1,374 research outputs found

    TWT design requirements for 30/20 GHz digital communications' satellite

    Get PDF
    The rapid growth of communication traffic (voice, data, and video) requires the development of additional frequency bands before the 1990's. The frequencies currently in use for satellite communications at 6/4 GHz are crowded and demands for 14/12 GHz systems are increasing. Projections are that these bands will be filled to capacity by the late 1980's. The next higher frequency band allocated for satellite communications is at 30/20 GHz. For interrelated reasons of efficiency, power level, and system reliability criteria, a candidate for the downlink amplifier in a 30/20 GHz communications' satellite is a dual mode traveling wave tube (TWT) equipped with a highly efficient depressed collector. A summary is given of the analyses which determine the TWT design requirements. The overall efficiency of such a tube is then inferred from a parametric study and from experimental data on multistaged depressed collectors. The expected TWT efficiency at 4 dB below output saturation is 24 percent in the high mode and 22 percent in the low mode

    Analytical prediction with multidimensional computer programs and experimental verification of the performance, at a variety of operating conditions, of two traveling wave tubes with depressed collectors

    Get PDF
    Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required

    A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions

    Get PDF
    During the past 15 years, increasing application of microwave heating to polycondensation reactions has been witnessed. Experiments have been carried out at laboratory scale using widely different experimental procedures. The use of microwaves has often led to significant benefits compared to conventional heating experiments in terms of multi-fold decrease in reaction times and energy consumption and production of polymers with increased molecular weight and improved mechanical properties. In other cases, microwaves do not appear to produce any significant benefits compared to conventional heating. At present, guidelines to experimentalist as to the process conditions and experimental design that should be applied are missing and experimentation seems to be based on an empirical trial-and-error approach. In view of the very different experimental protocols that have been applied and the contradictory trends that are frequently reported, we aim in this review to shed light on the role of important process parameters, such as the presence and type of solvent, the dielectric properties of the mixture and the individual phases, the use of heterogeneous catalysts, pressure, stirring, reflux conditions, temperature measurement method and microwave absorbing fillers, which all seem to determine the occurrence and magnitude of the benefits enabled by microwaves during polycondensation reactions

    Electronic structure of the (111) and (-1-1-1) surfaces of cubic BN: A local-density-functional ab initio study

    Full text link
    We present ab initio local-density-functional electronic structure calculations for the (111) and (-1-1-1) surfaces of cubic BN. The energetically stable reconstructions, namely the N adatom, N3 triangle models on the (111), the (2x1), boron and nitrogen triangle patterns on the (-1-1-1) surface are investigated. Band structure and properties of the surface states are discussed in detail.Comment: 8 pages, 12 figure

    Molecular Composition of the Louse Sheath

    Get PDF
    Flash pyrolysis-gas chromatography/mass spectrometry was used to assess the chemical composition of the head louse\u27s nit sheath. The pyrolyzate of the female insect\u27s secretions, which form a cement-like cylinder holding the egg onto the hair, is dominated by amino acid derivatives and fatty acids. No chitin-specific compounds were detected in the sheath. These results, contrary to previous reports, show that the polymeric complex of the sheath is composed of proteinaceous moieties, possibly cross-linked to aliphatic components. This study constitutes the first chemical characterization of the pyrolysis products of insect (louse) glue and unequivocally confirms that louse sheaths are not chitinous, as suggested by earlier histochemical studies. Development of agents that might loosen nits from the hair shaft is dependent on research that addresses the chemical composition of the nit sheath

    A systematic review of experiences of advanced practice nursing in general practice

    Get PDF
    Background: Despite efforts to achieve conceptual clarity, advanced practice nursing continues to reside in aliminal space, unable to secure ongoing recognition as a viable means of healthcare delivery. This is particularlyevident in general practice where advanced practice role development is more fluid and generally less supportedby the hierarchical structures evident in the hospital system. This review synthesises published qualitative studiesreporting experiences of advanced practice nursing in general practice. The panoramic view provided by patients,nurses and doctors within this novel context, offers a fresh perspective on why advanced practice nurses havestruggled to gain acceptance within the healthcare milieu.Methods: We conducted a systematic review of qualitative studies that explored the experiences of patients,nurses and doctors who had contact with advanced practice nurses working in general practice. Published workfrom 1990 to June 2016 was located using CINAHL and PubMed. The full text of relevant studies was retrieved afterreading the title and abstract. Critical appraisal was undertaken and the findings of included studies were analysedusing the constant comparative method. Emergent codes were collapsed into sub-themes and themes.Results: Twenty articles reporting the experiences of 486 participants were included. We identified one majortheme: legitimacy; and three sub-themes: (1) establishing and maintaining confidence in the advanced practicenurse, (2) strengthening and weakening boundaries between general practitioners and advanced practice nursesand (3) establishing and maintaining the value of advanced practice nursing.Conclusions: We set out to describe experiences of advanced practice nursing in general practice. We discovered thatgeneral practitioners and patients continue to have concerns around responsibility, trust and accountability. Additionally,advanced practice nurses struggle to negotiate and clarify scopes of practice while general practitioners have troublejustifying the costs associated with advanced practice nursing roles. Therefore, much work remains to establish andmaintain the legitimacy of advanced practice nursing in general practice

