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ABSTRACT 
New methods are presented that utilize the optimization of 

goodness-of-fit statistics in order to estimate Weibull parame-

ters from failure data. It is assumed that the underlying 

population is characterized by a three-parameter Weibull 
distribution. Goodness-of-fit tests are based on the empirical 

distribution function (EDF). The EDF is a step function, 
calculated using failure data, and represents an approximation 

of the cumulative distribution function for the underlying 

population. Statistics (such as the Kolmogorav.Srnirnov 

statistic and the Anderson-Darling statistic) measure the 

discrepancy between the EDF and the cumulative distribution 

function (CDF). These statistics are minimized with respect to 

the three Weibull parameters. Due to nonlineanues encoun-

tered in the minimization process, Powell's numerical optimiza-

tion procedure is applied to obtain the optimum value of the 
EDF. Numerical examples show the applicability of these new 

estimation methods. The results are compared to the esti-

mates obtained with Cooper's nonlinear regression algorithm. 

INTRODUCTION 
Typically, structural analysis techniques used to estimate 

the reliability of components fabricated from ceramic material 

systems (see Thomas and Wetherbold, 1991, and Palko et al., 

1993) assume that the random strength parameters are 

'National Re-arch Council; Curtently wflb Aircx Composite 
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characterized by a Weibull probability density function (PDF). 

This broad assumption, i.e., the use of a Weibull distribution 

as opposed to the use of other distributions such as a log-

normal probability distribution necessitates some reflection. A 

wealth of experience indicates the Weibull distribution works 

well for monolithic ceramics. In fact, as Tracy et al. (1982) 
point out, if a structural component can be adequately 

modeled as a weakest link (or series) system, then the PDF of 

choice is the Weibull distribution. Alternatively, for parallel 

systems the log-normal distribution is appropriate. The 

structural analysis community has for the most part adapted 

the viewpoint (based on supporting experimental evidence) 

that monolithic ceramics behave in a weakest link fashion. 

However, very little failure data exists for laminated ceramic 

matrix composite (CMC) material systems, and definitely not 

enough to justify the use of a specific probability density 

function. 
Accepting the use of a Weibull distribution for monolithic 

ceramics, the authors point out that several researchers 

(Margetsan and Cooper, 1984 Duffy et al., 1.993 and Foley et 

at., 1993) have presented data indicating certain monolithic 

ceramics exhibit threshold behavior. In addition, a threshold 

in the fiber direction of ceramic composites is intuitively 

plausible. The existence of a threshold for any type of ceramic 

material system should be approached with an open mind until 

a sufficient data base is assembled for a specific material 

system. If a material clearly exhibits zero-threshold behavior, 

and the underlying population can be characterized by the 

Weibull distribution, the very robust two parameter maximum 
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likelihood estimation algorithm is recommended (see ASTM 

Standard Practice C-1239). Alternatively, if the failure data 

suggests a threshold, then the estimation techniques presented 

here may apply. 
In general, the objective of parameter estimation is to 

derive functions (or estimators) that yield, in some sense, 

optimized values of the underlying population parameters. 

Here the functional value of an estimator is a point estimate 

(in contrast to an interval estimate) of the true population 

parameter. The estimated values must be dependent on 

failure data. The values of point estima:es computed from a 

number of samples obtained from a single population will vary 

from sample to sample. Thus the eszimates can also be 

considered statistics. A sample is a collection (i.e.. more than 

one) of observations taken from a well defined population, 

where a population represents the totality of observations 

about which statistical inferences are made. Here, the 

observations are the failure strengths of test specimens 

fabricated from ceramic material systems (where the system 

may be monolithic or composite). 

