and ecosystem functions. Endophytic microorganisms colonize root tissues inter- and/or intracellularly producing a wide range of compounds useful for plants growth as well as for protection against biotic and abiotic stresses. Clonally propagated crops such as banana are frequently multiplied by using tissue culture techniques in order to get uniform, pathogen-free plants. This process, however, also eliminates the endophyte beneficial microbiota and might have their fitness altered. To understand the microbial functional diversity of Musa spp., and its potential application in banana production systems, root-associated endophytic microorganisms (360 bacteria and 143 fungal) were isolated from 20 Musa spp. genotypes of the ex situ collection in CORBANA, Guapiles, Costa Rica. Analyses of specific genome regions (16S rDNA for bacteria and tefa-1á or ITS for fungi) revealed 21 different bacterial genera, with Klebsiella, Enterobacter, Bacillus, Acinetobacter and Burkholderia as the most frequent. Trichoderma spp. and Fusarium oxysporum prevailed among the 12 genera of fungi identified. Most isolates are known to be associated with banana, but genera such as Sphingobacterium, Grimontella, Providencia, Pleosporaceae have not been reported previously. Microorganisms with no significant similarities to the analysed database (04 bacteria and 03 fungi) were found and will probably constitute new descriptions. Some endophytes were more frequent or uniquely found on certain banana genotypes, but endophyte-host specificity needs to be further verified. Partial characterisation of the collection showed that T. asperellum isolates from cv. Yangambi Km5 (AAA) can significantly inhibit (up to 80.5 %) the mycelial growth of the banana pathogen Fusarium oxysporum f. sp. cubense. When a set of selected bacteria was inoculated in the tissue culture plants of the commercial cultivar Cavendish, three bacterial isolates (Bacillus aryabhattai, Burkloderia spp. and unknown) significantly increased the dry root weight. These results revealed a high and multifunctional diversity of culturable endophytes from Musa spp. roots, with a strong potential for new product developments and methods to enhance productivity in banana. Opportunities also exist to explore Musa genotypes in their native habitat and to characterise non-culturable microorganisms

    Raízes de Musa spp. hospedam fungos endofíticos com potencial de controle de Fusarium oxysporum f. sp. cubense.

    Get PDF
    Aiming to understand the role of root-associated endophytic fungi against Fusarium oxysporum f. sp. cubense (Foc) we screened 25 non-commercial genotypes of Musa spp. from field collections in Brazil and Costa Rica. Analyses of Tefa-1? and/or ITS genome regions of the 150 isolates obtained revealed that most frequent genera were Trichoderma spp. and F. oxysporum. Fungi such as Gloeotinia temulenta and others isolates with no significant similarities to the database analysed are potentially new descriptions. Some genera were more frequent or uniquely found on certain genotypes, but endophyte-host specificity needs to be verified. Antagonism tests against Foc revealed that most Trichoderma isolates are better competitors than Foc in vitro. T. asperellum isolates showed the highest inhibition (> 80%) and parasitism (100%) levels. Some T. asperellum isolates were also able to parasite non-pathogenic F. oxysporum isolates even coming from the same host. Our results revealed that Musa spp. roots are hosts of a high diversity of culturable fungi including potential biocontrol agents against Foc, but also indicate complex in planta interactions among endophytes

    Super congruences and Euler numbers

    Full text link
    Let p>3p>3 be a prime. We prove that k=0p1(2kk)/2k=(1)(p1)/2p2Ep3(modp3),\sum_{k=0}^{p-1}\binom{2k}{k}/2^k=(-1)^{(p-1)/2}-p^2E_{p-3} (mod p^3), k=1(p1)/2(2kk)/k=(1)(p+1)/28/3pEp3(modp2),\sum_{k=1}^{(p-1)/2}\binom{2k}{k}/k=(-1)^{(p+1)/2}8/3*pE_{p-3} (mod p^2), k=0(p1)/2(2kk)2/16k=(1)(p1)/2+p2Ep3(modp3)\sum_{k=0}^{(p-1)/2}\binom{2k}{k}^2/16^k=(-1)^{(p-1)/2}+p^2E_{p-3} (mod p^3), where E_0,E_1,E_2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2\pi^2, π2\pi^{-2} and the constant K:=k>0(k/3)/k2K:=\sum_{k>0}(k/3)/k^2 (with (-) the Jacobi symbol), two of which are k=1(10k3)8k/(k3(2kk)2(3kk))=π2/2\sum_{k=1}^\infty(10k-3)8^k/(k^3\binom{2k}{k}^2\binom{3k}{k})=\pi^2/2 and \sum_{k>0}(15k-4)(-27)^{k-1}/(k^3\binom{2k}{k}^2\binom{3k}k)=K.$

