15,435 research outputs found

    Cryogenic zero-gravity prototype vent system

    Get PDF
    Design, fabrication, and tests of prototype cryogenic zero-gravity heat exchanger vent syste

    Study of low gravity propellant transfer Quarterly progress report, 23 Dec. 1970 - 30 Apr. 1971

    Get PDF
    Bellows, metallic diaphragm, and paddle vortex subcritical transfer systems designs and high pressure systems analyses for orbital space station cryogen

    The effect of internal gravity waves on cloud evolution in sub-stellar atmospheres

    Get PDF
    Context. Sub-stellar objects exhibit photometric variability which is believed to be caused by a number of processes such as magnetically-driven spots or inhomogeneous cloud coverage. Recent sub-stellar models have shown that turbulent flows and waves, including internal gravity waves, may play an important role in cloud evolution.Aims. The aim of this paper is to investigate the effect of internal gravity waves on dust cloud nucleation and dust growth, and whether observations of the resulting cloud structures could be used to recover atmospheric density information.Methods. For a simplified atmosphere in two dimensions, we numerically solve the governing fluid equations to simulate the effect on dust nucleation and mantle growth as a result of the passage of an internal gravity wave. Furthermore, we derive an expression that relates the properties of the wave-induced cloud structures to observable parameters in order to deduce the atmospheric density.Results. Numerical simulations show that the density, pressure and temperature variations caused by gravity waves lead to an increase of dust nucleation by up to a factor 20, and dust mantle growth rate by up to a factor 1:6, compared to their equilibrium values. Through an exploration of the wider sub-stellar parameter space, we show that in absolute terms, the increase in dust nucleation due to internal gravity waves is stronger in cooler (T dwarfs) and TiO2-rich sub-stellar atmospheres. The relative increase however is greater in warm(L dwarf) and TiO2-poor atmospheres due to conditions less suited for efficient nucleation at equilibrium. These variations lead to banded areas in which dust formation is much more pronounced, and lead to banded cloud structures similar to those observed on Earth. Conclusions. Using the proposed method, potential observations of banded clouds could be used to estimate the atmospheric density of sub-stellar objects

    Swift/UVOT Photometry of the Planetary Nebula WeBo 1: Unmasking A Faint Hot Companion Star

    Get PDF
    We present an analysis of over 150 ks of data on the planetary nebula WeBo 1 (PN G135.6+01.0) obtained with the Swift Ultraviolet Optical Telescope (UVOT). The central object of this nebula has previously been described as a late-type K giant barium star with a possible hot companion, most likely a young pre-white dwarf. UVOT photometry shows that while the optical photometry is consistent with a large cool object, the near-ultraviolet (UV) photometry shows far more UV flux than could be produced by any late-type object. Using model stellar atmospheres and a comparison to UVOT photometry for the pre-white dwarf PG 1159-035, we find that the companion has a temperature of at least 40,000 K and a radius of, at most, 0.056 R_sun. While the temperature and radius are consistent with a hot compact stellar remnant, they are lower and larger, respectively, than expected for a typical young pre-white dwarf. This likely indicates a deficiency in the assumed UV extinction curve. We find that higher temperatures more consistent with expectations for a pre-white dwarf can be derived if the foreground dust has a strong "blue bump" at 2175 AA and a lower R_V. Our results demonstrate the ability of Swift to both uncover and characterize hot hidden companion stars and to constrain the UV extinction properties of foreground dust based solely on UVOT photometry.Comment: 26 pages, 9 figure, accepted to Astronomical Journa

    Triphilic ionic-liquid mixtures: fluorinated and non-fluorinated aprotic ionic-liquid mixtures

    Get PDF
    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domainspolar and nonpolarthree stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment

    Physical State of Molecular Gas in High Galactic Latitude Translucent Clouds

    Get PDF
    The rotational transitions of carbon monoxide (CO) are the primary means of investigating the density and velocity structure of the molecular interstellar medium. Here we study the lowest four rotational transitions of CO towards high-latitude translucent molecular clouds (HLCs). We report new observations of the J = (4-3), (2-1), and (1-0) transitions of CO towards eight high-latitude clouds. The new observations are combined with data from the literature to show that the emission from all observed CO transitions is linearly correlated. This implies that the excitation conditions which lead to emission in these transitions are uniform throughout the clouds. Observed 13CO/12CO (1-0) integrated intensity ratios are generally much greater than the expected abundance ratio of the two species, indicating that the regions which emit 12CO (1-0) radiation are optically thick. We develop a statistical method to compare the observed line ratios with models of CO excitation and radiative transfer. This enables us to determine the most likely portion of the physical parameter space which is compatible with the observations. The model enables us to rule out CO gas temperatures greater than 30K since the most likely high-temperature configurations are 1 pc-sized structures aligned along the line of sight. The most probable solution is a high density and low temperature (HDLT) solution. The CO cell size is approximately 0.01 pc (2000 AU). These cells are thus tiny fragments within the 100 times larger CO-emitting extent of a typical high-latitude cloud. We discuss the physical implications of HDLT cells, and we suggest ways to test for their existence.Comment: 19 pages, 13 figures, 2 tables, emulateapj To be published in The Astrophysical Journa

    Anti-aliasing with stratified B-spline filters of arbitrary degree

    Get PDF
    A simple and elegant method is presented to perform anti-aliasing in raytraced images. The method uses stratified sampling to reduce the occurrence of artefacts in an image and features a B-spline filter to compute the final luminous intensity at each pixel. The method is scalable through the specification of the filter degree. A B-spline filter of degree one amounts to a simple anti-aliasing scheme with box filtering. Increasing the degree of the B-spline generates progressively smoother filters. Computation of the filter values is done in a recursive way, as part of a sequence of Newton-Raphson iterations, to obtain the optimal sample positions in screen space. The proposed method can perform both anti-aliasing in space and in time, the latter being more commonly known as motion blur. We show an application of the method to the ray casting of implicit procedural surfaces
    • …
    corecore