As Stephens (1986) points out, the empirical distribution 

function (EDF) was originally developed as an aid in measur-
ing the performance of a given parameter estimation tech-

nique. Statistics directly related to the EDF are appropriately 

referred to as goodness-of-fit statistics. In this article, good-

ness-of-fit statistics are utilized in directly computing parameter 
estimates, instead of the more traditional role of quantifying 

the performance of an estimator. Methods are proposed 

where parameter estimates are obtained by optimizing EDF 

statistics. Specifically, the first pararne:er estimation method 

minimizes the Kolmogorov-Smirnov goodness -of-fit statistic 

(D). A second estimation method that minimizes the Ander-

son-Darling goodness-of-fit statistic estimator (A 2 ) is also 

presented. The effectiveness of these estimation methods are 

studied by comparing results with the least-squares method 

originally developed by Cooper (1988), and later modified by 

Duffy et al. (1993).

the cumulative distribution function (C)F), which is identified 

as F(x). Thus a decision regarding the type of CDF (or PDF) 

must be made a priori in order to calculate either EDF 

statistic. Traditionally, the EDF statistics have been employed 

to assess the relative merits in choosing a particular CDF. 

Focusing attention on the Weibull PDF, the three parameter 

function has the form 

a	

{ - 
flx)=—I	

I	 )f	
(1) 

for a continuous random variable x, when 0 s y s x, and 

flx)=O	 (2) 

for x s y. The Weibull CDF is given by the expression 

F(x) = 1 - eip - 
(XPYYI 

for x> y , and 

F(x) = 0
	

(4) 

for x s y. Here a is the Weibull modulus or shape parame-

ter, P is the material scale parameter, and y is the threshold 

parameter. P can be described as the Weibull characteristic 

strength of a specimen with unit volume loaded in uniform 

uniaxial tension. The parameter P has units of stress 

(volume)" ) , a is dimensionless, and yhas the units of stress. 

The estimates for a and P are restricted to non-negative 

values, and estimates of 1' are restricted to non-negative values. 

The first goodness-of-fit statistic discussed is the Kolmogorov-

Smirnov (KS) statistic. This goodness-of-fit statistic (denoted 

as D) belongs to the supremum class of EDF statistics, and is 
defined as

D • =p IF(x) - F(x)I	 (5) 

=max(D.Di 

GOODNESS-OF-FIT STATISTICS 

The EDF is a step function, denoted here as FM (z), that is 

dependent on the number and individual values of failure 

observations within a sample. The function serves as an 

approximation of the cumulative distribution function for the 

underlying population. Statistics associated with the EDF, such 

as the Kolmogorov-Smirnov statistic and the Anderson-Darling 

statistic are measures of the discrepancy between the EDF and

where

= .tp (F,,(x) - F(x)}	 (6) 

= .wp {F(x) - FN(x)}	 (7) 

Here D is a measure of the largest difference (i.e.. the 

supremum) in functional value between the EDF and the 
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CDF. To facilitate computations, notation adopted by 
Stephens is followed where 

= F(x1 )	 (8) 

is used to denote the value of the CDF for an individual 
failure datum, x. By arranging the Z values in ascending 
order such that

(9) 

where N is the number of specimens in a sample, suitable 
formulas for the KS statistic D and D can be derived using 
Z, i.e.,

for  x f. s N	 (10) 

D=nuixlZ, i-1 

	

£	
fir  1 iN	 (11) 

When applying the concepts above to strength data of ceramic 

materials, insertion of Eq. 3 into Eq. 8 yields 

	

Z,	
-_ .1 

=1	 U	 (12) 

Here a, (which replaces x, in Eq. 3) is the maximum stress at 
failure for each test specimen. If estimated values of a, 0, and 
'' were available, the KS statistic would be obtained from Eqs. 

