Abstract

Let p>3p>3 be a prime. We prove that k=0p1(2kk)/2k=(1)(p1)/2p2Ep3(modp3),\sum_{k=0}^{p-1}\binom{2k}{k}/2^k=(-1)^{(p-1)/2}-p^2E_{p-3} (mod p^3), k=1(p1)/2(2kk)/k=(1)(p+1)/28/3pEp3(modp2),\sum_{k=1}^{(p-1)/2}\binom{2k}{k}/k=(-1)^{(p+1)/2}8/3*pE_{p-3} (mod p^2), k=0(p1)/2(2kk)2/16k=(1)(p1)/2+p2Ep3(modp3)\sum_{k=0}^{(p-1)/2}\binom{2k}{k}^2/16^k=(-1)^{(p-1)/2}+p^2E_{p-3} (mod p^3), where E_0,E_1,E_2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2\pi^2, π2\pi^{-2} and the constant K:=k>0(k/3)/k2K:=\sum_{k>0}(k/3)/k^2 (with (-) the Jacobi symbol), two of which are k=1(10k3)8k/(k3(2kk)2(3kk))=π2/2\sum_{k=1}^\infty(10k-3)8^k/(k^3\binom{2k}{k}^2\binom{3k}{k})=\pi^2/2 and \sum_{k>0}(15k-4)(-27)^{k-1}/(k^3\binom{2k}{k}^2\binom{3k}k)=K.$

    Similar works

    Full text

    thumbnail-image

    Available Versions