76 research outputs found

    Si-rich silicon nitride for nonlinear signal processing applications

    No full text
    Nonlinear silicon photonic devices have attracted considerable attention thanks to their ability to show large third-order nonlinear effects at moderate power levels allowing for all-optical signal processing functionalities in miniaturized components. Although significant efforts have been made and many nonlinear optical functions have already been demonstrated in this platform, the performance of nonlinear silicon photonic devices remains fundamentally limited at the telecom wavelength region due to the two photon absorption (TPA) and related effects. In this work, we propose an alternative CMOS-compatible platform, based on silicon-rich silicon nitride that can overcome this limitation. By carefully selecting the material deposition parameters, we show that both of the device linear and nonlinear properties can be tuned in order to exhibit the desired behaviour at the selected wavelength region. A rigorous and systematic fabrication and characterization campaign of different material compositions is presented, enabling us to demonstrate TPA-free CMOS-compatible waveguides with low linear loss (~1.5dB/cm) and enhanced Kerr nonlinear response (Re{γ} = 16 Wm-1). Thanks to these properties, our nonlinear waveguides are able to produce a pi nonlinear phase shift, paving the way for the development of practical devices for future optical communication applications

    Evaluation of the rbcL marker for metabarcoding of marine diatoms and inference of population structure of selected genera

    Get PDF
    Diatoms are one of the most important phytoplankton groups in the world’s oceans. There are responsible for up to 40% of the photosynthetic activity in the Ocean, and they play an important role in the silicon and carbon cycles by decoupling carbon from atmospheric interactions through sinking and export. These processes are strongly influenced by the taxonomic composition of diatom assemblages. Traditionally, these have been assessed using microscopy, which in some cases is not reliable or reproducible. Next-generation sequencing enabled us to study diversity in a high-throughput manner and uncover new distribution patterns and diversity. However, phylogenetic markers used for this purpose, such as various 18S rDNA regions, are often insufficient because they cannot distinguish between some taxa. In this work, we demonstrate the performance of the chloroplast-encoded rbcL marker for metabarcoding marine diatoms compared to microscopy and 18S-V9 metabarcoding using a series of monthly samples from the Gulf of Trieste (GoT), northern Adriatic Sea. We demonstrate that rbcL is able to detect more taxa compared to 18S-V9 metabarcoding or microscopy, while the overall structure of the diatom assemblage was comparable to the other two methods with some variations, that were taxon dependent. In total, 6 new genera and 22 new diatom species for the study region were identified. We were able to spot misidentification of genera obtained with microscopy such as Pseudo-nitzschia galaxiae, which was mistaken for Cylindrotheca closterium, as well as genera that were completely overlooked, such as Minidiscus and several genera from the Cymatosiraceae family. Furthermore, on the example of two well-studied genera in the region, namely Chaetoceros and particularly Pseudo-nitzschia, we show how the rbcL method can be used to infer even deeper phylogenetic and ecologically significant differences at the species population level. Despite a very thorough community analysis obtained by rbcL the incompleteness of reference databases was still evident, and we shed light on possible improvements. Our work has further implications for studies dealing with taxa distribution and population structure, as well as carbon and silica flux models and networks

    Značaj genetičkih resursa iz različitih geografskih i klimatskih regiona u simultanom oplemenjivanju kukuruza na visok kvalitet proteina (VKP) i tolerantnost na stres