10 and 11. Typically, maximum likelihood techniques and 

linear regression methods have been employed to determine 
estimated values of a, 0, and y. Alternatively, the authors 

propose to directly minimize the KS statistic with respect to 
the parameters a, A, and y. Powell's optimization method 
(discussed in the next section) is applied to obtain the mini-

mum value of this statistic. The results, which correspond to 

the minimum value of D, are estimates of the three Weibull 
parameters (i.e. &, i , and f ). Utilizing Eqs. 3 and 8 assumes 
that the test specimen geometry is a unit volume and the 

specimen is subjected to a uniaxial tensile stress. To circum-
vent this restriction, the expression 

( - IV7.
(a, 	

(13) )I) 
is substituted for tensile specimens where all failures occur 

within the volume (V1) of the gage section. Here &, i ,and 

represent estimated values of the underlying population

parameters. 
Two basic failure populations were admitted in the formula-

tions presented here, i.e., failures attributed to surface flaws 

and those due to volume flaws. This traditional approach of 

grouping failure origins into volume and surface flaws is an 

artifact from parameter estimation techniques developed for 

monolithic ceramics. Due to the lack of experimental data, 

this division (which must be based on fractographic analysis) 

may, or may not be appropriate for ceramic composites. At 

the present time, maintaining uniform densities throughout the 

bulk of a ceramic composite material is a major impediment 
that restricts the widespread commercialization of ceramic 

composites. Therefore, it is anticipated that the majority of 
failures will initiate within the volume of a ceramic composite. 

However, this may change as processing techniques are 
improved. If failures occur along the surface of the tensile 
specimen, the expression 

Z,=1 -ex(-1A (d1 I TI	 ui	
(14) 

is used where A T is the surface area of the gage section for the 
tensile specimen. 

Since the individual failure data (a,) represent the failure 

strength of a given ceramic test specimen, the estimators 
presented here were formulated for two widely used test 

configurations: the four-point bend test and the uniaxial tensile 
test (which was discussed above). Currently, the four-point 

bend-bar is the more popular test geometry used in strength 

tests of ceramic materials. When failures occur within the 

volume of a bend-bar specimen, the expression for Z, takes 
the form

V.	
( a, -

2(&.1)	 a )
(15) 

( a'_- Ti 
This expression corresponds to pure bending. This is an 

acceptable assumption when failure of all test specimens within 

a sample occurs between the inner loads depicted in Figure 1. 

Ignoring observations that fail outside the gage section will 

effectively censor the sample, and the methods presented here 
will not be valid. In Eq. 15, V, represents the volume of the 

bend-bar specimen within the inner load span. Using this 
expression for Z,, the KS statistic D is once again minimized 
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with respect to the three Weibuil parameters. Using Powell's 
optimization method, the results are the three Weibull 
parameters that minimize the statistic D for a given sample 
(i.e. a, j,and ). 

If failure of the bend specimens is due to surface tlaws,Z, 
takes the form

I 
Z1 1	 e	

2(h.b)	
(16) 

E()'b] 

The dimensions h and b are the height and thickness of the 
bar, as identified in Figure 1. Once again failure observations 
must occur between the inner load span (i.e., the region of 
pure bending) for reasons mentioned above. 

The Anderson-Darling (AD) statistic (A 2) is the second 
goodness-of-fit statistic considered. This statistic belongs to the 
Cramer-von Mises class of quadratic statistics and is defined by 
the expression 

A 2 1 Nf {F,,(x)-/(x)}2 [F(x) (1 F'x)))' dF(x)	 (17) 

where the terms fix), FN(x), F(x), and N have been previous-
ly defined. Using the notation developed for the KS statistic, 
the AD statistic can be expressed as 

N 
42 = -N - (1/N) E ((21-I) [ltZ1 .ln0 - ZN.l ,,)]}	 (18) 

i-1 

As before the sum of Z depends on the test configuration and 
the failure mode (assuming that the Weibull distribution 
characterizes the underlying failure population). For the case 
where the uriiaxial tensile test is used, and failure is the result 
of volume flaws, Z1 takes the form given in Eq. 13. When 
failures of a uniaxial tensile specimen are due to surface flaws, 

Z1 takes the form given in Eq. 14. For the case where a four 
point bend configuration is used, and the failures 
are the result of volume flaws, the Z1 function is given by 
Eq. 15. When failures of four point bend rests are the result 
of surface flaws, the form for Z, is given by Eq. 16. 