    The contributions of biodiversity to the sustainable intensification of food production:Thematic Study to support the State of the World’s Biodiversity for Food and Agriculture

    Get PDF
    Biodiversity supports sustainable food production, although recognition of its roles has been relatively neglected in the sustainable intensification literature. In the current study, the roles of biodiversity in sustainable food production are considered, assessing how these roles can be measured, the current state of knowledge and opportunities for intervention. The trajectory of global food production, and the challenges and opportunities this presents for the roles of biodiversity in production, are also considered, as well as how biodiversitybased interventions fit within wider considerations for sustainable food systems. The positive interactions between a diverse array of organisms, including annual crops, animal pollinators, trees, micro-organisms, livestock and aquatic animals, support food production globally. To support these interactions, a range of interventions related to access to materials and practices are required. For annual crops, major interventions include breeding crops for more positive crop–crop interactions, and the integration of a wider range of crops into production systems. For animal pollinators, major interventions include the introduction of pollinator populations into production landscapes and the protection and improvement of pollinator habitat. For trees, a major required intervention is the greater integration of perennial legumes into farmland. For micro-organisms, the implementation of agronomic practices that support beneficial crop-microbe interactions is crucial. For livestock production, breed and crop feedstock diversification are essential, and the implementation of improved methods for manure incorporation into cropland. Finally, in the case of aquatic production, it is essential to support the wider adoption of multi-trophic production systems and to diversify crop- and animal-based feed resources. These and other interventions, and the research needs around them, are discussed. Looking to the future, understanding the drivers behind trends in food systems is essential for determining the options for biodiversity in supporting sustainable food production. The increased dominance of a narrow selection of foods globally indicates that efforts to more sustainably produce these foods are crucial. From a biodiversity perspective, this means placing a strong emphasis on breeding for resource use efficiency and adaptation to climate change. It also means challenging the dominance of these foods through focusing on productivity improvements for other crop, livestock and aquaculture species, so that they can compete successfully and find space within production systems. New biodiversity-based models that support food production need not only to be productive but to be profitable. Thus, as well as describing appropriate production system management practices that enhance production and support the environment, the labour, knowledge, time required to operationalize, and other costs of new production approaches, must be considered and minimized. To support the future roles of biodiversity in sustainable food production, we recommend that particular attention be given to the longitudinal analysis of food sectors to determine how the diversity of foods consumed from these sectors has changed over time. Analysis is already available for crops, but related research is needed for livestock and aquaculture sectors. This analysis will then support more optimal cross-sectoral interactions, in terms of the contributions each sector provides to supplying the different components of human diets. Additional meta-analyses and synthetic reviews of case studies are required as an evidence base for biodiversity-based food production system interventions, but future studies should pay more attention to articulating the potential biases in case study compilation (the problem of ‘cherry picking’ positive examples) and the measures that have been taken to minimize such effects

    Early warning signals of simulated Amazon rainforest dieback

    Get PDF
    Copyright © The Author(s) 2013. This article is published with open access at Springerlink.comWe test proposed generic tipping point early warning signals in a complex climate model (HadCM3) which simulates future dieback of the Amazon rainforest. The equation governing tree cover in the model suggests that zero and non-zero stable states of tree cover co-exist, and a transcritical bifurcation is approached as productivity declines. Forest dieback is a non-linear change in the non-zero tree cover state, as productivity declines, which should exhibit critical slowing down. We use an ensemble of versions of HadCM3 to test for the corresponding early warning signals. However, on approaching simulated Amazon dieback, expected early warning signals of critical slowing down are not seen in tree cover, vegetation carbon or net primary productivity. The lack of a convincing trend in autocorrelation appears to be a result of the system being forced rapidly and non-linearly. There is a robust rise in variance with time, but this can be explained by increases in inter-annual temperature and precipitation variability that force the forest. This failure of generic early warning indicators led us to seek more system-specific, observable indicators of changing forest stability in the model. The sensitivity of net ecosystem productivity to temperature anomalies (a negative correlation) generally increases as dieback approaches, which is attributable to a non-linear sensitivity of ecosystem respiration to temperature. As a result, the sensitivity of atmospheric CO2 anomalies to temperature anomalies (a positive correlation) increases as dieback approaches. This stability indicator has the benefit of being readily observable in the real world.NERCJoint DECC/Defra Met Office Hadley Centre Climate ProgrammeUniversity of Exete
    corecore