    Get PDF
    Due to the low biological value of proteins of common maize, it was reinitiated breeding for high protein quality maize (HQPM) using three genetic systems, namely: opaque-2 gene, endosperm modifier genes and enhancer genes, which are increasing lysine and tryptophan content in opaque-2 background In order to alleviate effect of abiotic and biotic stress factors, the genotypes with tolerance to those factors were included. Genetic resources originating from North, Central and South America, then West, Central and Southern Africa and gene bank of Maize Research Institute 'Zemun Polje' were used. Combining breeding approaches in selection of genetic resources, field plot techniques and laboratory analysis, it was created large number of early QPM varieties, inbred lines and hybrids with modified endosperm and high yield potential under poor and good growing conditions. Created lines exhibited high combining ability in conventional and non-conventional hybrids. Yield trials showed that QPM hybrids are competing with commercial hybrids of common maize.Zbog niske biološke vrednosti proteina zrna standardnog tipa kukuruza se pristupilo stvaranju sorata i linija kukuruza visokog kvaliteta proteina (VKP) korišćenjem tri genetička sistema: opaque-2 gena, gena modifikatora endosperma i gena enhansera koji povećavaju sadržaj lizina i triptofana u opaque-2 osnovi. Da bi se istovremeno ublažilo i delovanje abiotskih i biotskih faktora stresa uključeni su i genotipovi sa tolerantnošću na ove faktore. Korišćeni su genetički resursi poreklom iz Severne, Centralne i Južne Amerike, zatim Zapadne, Centralne i Južne Afrike i resursi iz banke gena Instituta za kukuruz 'Zemun polje'. Kombinovanjem selekcionih pristupa u izboru genetičkih resursa, tehnika u poljskim i laboratorijskim uslovima stvoren je veliki broj ranih sorata, inbred linija i hibrida VKP, modifikikovanog endosperma i visokog potencijala rodnosti pod lošim i normalnim uslovima gajenja. Takođe, stvorene inbred linije su ispoljile visoku kombinacionu sposobnost u nekonvencionalnim i konvencionalnim hibridima. Poljski ogledi su pokazali da VKP hibridi konkurišu po prinosu najboljim komercijalnim hibridima standardnog tipa kukuruza

    Complete revascularization with multivessel PCI for myocardial infarction

    Get PDF
    BACKGROUND In patients with ST-segment elevation myocardial infarction (STEMI), percutaneous coronary intervention (PCI) of the culprit lesion reduces the risk of cardiovascular death or myocardial infarction. Whether PCI of nonculprit lesions further reduces the risk of such events is unclear. METHODS We randomly assigned patients with STEMI and multivessel coronary artery disease who had undergone successful culprit-lesion PCI to a strategy of either complete revascularization with PCI of angiographically significant nonculprit lesions or no further revascularization. Randomization was stratified according to the intended timing of nonculprit-lesion PCI (either during or after the index hospitalization). The first coprimary outcome was the composite of cardiovascular death or myocardial infarction; the second coprimary outcome was the composite of cardiovascular death, myocardial infarction, or ischemia-driven revascularization. RESULTS At a median follow-up of 3 years, the first coprimary outcome had occurred in 158 of the 2016 patients (7.8%) in the complete-revascularization group as compared with 213 of the 2025 patients (10.5%) in the culprit-lesion-only PCI group (hazard ratio, 0.74; 95% confidence interval [CI], 0.60 to 0.91; P=0.004). The second coprimary outcome had occurred in 179 patients (8.9%) in the complete-revascularization group as compared with 339 patients (16.7%) in the culprit-lesion-only PCI group (hazard ratio, 0.51; 95% CI, 0.43 to 0.61; P<0.001). For both coprimary outcomes, the benefit of complete revascularization was consistently observed regardless of the intended timing of nonculprit-lesion PCI (P=0.62 and P=0.27 for interaction for the first and second coprimary outcomes, respectively). CONCLUSIONS Among patients with STEMI and multivessel coronary artery disease, complete revascularization was superior to culprit-lesion-only PCI in reducing the risk of cardiovascular death or myocardial infarction, as well as the risk of cardiovascular death, myocardial infarction, or ischemia-driven revascularization. (Funded by the Canadian Institutes of Health Research and others; COMPLETE ClinicalTrials.gov number, NCT01740479. opens in new tab.