POWELL'S OPTIMIZATION METHOD 

As noted previously, Powell's optimization method (see Press

et al., 1986) minimizes the EDF statistics for each specimen 
configuration presented above. This optimization method is an 
iterative scheme, where the search for a minimum functional 
value is conducted along a specified set of direction vectors. 
The number of direction vectors corresponds to the number of 
paramcters(constrained or unconstrained) associated with the 
function. The EDF statistics (i.e., the function being opti-
mized) will depend on specimen geometry, individual failure 
observations, and the estimated parameters &, j, and j. 
However, the specimen geometry will not change for a given 
sample, thus the EDF statistics are optimized with respect to 
the parameters a, 0, and y. In essence this method locates, in 
succession, an optimum point along each direction vector. An 
arbitrary set of direction vectors can be utilized to 
optimize a given function; however, Powell's method employs 
coninterferrng (or conjugate) directions in order to speed 
convergence. This alleviates difficulties which arise when 
optimization along one direction vector is disturbed by a 
subsequent search along a new direction vector. The method 
formulates and updates n mutually conjugate directions, where 
n (for this case equals three i.e., a, 0, and y) defines the size 
of the parameter space. The set of direction vectors is 
updated by discarding the direction vector that produced the 
maximum change during an iteration. The average direction 
defined by the initial and final point of an iteration is substitut-
ed, and becomes the initial direction vector for the next 
iteration. Note that this method does not produce quadratic 
convergence, but nevertheless is very robust. 

As indicated above, the optimized parameter space is defined 
by the estimates of the Weibull parameters a, 0, and y. Since 

a good choice of starting values (a0 , P, and ) is essential 

in quickly locating the optimum point, the results of Cooper's 
modified least-squares estimation method are used as the 
initial vector for Powell's method. Further restrictions are 
imposed on the optimization process. Negative values for the 
estimated Weibull parameters, and estimated threshold 
parameters () larger than the smallest failure stress in a 
given sample, are not physically meaningful. Thus directions 
that produce these parameter values are discarded in the 
update of the direction vectors, and parameter values are reset 
to the minimum allowable values. 

Example 
Since failure data for CMC material systems are sparse, only 

failure data for a monolithic sintered silicon nitride (grade 
SNW.1000, GTE Wesco Division) are used to illustrate the 
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relative merits of the proposed estimation techniques. This 
data was published by Chao and Shetty (1991) and is reprinted 
in Table 1. These values represent the maximum stress at 

failure for 27 four-point bend specimens. The outer support 
span for the test fixture was 40.4 mm, and the inner load span 

was 19.6 mm. The cross sections of the test specimens were 
4.0 mm wide, and 3.1 mm in height. All failures occurred 
within the 19.6 mm inner load span, thus it was assumed that 
each specimen was subjected to pure bending. 

Chao and Shetty performed a fractographic analysis of each 
specimen using optical and scanning election microscopy. 
These studies indicated that all failures were initiated at 
subsurface pores (i.e., volume defects). Hence, equations for 
bending associated with volume defects are used for parameter 
estimation. Five methods were used to estimate the Weibull 
parameters from this set of failure data. These were Cooper's 
three parameter least squares method, the three parameter 
modified least squares method outlined by Duffy et al. (1993), 
minimizing the KS statistic, minimizing the Al) statistic, and a 
two parameter estimation using the maximum likelihood 
estimation technique outlined in the ASTM Standard Practice 
C-1239. The KolmogorovSmirt1OV statistic (D) and Anderson-

Darling statistic (A 2 ) were computed for each set of parame-
ter estimates. The values of these EDF statistics, and the 
estimated parameters for each method are listed in Table 2. 

