702 research outputs found

    Reliability analysis of structural ceramic components using a three-parameter Weibull distribution

    Get PDF
    Described here are nonlinear regression estimators for the three-Weibull distribution. Issues relating to the bias and invariance associated with these estimators are examined numerically using Monte Carlo simulation methods. The estimators were used to extract parameters from sintered silicon nitride failure data. A reliability analysis was performed on a turbopump blade utilizing the three-parameter Weibull distribution and the estimates from the sintered silicon nitride data

    Ceramic component reliability with the restructured NASA/CARES computer program

    Get PDF
    The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors)

    Reliability analysis of laminated CMC components through shell subelement techniques

    Get PDF
    An updated version of the integrated design program Composite Ceramics Analysis and Reliability Evaluation of Structures (C/CARES) was developed for the reliability evaluation of ceramic matrix composites (CMC) laminated shell components. The algorithm is now split into two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The interface program creates a neutral data base which is then read by the reliability module. This neutral data base concept allows easy data transfer between different computer systems. The new interface program from the finite-element code Matrix Automated Reduction and Coupling (MARC) also includes the option of using hybrid laminates (a combination of plies of different materials or different layups) and allows for variations in temperature fields throughout the component. In the current version of C/CARES, a subelement technique was implemented, enabling stress gradients within an element to be taken into account. The noninteractive reliability function is now evaluated at each Gaussian integration point instead of using averaging techniques. As a result of the increased number of stress evaluation points, considerable improvements in the accuracy of reliability analyses were realized

    Reliability Analysis of Structural Ceramic Components Using a Three-parameter Weibull Distribution

    Get PDF
    This paper describes nonlinear regression estimators for the three-parameter Weibull distribution. Issues relating to the bias and invariance associated with these estimators are examined numerically using Monte Carlo simulation methods. The estimators were used to extract parameters from sintered silicon nitride failure data. A reliability analysis was performed on a turbopump blade utilizing the three-parameter Weibull distribution and the estimates from the sintered silicon nitride data

    Mutational analysis of the N terminus of the protein of maize transposable element Ac.

    Full text link

    Parameter estimation techniques based on optimizing goodness-of-fit statistics for structural reliability

    Get PDF
    New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm

    Effective and Efficient Similarity Search in Scientific Workflow Repositories

    Get PDF
    International audienceScientific workflows have become a valuable tool for large-scale data processing and analysis. This has led to the creation of specialized online repositories to facilitate worflkow sharing and reuse. Over time, these repositories have grown to sizes that call for advanced methods to support workflow discovery, in particular for similarity search. Effective similarity search requires both high quality algorithms for the comparison of scientific workflows and efficient strategies for indexing, searching, and ranking of search results. Yet, the graph structure of scientific workflows poses severe challenges to each of these steps. Here, we present a complete system for effective and efficient similarity search in scientific workflow repositories, based on the Layer Decompositon approach to scientific workflow comparison. Layer Decompositon specifically accounts for the directed dataflow underlying scientific workflows and, compared to other state-of-the-art methods, delivers best results for similarity search at comparably low runtimes. Stacking Layer Decomposition with even faster, structure-agnostic approaches allows us to use proven, off-the-shelf tools for workflow indexing to further reduce runtimes and scale similarity search to sizes of current repositories

    Layer Decomposition: An Effective Structure-based Approach for Scientific Workflow Similarity

    Get PDF
    International audienceScientific workflows have become a valuable tool for large-scale data processing and analysis. This has led to the creation of specialized online repositories to facilitate workflow sharing and reuse. Over time, these repositories have grown to sizes that call for advanced methods to support workflow discovery, in particular for effective similarity search. Here, we present a novel and intuitive workflow similarity measure that is based on layer decomposition. Layer decomposition accounts for the directed dataflow underlying scientific workflows, a property which has not been adequately considered in previous methods. We comparatively evaluate our algorithm using a gold standard for 24 query workflows from a repository of almost 1500 scientific workflows, and show that it a) delivers the best results for similarity search, b) has a much lower runtime than other, often highly complex competitors in structure-aware workflow comparison, and c) can be stacked easily with even faster, structure-agnostic approaches to further reduce runtime while retaining result quality
    • …
    corecore