4,164 research outputs found

    A single weekly Kt/Vurea target for peritoneal dialysis patients does not provide an equal dialysis dose for all

    Get PDF
    Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.Dialysis adequacy is traditionally based on urea clearance, adjusted for total body volume (Kt/Vurea), and clinical guidelines recommend a Kt/Vurea target for peritoneal dialysis. We wished to determine whether adjusting dialysis dose by resting and total energy expenditure would alter the delivered dialysis dose. The resting and total energy expenditures were determined by equations based on doubly labeled isotopic water studies and adjusted Kturea for resting energy expenditure and total energy expenditure in 148 peritoneal dialysis patients (mean age, 60.6 years; 97 male [65.5%]; 54 diabetic [36.5%]). The mean resting energy expenditure was 1534 kcal/d, and the total energy expenditure was 1974 kcal/day. Using a weekly target Kt/V of 1.7, Kt was calculated using V measured by bioimpedance and the significantly associated (r = 0.67) Watson equation for total body water. Adjusting Kt for resting energy expenditure showed a reduced delivered dialysis dose (ml/kcal per day) for women versus men (5.5 vs. 6.2), age under versus over 65 years (5.6 vs. 6.4), weight 80 kg (5.8 vs. 6.1), low versus high comorbidity (5.9 vs. 6.2), all of which were significant. Adjusting for the total energy expenditure showed significantly reduced dosing for those employed versus not employed (4.3 vs. 4.8), a low versus high frailty score (4.5 vs. 5.0) and nondiabetic versus diabetic (4.6 vs. 4.9). Thus, the current paradigm for a single target Kt/Vurea for all peritoneal dialysis patients does not take into account energy expenditure and metabolic rate and may lead to lowered dialysis delivery for the younger, more active female patient.Peer reviewedFinal Accepted Versio

    In vivo cannabidiol treatment improves endothelium-dependent vasorelaxation in mesenteric arteries of Zucker diabetic fatty rats

    Get PDF
    Background and purpose: We have shown that in vitro treatment with cannabidiol (CBD, 2 h) enhances endothelial function in arteries from Zucker diabetic fatty (ZDF) rats, partly due to a cyclooxygenase (COX)-mediated mechanism. The aim of the present study was to determine whether treatment with CBD in vivo would also enhance endothelial function. Experimental approach: Male ZDF rats, or ZDF Lean rats, were treated for 7 days (daily i.p. injection) with either 10mg/kg CBD or vehicle (n D 6 per group). Sections of mesenteric resistance arteries, femoral arteries and thoracic aortae were mounted on a wire myograph, and cumulative concentration-response curves to endothelium-dependent (acetylcholine, ACh, 1 nM–100 mM) or endothelium-independent (sodium nitroprusside, SNP, 1 nM–100 mM) agents were constructed. Multiplex analysis was used to measure serum metabolic and cardiovascular biomarkers. Key results: Vasorelaxation to ACh was significantly enhanced in mesenteric arteries from CBD-treated ZDF rats, but not ZDF Lean rats. The enhanced vasorelaxation in ZDF mesenteric arteries was no longer observed after COX inhibition using indomethacin or nitric oxide (NO) inhibition using L-NAME. Increased levels of serum c-peptide, insulin and intracellular adhesion molecule-1 observed in the ZDF compared to ZDF Lean rats were no longer significant after 7 days CBD treatment. Conclusion and implications: Short-term in vivo treatment with CBD improves ex vivo endothelium-dependent vasorelaxation in mesenteric arteries from ZDF rats due to COX- or NO-mediated mechanisms, and leads to improvements in serum biomarkers

    Consumer Demand for Major Foods in Egypt

    Get PDF
    This study provides information on the structure of the consumer demand for major foods in Egypt. The information is in the form of key parameters for consumer demand systems. The modern theory of consumer behavior is the basis for estimating systems of demand equations. These systems yield estimates of own- and cross-price elasticities. The Linear Almost Ideal Demand System (LAIDS) model is applied in estimating a system of demand equations for food commodities. A full demand matrix results with a coherent and consistent set of price and expenditure elasticity estimates. Using the estimated own- and cross-price and expenditure elasticities, food and agricultural policies during the transformation to the market economy can be analyzed. A framework for utilizing the estimated demand parameters in forecasting is also presented

    Detection of Dust Storms Using MODIS Reflective and Emissive Bands

    Get PDF
    YesDust storms are one of the natural phenomena, which have increased in frequency in recent years in North Africa, Australia and northern China. Satellite remote sensing is the common method for monitoring dust storms but its use for identifying dust storms over sandy ground is still limited as the two share similar characteristics. In this study, an artificial neural network (ANN) is used to detect dust storm using 46 sets of data acquired between 2001 and 2010 over North Africa by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites. The ANN uses image data generated from Brightness Temperature Difference (BTD) between bands 23 and 31 and BTD between bands 31 and 32 with three bands 1, 3, and 4, to classify individual pixels on the basis of their multiple-band values. In comparison with the manually detection of dust storms, the ANN approach gave better result than the Thermal Infrared Integrated Dust Index approach for dust storms detection over the Sahara. The trained ANN using data from the Sahara desert gave an accuracy of 0.88 when tested on data from the Gobi desert and managed to detect 90 out of the 96 dust storm events captured worldwide by Terra and Aqua satellites in 2011 that were classified as dusty images on NASA Earth Observatory.IEEE Geoscience and Remote Sensing Societ

    N-dimensional electron in a spherical potential: the large-N limit

    Full text link
    We show that the energy levels predicted by a 1/N-expansion method for an N-dimensional Hydrogen atom in a spherical potential are always lower than the exact energy levels but monotonically converge towards their exact eigenstates for higher ordered corrections. The technique allows a systematic approach for quantum many body problems in a confined potential and explains the remarkable agreement of such approximate theories when compared to the exact numerical spectrum.Comment: 8 pages, 1 figur