A comparison of estimates obtained by both least-squares 
methods shows small differences in the estimated Weibull 
threshold parameter j. Larger differences are present 
between the two methods in the estimates of the other 
parameters. Specifically, the modified least squares method 
provided a higher estimate for it than did Cooper's method, 
and a lower estimate for j Furthermore, both goodness-of-

fit statistics (D and A 2) are smaller for Cooper's method than 
for the modified least- squares method. Duffy et al. (1993) 
demonstrated that the modified least squares method is 
theoretically more rigorous than Cooper's original work since 
the modified method attempts to minimize a true residual. 
However, it is apparent from this example that Cooper's 
original approach yields better goodness-of-fit statistics. This 
discrepancy in part motivated the development of estimators 
based on minimizing goodness- of-fit statistics. 

Estimates of the Weibull parameters obtained by minimizing 
the KS statistic result in the smallest value of D, which is not 

surprising. Similarly, estimates of the parameters obtained by 
minimizing the AD statistic result in the smallest value ofA2 
in comparison to the other estimation methods. However, the 
Weibull parameters obtained by optimizing the goodness-of-fit

statistics differ considerably from the estimates obtained using 
the least-squares techniques. Specifically, the value of from 
minimizing the goodness-of-fit statistics is nearly twice the 
value obtained with the least-squares techniques. As an 
additional comparison, parameter estimates from using a 
maximum likelihood estimator assuming a two-parameter 
Weibull distribution are included in Table 2. These estimates 
produce the highest values for both goodness-of-fit statistics. 

Finally, cumulative distribution functions for all of the 
parameter estimates are plotted on a single Weibull diagram 

(see Figure 2). All of the failure data fall relatively close to all 
four of the three-parameter curves. This type of visual 
assessment (along with its highly subjective interpretation) 
should provide the motivation for the use of quantitative 
measures in determining the goodness-of-fit. 

CONCLUSION 
New methods of parameter estimation are proposed that are 

based on the minimization of goodness-of-fit statistics. These 
methods are used to estimate Weibull parameters from failure 
data whose population is assumed to be characterized by a 
three-parameter Weibull distribution. As an example, the 
proposed methods were compared with other parameter 
estimation methods, using failure data from a monolithic 
ceramic material. The proposed methods provided a better fit 
to the failure data in terms of the EDF statistics. However, 
to completely test the proposed methods, performance criteria 
like bias and invariance have to be evaluated through the use 
of Monte Carlo simulations. 
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TABLE 1 FOUR-POINT BEND FAILURE DATA FOR 

SILICON NITRIDE. 

FIGURE 1 GEOMETRY AND NOTATION FOR A FOUR-




POINT BEND TEST SPECIMEN.

Specimen No.	 Strength (MPa) 

1 613.9 

2 623.4 

3 6393 

4 642..1 

5 653.8 

6 662.4 

7 669.5 

8 672.8 

9 6813 

10 682.0 

11 699.0 

12 714.5 

13 717.4 

14 725.5 

15 741.6 

16 744.9 

17 751.0 

18 761.7 

19 763.9 

20 774.2 

21 791.6 

22 795.2 

23 829.8 

24 838.4 

25 856.4 

26 868.3 

27 882.9

t.- 4 -1


At	 4 
;Test Specimen	 I	 I	 I b 

I-	 -I 
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TABLE 2 PARAMETER ESTIMATES OBTAINED FROM FOUR-POINT BEND FAILURE DATA 

Estimaion Method & (MFamm(VM) j (UPa) D (x 10-2) A2 (x 101) 

Coopeis Least Squares 1.625 89237 56084 9.404 1.749 
Modified Least Squares 1.677 861.93 558.08 9.538 1.798 
KS Estimator 1.375 1298.44 558.08 6.080 1.963 
AD Estimator 1.168 1537.03 581.09 7.676 1.406 
Two-Parameter MLE 10.119 974.09 0.00 11.20 5.394 
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