    Magnetic order and magnetoelectric properties of R2CoMn O6 perovskites (R=Ho, Tm, Yb, and Lu)

    Get PDF
    We present a detailed study on the magnetic structure and magnetoelectric properties of several double perovskites R2CoMnO6 (R=Ho, Tm, Yb, and Lu). All of these samples show an almost perfect (~94%) ordering of Co2+ and Mn4+ cations in the unit cell. Our research reveals that the magnetic ground state strongly depends on the R size. For samples with larger R (Ho and Tm), the ground state is formed by a ferromagnetic order (F type) of Co2+ and Mn4+ moments, while R either remains mainly disordered (Ho) or is coupled antiferromagnetically (Tm) to the Co/Mn sublattice. For samples with smaller R (Yb or Lu), competitive interactions lead to the formation of an E-type arrangement for the Co2+ and Mn4+ moments with a large amount of extended defects such as stacking faults. The Yb3+ is partly ordered at very low temperature. The latter samples undergo a metamagnetic transition from the E into the F type, which is coupled to a negative magnetodielectric effect. Actually, the real part of dielectric permittivity shows an anomaly at the magnetic transition for the samples exhibiting an E-type order. This anomaly is absent in samples with F-type order, and, accordingly, it vanishes coupled to the metamagnetic transition for R=Yb or Lu samples. At room temperature, the huge values of the dielectric constant reveal the presence of Maxwell-Wagner depletion layers. Pyroelectric measurements reveal a high polarization at low temperature, but the onset of pyroelectric current is neither correlated to the kind of magnetic ordering nor to the magnetic transition. Our study identified the pyroelectric current as thermally stimulated depolarization current and electric-field polarization curves show a linear behavior at low temperature. Therefore, no clear ferroelectric transition occurs in these compounds

    Evidence of large magneto-dielectric effect coupled to a metamagnetic transition in Yb2CoMnO6

    Get PDF
    The double perovskite Yb2CoMnO6 has been synthesized with an almost perfect checkerboard arrangement of Co2+ and Mn4+ cations in the B-sublattice of the perovskite cell. It presents an anomaly in the electric capacitance and a strong magneto-dielectric effect at about 40 K whose interplay with the microscopic magnetic behavior has been investigated by means of neutron diffraction, magnetization, pyroelectric, and relative dielectric permittivity measurements. We show that the onset of an E-type antiferromagnetic ordering of Co2+ and Mn4+ moments monitored by neutron diffraction provokes the noticeable jump of the relative dielectric permittivity (∌9%) at about 40 K. It is also shown that this jump can be totally suppressed by application of a magnetic field of ÎŒ0H = 5 T. Neutron experiments and magnetic measurements confirm that such a suppression leading to a significant magneto-dielectric effect is driven by a metamagnetic phase transition from the peculiar E-type ordering of 3d moments into a collinear ferromagnetic order. Pyroelectric current measurements do not show any spontaneous electric polarization, so the large dielectric anomaly at zero field cannot be ascribed to a ferroelectric ordering.We thank financial support from the Spanish MINECO (Project Nos. MAT2012-38213-C02-01 and MAT2012-38213-C02-02, cofunded by ERDF from EU) and Diputacion General de Aragon (DGA-CAMRADS). One of us (J.A.R.-V.) acknowledges CSIC for a JAEdoc contract.Peer Reviewe

    Magnetoelectric and structural properties of Y2CoMn O6: The role of antisite defects

    Get PDF
    We have carried out an investigation on the magnetoelectric properties of the presumed multiferroic Y2CoMnO6 with different degrees of Co/Mn atomic ordering. The magnetic ground state was studied by neutron diffraction, showing a collinear ferromagnetic (FM) ordering of Co and Mn moments with a small antiferromagnetic canting. No superstructure peaks from an E-type magnetic structure were detected in our measurements. Magnetic measurements reveal FM transitions with pinned magnetic domains. The degree of Co/Mn ordering affects the Curie temperature only a little, but has strong effects on the magnetic hysteresis loops, and the FM moment signal at high field increases with increasing such order. The loops display steps at critical fields whose number and extent depends on each specimen. The most ordered sample exhibits the greatest steps ascribed to the alignment of magnetic domains separated by antiphase boundaries. All samples are insulators exhibiting low dielectric loss and dielectric constants at low temperature. On warming, they show a step increase in the real dielectric permittivity accompanied by peaks in the dielectric loss typical of thermally activated hopping processes. At room temperature, the huge values of the dielectric constant reveal the presence of Maxwell-Wagner depletion layers. Pyroelectric measurements reveal a high polarization at low temperature for these compounds that increases with increasing the Co/Mn ordering. There is no correlation between the magnetic transition and the onset of pyroelectric current. No significant changes are observed in the pyroelectric effect measured under an external magnetic field, so magnetoelectric coupling is negligible. This paper identifies the pyroelectric current as thermally stimulated depolarization current ascribed to the reorientation of defect dipoles with activation energy of about 0.05 eV. Therefore, no ferroelectric transition occurs in these compounds, discarding the existence of intrinsic magnetoelectric multiferroicity
    • 

    corecore