18 research outputs found

    CD14 Counterregulates Lipopolysacharide- Induced Tumor Necrosis Factor-α Production in a Macrophage Subset

    Get PDF
    In response to GM-CSF or M-CSF, macrophages (MΦ) can acquire pro- or anti-inflammatory properties, respectively. Given the importance of CD14 and Toll-like receptor (TLR) 4 in lipopolysaccharide (LPS)-induced signaling, we studied the effect of anti-CD14 antibody mediated CD14 blockade on LPS-induced cytokine production, signal transduction and on the expression levels of CD14 and TLR4 in GM-MΦ and M-MΦ. We found M-MΦ to express higher levels of both surface antigens and to produce more interferon (IFN)-β and interleukin-10, but less tumor necrosis factor (TNF)-α than GM-MΦ. Blockage of CD14 at high LPS concentrations increased the production of proinflammatory cytokines and decreased that of IFN-β in M-MΦ but not in GM-MΦ. We show that phosphorylation states of signaling molecules of the MyD88 (myeloid differentiation primary response 88), TRIF (TIR-domain-containing adapter-inducing IFN-β) and MAPK (mitogen-activated protein kinase) pathways are not altered in any way that would account for the cytokine overshoot reaction. However, CD14 blockage in M-MΦ decreased TLR4 and CD14 expression levels, regardless of the presence of LPS, indicating that the loss of the surface molecules prevented LPS from initiating TRIF signaling. As TNF-α synthesis was even upregulated under these experimental conditions, we suggest that TRIF is normally involved in restricting LPSinduced TNF-α overproduction. Thus, surface CD14 plays a decisive role in the biological response by determining LPSinduced signaling

    Functional differentiation of midbrain neurons from human cord blood-derived induced pluripotent stem cells

    Get PDF
    INTRODUCTION: Human induced pluripotent stem cells (hiPSCs) offer great promise for regenerative therapies or in vitro modelling of neurodegenerative disorders like Parkinson’s disease. Currently, widely used cell sources for the generation of hiPSCs are somatic cells obtained from aged individuals. However, a critical issue concerning the potential clinical use of these iPSCs is mutations that accumulate over lifetime and are transferred onto iPSCs during reprogramming which may influence the functionality of cells differentiated from them. The aim of our study was to establish a differentiation strategy to efficiently generate neurons including dopaminergic cells from human cord blood-derived iPSCs (hCBiPSCs) as a juvenescent cell source and prove their functional maturation in vitro. METHODS: The differentiation of hCBiPSCs was initiated by inhibition of transforming growth factor-β and bone morphogenetic protein signaling using the small molecules dorsomorphin and SB 431542 before final maturation was carried out. hCBiPSCs and differentiated neurons were characterized by immunocytochemistry and quantitative real time-polymerase chain reaction. Since functional investigations of hCBiPSC-derived neurons are indispensable prior to clinical applications, we performed detailed analysis of essential ion channel properties using whole-cell patch-clamp recordings and calcium imaging. RESULTS: A Sox1 and Pax6 positive neuronal progenitor cell population was efficiently induced from hCBiPSCs using a newly established differentiation protocol. Neuronal progenitor cells could be further maturated into dopaminergic neurons expressing tyrosine hydroxylase, the dopamine transporter and engrailed 1. Differentiated hCBiPSCs exhibited voltage-gated ion currents, were able to fire action potentials and displayed synaptic activity indicating synapse formation. Application of the neurotransmitters GABA, glutamate and acetylcholine induced depolarizing calcium signal changes in neuronal cells providing evidence for the excitatory effects of these ligand-gated ion channels during maturation in vitro. CONCLUSIONS: This study demonstrates for the first time that hCBiPSCs can be used as a juvenescent cell source to generate a large number of functional neurons including dopaminergic cells which may serve for the development of novel regenerative treatment strategies

    Neuronal Dysfunction in iPSC-Derived Medium Spiny Neurons from Chorea-Acanthocytosis Patients Is Reversed by Src Kinase Inhibition and F-Actin Stabilization

    Get PDF
    Chorea-acanthocytosis (ChAc) is a fatal neurological disorder characterized by red blood cell acanthocytes and striatal neurodegeneration. Recently, severe cell membrane disturbances based on depolymerized cortical actin and an elevated Lyn kinase activity in erythrocytes from ChAc patients were identified. How this contributes to the mechanism of neurodegeneration is still unknown. To gain insight into the pathophysiology, we established a ChAc patient-derived induced pluripotent stem cell model and an efficient differentiation protocol providing a large population of human striatal medium spiny neurons (MSNs), the main target of neurodegeneration in ChAc. Patient-derived MSNs displayed enhanced neurite outgrowth and ramification, whereas synaptic density was similar to controls. Electrophysiological analysis revealed a pathologically elevated synaptic activity in ChAc MSNs. Treatment with the F-actin stabilizer phallacidin or the Src kinase inhibitor PP2 resulted in the significant reduction of disinhibited synaptic currents to healthy control levels, suggesting a Src kinase- and actin-dependent mechanism. This was underlined by increased G/F-actin ratios and elevated Lyn kinase activity in patient-derived MSNs. These data indicate that F-actin stabilization and Src kinase inhibition represent potential therapeutic targets in ChAc that may restore neuronal function

    Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. Cytoplasmic fused in sarcoma (FUS) aggregates are pathological hallmarks of FUS-ALS. Proper shuttling between the nucleus and cytoplasm is essential for physiological cell function. However, the initial event in the pathophysiology of FUS-ALS remains enigmatic. Using human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs), we show that impairment of poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response (DDR) signaling due to mutations in the FUS nuclear localization sequence (NLS) induces additional cytoplasmic FUS mislocalization which in turn results in neurodegeneration and FUS aggregate formation. Our work suggests that a key pathophysiologic event in ALS is upstream of aggregate formation. Targeting DDR signaling could lead to novel therapeutic routes for ameliorating ALS

    CD14 Counterregulates Lipopolysacharide- Induced Tumor Necrosis Factor-α Production in a Macrophage Subset

    Get PDF
    In response to GM-CSF or M-CSF, macrophages (MΦ) can acquire pro- or anti-inflammatory properties, respectively. Given the importance of CD14 and Toll-like receptor (TLR) 4 in lipopolysaccharide (LPS)-induced signaling, we studied the effect of anti-CD14 antibody mediated CD14 blockade on LPS-induced cytokine production, signal transduction and on the expression levels of CD14 and TLR4 in GM-MΦ and M-MΦ. We found M-MΦ to express higher levels of both surface antigens and to produce more interferon (IFN)-β and interleukin-10, but less tumor necrosis factor (TNF)-α than GM-MΦ. Blockage of CD14 at high LPS concentrations increased the production of proinflammatory cytokines and decreased that of IFN-β in M-MΦ but not in GM-MΦ. We show that phosphorylation states of signaling molecules of the MyD88 (myeloid differentiation primary response 88), TRIF (TIR-domain-containing adapter-inducing IFN-β) and MAPK (mitogen-activated protein kinase) pathways are not altered in any way that would account for the cytokine overshoot reaction. However, CD14 blockage in M-MΦ decreased TLR4 and CD14 expression levels, regardless of the presence of LPS, indicating that the loss of the surface molecules prevented LPS from initiating TRIF signaling. As TNF-α synthesis was even upregulated under these experimental conditions, we suggest that TRIF is normally involved in restricting LPSinduced TNF-α overproduction. Thus, surface CD14 plays a decisive role in the biological response by determining LPSinduced signaling

    CD14 Counterregulates Lipopolysacharide- Induced Tumor Necrosis Factor-α Production in a Macrophage Subset

    No full text
    In response to GM-CSF or M-CSF, macrophages (MΦ) can acquire pro- or anti-inflammatory properties, respectively. Given the importance of CD14 and Toll-like receptor (TLR) 4 in lipopolysaccharide (LPS)-induced signaling, we studied the effect of anti-CD14 antibody mediated CD14 blockade on LPS-induced cytokine production, signal transduction and on the expression levels of CD14 and TLR4 in GM-MΦ and M-MΦ. We found M-MΦ to express higher levels of both surface antigens and to produce more interferon (IFN)-β and interleukin-10, but less tumor necrosis factor (TNF)-α than GM-MΦ. Blockage of CD14 at high LPS concentrations increased the production of proinflammatory cytokines and decreased that of IFN-β in M-MΦ but not in GM-MΦ. We show that phosphorylation states of signaling molecules of the MyD88 (myeloid differentiation primary response 88), TRIF (TIR-domain-containing adapter-inducing IFN-β) and MAPK (mitogen-activated protein kinase) pathways are not altered in any way that would account for the cytokine overshoot reaction. However, CD14 blockage in M-MΦ decreased TLR4 and CD14 expression levels, regardless of the presence of LPS, indicating that the loss of the surface molecules prevented LPS from initiating TRIF signaling. As TNF-α synthesis was even upregulated under these experimental conditions, we suggest that TRIF is normally involved in restricting LPSinduced TNF-α overproduction. Thus, surface CD14 plays a decisive role in the biological response by determining LPSinduced signaling

    Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in Amyotrophic Lateral Sclerosis (ALS)--in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia.