    Framing Cutting-Edge Integrative Deep-Sea Biodiversity Monitoring via Environmental DNA and Optoacoustic Augmented Infrastructures

    Get PDF
    17 pages, 1 figure, 1 tableDeep-sea ecosystems are reservoirs of biodiversity that are largely unexplored, but their exploration and biodiscovery are becoming a reality thanks to biotechnological advances (e.g., omics technologies) and their integration in an expanding network of marine infrastructures for the exploration of the seas, such as cabled observatories. While still in its infancy, the application of environmental DNA (eDNA) metabarcoding approaches is revolutionizing marine biodiversity monitoring capability. Indeed, the analysis of eDNA in conjunction with the collection of multidisciplinary optoacoustic and environmental data, can provide a more comprehensive monitoring of deep-sea biodiversity. Here, we describe the potential for acquiring eDNA as a core component for the expanding ecological monitoring capabilities through cabled observatories and their docked Internet Operated Vehicles (IOVs), such as crawlers. Furthermore, we provide a critical overview of four areas of development: (i) Integrating eDNA with optoacoustic imaging; (ii) Development of eDNA repositories and cross-linking with other biodiversity databases; (iii) Artificial Intelligence for eDNA analyses and integration with imaging data; and (iv) Benefits of eDNA augmented observatories for the conservation and sustainable management of deep-sea biodiversity. Finally, we discuss the technical limitations and recommendations for future eDNA monitoring of the deep-sea. It is hoped that this review will frame the future direction of an exciting journey of biodiscovery in remote and yet vulnerable areas of our planet, with the overall aim to understand deep-sea biodiversity and hence manage and protect vital marine resourcesThis research has been funded within the framework of the following project activities: ARIM (Autonomous Robotic Sea-Floor Infrastructure for Benthopelagic Monitoring; MarTERA ERA-Net Cofound); RESBIO (TEC2017-87861-R; Ministerio de Ciencia, Innovación y Universidades); JERICO-S3: (Horizon 2020; Grant Agreement no. 871153); ENDURUNS (Research Grant Agreement H2020-MG-2018-2019-2020 n.824348); Slovenian Research Agency (Research Core Funding Nos. P1-0237 and P1-0255 and project ARRS-RPROJ-JR-J1-3015). We also profited of the funding from the Spanish Government through the “Severo Ochoa Centre of Excellence” accreditation (CEX2019-000928-S) and Italian Ministry of Education (MIUR) under the “Bando premiale FOE 2015” (nota prot. N. 850, dd. 27 ottobre 2017) with the project EarthCruisers “EARTH’s CRUst Imagery for Investigating Seismicity, Volcanism, and Marine Natural Resources in the Sicilian Offshore”. Ocean Networks Canada was funded through Canada Foundation for Innovation-Major Science Initiative (CFI-MSI) fund 30199Peer reviewe

    Zoantharians (Hexacorallia: Zoantharia) Associated with Cold-Water Corals in the Azores Region: New Species and Associations in the Deep Sea

