We present an analysis of over 150 ks of data on the planetary nebula WeBo 1
(PN G135.6+01.0) obtained with the Swift Ultraviolet Optical Telescope (UVOT).
The central object of this nebula has previously been described as a late-type
K giant barium star with a possible hot companion, most likely a young
pre-white dwarf. UVOT photometry shows that while the optical photometry is
consistent with a large cool object, the near-ultraviolet (UV) photometry shows
far more UV flux than could be produced by any late-type object. Using model
stellar atmospheres and a comparison to UVOT photometry for the pre-white dwarf
PG 1159-035, we find that the companion has a temperature of at least 40,000 K
and a radius of, at most, 0.056 R_sun. While the temperature and radius are
consistent with a hot compact stellar remnant, they are lower and larger,
respectively, than expected for a typical young pre-white dwarf. This likely
indicates a deficiency in the assumed UV extinction curve. We find that higher
temperatures more consistent with expectations for a pre-white dwarf can be
derived if the foreground dust has a strong "blue bump" at 2175 AA and a lower
R_V. Our results demonstrate the ability of Swift to both uncover and
characterize hot hidden companion stars and to constrain the UV extinction
properties of foreground dust based solely on UVOT photometry.Comment: 26 pages, 9 figure, accepted to Astronomical Journa