    The Locust Standard Brain: A 3D Standard of the Central Complex as a Platform for Neural Network Analysis

    Get PDF
    Many insects use the pattern of polarized light in the sky for spatial orientation and navigation. We have investigated the polarization vision system in the desert locust. To create a common platform for anatomical studies on polarization vision pathways, Kurylas et al. (2008) have generated a three-dimensional (3D) standard brain from confocal microscopy image stacks of 10 male brains, using two different standardization methods, the Iterative Shape Averaging (ISA) procedure and the Virtual Insect Brain (VIB) protocol. Comparison of both standardization methods showed that the VIB standard is ideal for comparative volume analysis of neuropils, whereas the ISA standard is the method of choice to analyze the morphology and connectivity of neurons. The central complex is a key processing stage for polarization information in the locust brain. To investigate neuronal connections between diverse central-complex neurons, we generated a higher-resolution standard atlas of the central complex and surrounding areas, using the ISA method based on brain sections from 20 individual central complexes. To explore the usefulness of this atlas, two central-complex neurons, a polarization-sensitive columnar neuron (type CPU1a) and a tangential neuron that is activated during flight, the giant fan-shaped (GFS) neuron, were reconstructed 3D from brain sections. To examine whether the GFS neuron is a candidate to contribute to synaptic input to the CPU1a neuron, we registered both neurons into the standardized central complex. Visualization of both neurons revealed a potential connection of the CPU1a and GFS neurons in layer II of the upper division of the central body

    High-density geometric morphometric analysis of intraspecific cranial integration in the barred grass snake (Natrix helvetica) and green anole (Anolis carolinensis)

    Get PDF
    How do phenotypic associations intrinsic to an organism, such as developmental and mechanical processes, direct morphological evolution? Comparisons of intraspecific and clade-wide patterns of phenotypic covariation could inform how population-level trends ultimately dictate macroevolutionary changes. However, most studies have focused on analyzing integration and modularity either at macroevolutionary or intraspecific levels, without a shared analytical framework unifying these temporal scales. In this study, we investigate the intraspecific patterns of cranial integration in two squamate species: Natrix helvetica and Anolis carolinensis. We analyze their cranial integration patterns using the same high-density 3-D geometric morphometric approach used in a prior squamate-wide evolutionary study. Our results indicate that Natrix and Anolis exhibit shared intraspecific cranial integration patterns, with some differences, including a more integrated rostrum in the latter. Notably, these differences in intraspecific patterns correspond to their respective interspecific patterns in snakes and lizards, with few exceptions. These results suggest that interspecific patterns of cranial integration reflect intraspecific patterns. Hence, our study suggests that the phenotypic associations that direct morphological variation within species extend across micro- and macroevolutionary levels, bridging these two scales

    Single- and multi-photon excited fluorescence from serotonin complexed with B-cyclodextrin

    Get PDF
    The fluorescence of serotonin on binding with B-cyclodextrin has been studied using both steady-state and time-resolved methods. Steady state fluorescence intensity of serotonin at 340 nm showed ~ 30% increase in intensity on binding with Ka ~ 60 dm3 mol 1 and the fluorescence lifetimes showed a corresponding increase. In contrast, the characteristic green fluorescence (‘hyperluminescence’) of serotonin observed upon multiphoton near-infrared excitation with sub-picosecond pulses was resolved into two lifetime components assigned to free and bound serotonin. The results are of interest in relation to selective imaging and detection of serotonin using the unusual hyperluminescence emission and in respect to recent determinations of serotonin by capillary electrophoresis in the presence of cyclodextrin. The results also suggest that hyperluminescence occurs from multiphoton excitation of a single isolated serotonin molecule

    Size, microhabitat, and loss of larval feeding drive cranial diversification in frogs

    Get PDF
    Habitat is one of the most important factors shaping organismal morphology, but it may vary across life history stages. Ontogenetic shifts in ecology may introduce antagonistic selection that constrains adult phenotype, particularly with ecologically distinct developmental phases such as the free-living, feeding larval stage of many frogs (Lissamphibia: Anura). We test the relative influences of developmental and ecological factors on the diversification of adult skull morphology with a detailed analysis of 15 individual cranial regions across 173 anuran species, representing every extant family. Skull size, adult microhabitat, larval feeding, and ossification timing are all significant factors shaping aspects of cranial evolution in frogs, with late-ossifying elements showing the greatest disparity and fastest evolutionary rates. Size and microhabitat show the strongest effects on cranial shape, and we identify a “large size-wide skull” pattern of anuran, and possibly amphibian, evolutionary allometry. Fossorial and aquatic microhabitats occupy distinct regions of morphospace and display fast evolution and high disparity. Taxa with and without feeding larvae do not notably differ in cranial morphology. However, loss of an actively feeding larval stage is associated with higher evolutionary rates and disparity, suggesting that functional pressures experienced earlier in ontogeny significantly impact adult morphological evolution

    Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic feeders

    Get PDF
    Albanerpetontids are tiny, enigmatic fossil amphibians with a distinctive suite of characteristics, including scales and specialized jaw and neck joints. Here we describe a new genus and species of albanerpetontid, represented by fully articulated and three-dimensional specimens preserved in amber. These specimens preserve skeletal and soft tissues, including an elongated median hyoid element, the tip of which remains embedded in a distal tongue pad. This arrangement is very similar to the long, rapidly projecting tongue of chameleons. Our results thus suggest that albanerpetontids were sit-and-wait ballistic tongue feeders, extending the record of this specialized feeding mode by around 100 million years
    corecore