    Get PDF
    Zoantharians are a group of cnidarians that are often found in association with marine invertebrates, including corals, in shallow and deep-sea environments. However, little is known about deep-sea zoantharian taxonomy, specificity and nature of their associations with their coral hosts. In this study, analyses of molecular data (mtDNA COI, 16S, and 12S rDNA) coupled with ecological and morphological characteristics were used to examine zoantharian specimens associated with cold-water corals (CWC) at depths between 110 and 800 m from seamounts and island slopes in the Azores region. The zoantharians examined were found living in association with stylasterids, antipatharians and octocorals. From the collected specimens, four new species were identified: (1) Epizoanthus martinsae sp. n. associated with the antipatharian Leiopathes sp.; (2) Parazoanthus aliceae sp. n. associated with the stylasterid Errina dabneyi (Pourtalès, 1871); (3) Zibrowius alberti sp. n. associated with octocorals of the family Primnoidae [Paracalyptrophora josephinae (Lindström, 1877)] and the family Plexauridae (Dentomuricea aff. meteor Grasshoff, 1977); (4) Hurlizoanthus hirondelleae sp. n. associated with the primnoid octocoral Candidella imbricata (Johnson, 1862). In addition, based on newly collected material, morphological and molecular data and phylogenic reconstruction, the zoantharian Isozoanthus primnoidus Carreiro-Silva, Braga-Henriques, Sampaio, de Matos, Porteiro &amp; Ocaña, 2011, associated with the primnoid octocoral Callogorgia verticillata (Pallas, 1766), was reclassified as Zibrowius primnoidus comb. nov. The zoantharians, Z. primnoidus comb. nov., Z. alberti sp. n., and H. hirondelleae sp. n. associated with octocorals showed evidence of a parasitic relationship, where the zoantharian progressively eliminates gorgonian tissue and uses the gorgonian axis for structure and support, and coral sclerites for protection. In contrast, the zoantharian P. aliceae sp. n. associated with the stylasterid E. dabneyi and the zoantharian E. martinsae sp. n. associated with the antipatharian Leiopathes sp., appear to use the coral host only as support with no visible damage to the host. The monophyly of octocoral-associated zoantharians suggests that substrate specificity is tightly linked to the evolution of zoantharians.Zibrowius alberti sp. n. urn:lsid:zoobank.org:act:8E186AD4-CA6E-419B-B46A-4C8D11C757DDHurlizoanthus hirondelleae sp. n. urn:lsid:zoobank.org:act:6737B10E-9E87-4BA0-9559-C22D49863732Parazoanthus aliceae sp.n. urn:lsid:zoobank.org:act:3D3AA61D-E5CC-47DF-94F1-A4A2FF59ABEAEpizoanthus martinsae sp. n. urn:lsid: zoobank.org:act:04686BB5-03D7-4132-B52B-CC89DF8EBFA8urn:lsid:zoobank.org:pub:FED88229-30F9-481F-9155-FF481790AE5

    Definition and Classification of Power System Stability – Revisited & Extended

    Full text link
    Since the publication of the original paper on power system stability definitions in 2004, the dynamic behavior of power systems has gradually changed due to the increasing penetration of converter interfaced generation technologies, loads, and transmission devices. In recognition of this change, a Task Force was established in 2016 to re-examine and extend, where appropriate, the classic definitions and classifications of the basic stability terms to incorporate the effects of fast-response power electronic devices. This paper based on an IEEE PES report summarizes the major results of the work of the Task Force and presents extended definitions and classification of power system stability.Peer reviewe

    An extended mtDNA phylogeography for the alpine newt illuminates the provenance of introduced populations

    Get PDF
    Many herpetofauna species have been introduced outside of their native range. MtDNA barcoding is regularly used to determine the provenance of such populations. The alpine newt has been introduced across the Netherlands, the United Kingdom and Ireland. However, geographical mtDNA structure across the natural range of the alpine newt is still incompletely understood and certain regions are severely undersampled. We collect mtDNA sequence data of over seven hundred individuals, from both the native and the introduced range. The main new insights from our extended mtDNA phylogeography are that 1) haplotypes from Spain do not form a reciprocally monophyletic clade, but are nested inside the mtDNA clade that covers western and eastern Europe; and 2) haplotypes from the northwest Balkans form a monophyletic clade together with those from the Southern Carpathians and Apuseni Mountains. We also home in on the regions where the distinct mtDNA clades meet in nature. We show that four out of the seven distinct mtDNA clades that comprise the alpine newt are implicated in the introductions in the Netherlands, United Kingdom and Ireland. In several introduced localities, two distinct mtDNA clades co-occur. As these mtDNA clades presumably represent cryptic species, we urge that the extent of genetic admixture between them is assessed from genome-wide nuclear DNA markers. We mobilized a large number of citizen scientists in this project to support the collection of DNA samples by skin swabbing and underscore the effectiveness of this sampling technique for mtDNA barcoding
    corecore