    Get PDF
    Administration of mesenchymal stromal cells (MSC) improves functional outcome in the SOD1G93A mouse model of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS) as well as in models of other neurological disorders. We have now investigated the effect of the interaction between MSC and motor neurons (derived from both non-transgenic and mutant SOD1G93A transgenic mice), NSC-34 cells and glial cells (astrocytes, microglia) (derived again from both non-transgenic and mutant SOD1G93A ALS transgenic mice) in vitro. In primary motor neurons, NSC-34 cells and astrocytes, MSC conditioned medium (MSC CM) attenuated staurosporine (STS) - induced apoptosis in a concentration-dependent manner. Studying MSC CM-induced expression of neurotrophic factors in astrocytes and NSC-34 cells, we found that glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) gene expression in astrocytes were significantly enhanced by MSC CM, with differential responses of non-transgenic and mutant astrocytes. Expression of Vascular Endothelial Growth Factor (VEGF) in NSC-34 cells was significantly upregulated upon MSC CM-treatment. MSC CM significantly reduced the expression of the cytokines TNFα and IL-6 and iNOS both in transgenic and non-transgenic astrocytes. Gene expression of the neuroprotective chemokine Fractalkine (CX3CL1) was also upregulated in mutant SOD1G93A transgenic astrocytes by MSC CM treatment. Correspondingly, MSC CM increased the respective receptor, CX3CR1, in mutant SOD1G93A transgenic microglia. Our data demonstrate that MSC modulate motor neuronal and glial response to apoptosis and inflammation. MSC therefore represent an interesting candidate for further preclinical and clinical evaluation in ALS

    Ventral Telencephalic Patterning Protocols for Induced Pluripotent Stem Cells

    Get PDF
    The differentiation of human induced pluripotent stem cells (hiPSCs) into specific cell types for disease modeling and restorative therapies is a key research agenda and offers the possibility to obtain patient-specific cells of interest for a wide range of diseases. Basal forebrain cholinergic neurons (BFCNs) play a particular role in the pathophysiology of Alzheimer’s dementia and isolated dystonias. In this work, various directed differentiation protocols based on monolayer neural induction were tested for their effectiveness in promoting a ventral telencephalic phenotype and generating BFCN. Ventralizing factors [i.e., purmorphamine and Sonic hedgehog (SHH)] were applied at different time points, time intervals, and concentrations. In addition, caudal identity was prevented by the use of a small molecule XAV-939 that inhibits the Wnt-pathway. After patterning, gene expression profiles were analyzed by quantitative PCR (qPCR). Rostro-ventral patterning is most effective when initiated simultaneously with neural induction. The most promising combination of patterning factors was 0.5 μM of purmorphamine and 1 μM of XAV-939, which induces the highest expression of transcription factors specific for the medial ganglionic eminence, the source of GABAergic inter- and cholinergic neurons in the telencephalon. Upon maturation of cells, the immune phenotype, as well as electrophysiological properties were investigated showing the presence of marker proteins specific for BFCN (choline acetyltransferase, ISL1, p75, and NKX2.1) and GABAergic neurons. Moreover, a considerable fraction of measured cells displayed mature electrophysiological properties. Synaptic boutons containing the vesicular acetylcholine transporter (VACHT) could be observed in the vicinity of the cells. This work will help to generate basal forebrain interneurons from hiPSCs, providing a promising platform for modeling neurological diseases, such as Alzheimer’s disease or Dystonia

    Protective effects of MSC CM against STS toxicity in NSC-34 cells.

    No full text
    <p>NSC-34 cells were incubated with DMEM conditioned by MSC (CM) starting 4 h before exposure to STS (0.03 µM). A: STS-induced apoptosis was attenuated best by a 50% dilution of CM, as shown by MTT assay. B: Quantification of cell death by immunocytochemical analysis similarly revealed most neuroprotection at a 10–50% dilution of MSC CM. Values represent means ± SEM, ***<i>p</i><0.001, **<i>p</i><0.01, *<i>p</i><0.05, one-way ANOVA with Bonferroni post-test. C: Immunostainings showed a reduction of cell number due to induction of apoptosis by STS, as well as the protective effect of MSC CM. a: NSC-34 cell monoculture without any treatment. b: Reduction of ß-III tubulin positive NSC-34 cells following exposure to 0.03 µM STS. c: Increase in NSC-34 cell survival due to CM treatment. NSC-34 cells were stained by an antibody against ß-III tubulin (green). Stained nuclei of cultured cells appear in blue (DAPI). Scale bar 100 µm.</p

    Assessment of staurosporine-induced toxicity in motor neurons, NSC-34 cells and astrocytes.

    No full text
    <p>Dose dependent neurotoxic effect of STS on non-transgenic motor neurons cultured in monoculture as quantified by immunocytochemistry at DIV 7 (n = 8, Fig. 1A). Significant toxic effect of different concentrations of STS on viability of NSC-34 cells (Fig. 1B) and non-transgenic astrocytes (Fig. 1C) as detected by MTT assay. Values represent means ± SEM, ***<i>p</i><0.001, *<i>p</i><0.05. One-way ANOVA with Bonferroni post-test.</p
    corecore