26 research outputs found

    Stress-strain analysis of aortic aneurysms

    Get PDF
    Tato práce se zabývá problematikou aneurysmat břišní aorty a možností využít konečnoprvkovou deformačně-napěťovou analýzu těchto aneurysmat ke stanovení rizika ruptury. První část práce je věnována úvodu do problematiky, popisu kardiovaskulární soustavy člověka s důrazem na abdominální aortu, anatomii, fyziologii a patologii stěny tepny s důrazem na procesy vedoucí ke vzniku aneurysmatu. Dále se práce věnuje rizikovým faktorům přispívajících ke vzniku aneurysmat spolu s analýzou současných klinických postupů ke stanovení rizika ruptury spolu se srovnáním navrhovaného kritéria maximálního napětí. Dominantní část této disertace je věnována identifikaci faktorů ovlivňujících napjatost a deformaci stěny aneurysmatu spolu s návrhem nových postupů, prezentací vlastních poznatků vedoucích ke zpřesnění určení rizika ruptury pomocí deformačně- napěťové analýzy a metody konečných prvků. Nejprve je analyzován vliv geometrie, vedoucí k závěru, že je nezbytné používání individuálních geometrií pacienta. Dále je pozornost zaměřena na odbočující tepny, které ve stěně působí jako koncentrátor napětí a mohou tedy ovlivňovat napjatost v ní. Jako další podstatný faktor byl identifikován vliv nezatížené geometrie a bylo napsáno makro pro její nalezení, které bylo opět zahrnuto jako standardní součást do výpočtového modelu. Mechanické vlastnosti jak stěny aneurysmatu, tak intraluminálního trombu jsou experimentálně testovány pomocí dvouosých zkoušek. Také je zde analyzován vliv modelu materiálu, kde je ukázáno, že srovnávání maximálních napětí u jednotlivých modelů materiálu není vhodné díky zcela rozdílným gradientům napětí ve stěně aneurysmatu. Dále je zdůrazněna potřeba znalosti distribuce kolagenních vláken ve stěně a navržen program k jejímu získání. Intraluminální trombus je analyzován ve dvou souvislostech. Jednak je ukázán vliv jeho ruptury na napětí ve stěně a jednak je analyzován vliv jeho poroelastické struktury na totéž. Posledním identifikovaným podstatným faktorem je zbytková napjatost ve stěně. Její významnost je demonstrována na několika aneurysmatech a i tato je zahrnuta jako integrální součást do našeho výpočtového modelu.Na závěr jsou pak navrženy další možné směry výzkumu.This thesis deals with abdominal aortic aneurysms and the possibility of using finite element method in assessment of their rupture risk. First part of the thesis is dedicated to an introduction into the problem, description of human cardiovascular system where the abdominal aorta, its anatomy, physiology and pathology is emphasized. There Processes leading to formationing of abdominal aortic aneurysms are also discussed. Risk factors contributing to creation of aneurysms are discussed next. Finally, an analysis of current clinical criteria which determine rupture risk of an abdominal aortic aneurysm is presented and compared with the new maximum stress criterion being currently in development. Main part of the thesis deals with the identification of relevant factors which affect stress and deformation of aneurysmal wall. This is connected with proposals of new approaches leading to predicting the rupture risk more accurately by using finite element stress-strain analysis. The impact of geometry is analyzed first with the conclusion that patient-specific geometry is a crucial input in the computational model. Therefore its routine reconstruction has been managed. Attention is then paid to the branching arteries which were neglected so far although they cause a stress concentration in arterial wall. The necessity of knowing the unloaded geometry of aneurysm is then emphasized. Therefore a macro has been written in order to be able to find the unloaded geometry for any patient-specific geometry of aneurysm. Mechanical properties of both aneurysmal wall and intraluminal thrombus were also experimentally tested and their results were fitted by an isotropic material model. The effect of the material model itself has been also investigated by comparing whole stress fields of several aneurysms. It has been shown that different models predict completely different stresses due to different stress gradients in the aneurysmal wall. The necessity of known collagen fiber distribution in arterial wall is also emphasized. A special program is then presented enabling us to obtain this information. Effect of intraluminal thrombus on the computed wall stress is analyzed in two perspectives. First the effect of its failure on wall stress is shown and also the impact of its poroelastic structure is analyzed. Finally the residual stresses were identified as an important factor influencing the computed wall stress in aneurysmal wall and they were included into patient-specific finite element analysis of aneurysms. Further possible regions of investigation are mentioned as the last part of the thesis.

    Computational analysis of strength and fatigue of turbine blades

    Get PDF
    Tato diplomová práce se zabývá závěsem posledního stupně parní turbíny. Cílem první části je provedení deformačně – napěťové analýzy současné geometrie pomocí mkp a programu ANSYS. A to jak pro monotónní zatěžování, tak pro cyklické. Za podstatné považuji sestavení dílčích modelů spolu s upozorněním na problémy, které bylo třeba řešit. K sestavení modelu materiálu byly provedeny tahové zkoušky a jejich výsledky zpracovány. Dále byly naplánovány a provedeny zkoušky nízkocyklové únavy, v rámci sestavování modelu mezních stavů. Po provedení výpočtu a rozboru výsledků je navrženo několik změn v geometrii s cílem zlepšení napěťově – deformačních poměrů v závěsu. Na závěr je předložen návrh dalšího postupuThis master thesis deals with steam turbine blade attachment. Main goal is to perform strength analysis of the given geometry under static and cyclic loads by FEM and software ANSYS. Every particular model is described separately with mentioning of the problems which had to be solved. To create model of material, the tensile tests has been performed and results has been evaluate. There were planned and performed the low cycle fatigue tests to create a model of ultimate states which is used to evaluate the fatigue life of the attachment. Results of the nonlinear FEM analysis is discussed and some improvements of the geometry has been proposed to achieve better state of stress. Finally, the plan of future work has been proposed.

    Effect of water-induced and physical aging on mechanical properties of 3D printed elastomeric polyurethane

    Get PDF
    In this study, the effect of moisture on the elastic and failure properties of elastomeric polyurethane (EPU 40) 3D printed via Vat Photopolymerization was investigated. EPU 40 samples were printed, and uniaxial tensile tests were performed on Dry-fresh, Dry-aged (eight months aged), and after various times of being immersed in water (0-8 months). Elastic response, initial stiffness, failure strength, and failure elongation were analyzed. Besides, gravimetric analysis was performed to determine the increase in weight and thickness after water immersion. The elastic response was fitted by the Arruda-Boyce constitutive model. Results show that initial stiffness decreased after immersion (mean 6.8 MPa dry vs. 6.3 MPa immersed p-value 0.002). Contrary, the initial stiffness increased due to physical aging under a dry state from a mean 6.3 MPa to 6.9 MPa (p = 0.006). The same effect was observed for stiffness parameter G of the constitutive model, while the limit stretch parameter lambda(L) was not affected by either aging. The 95% confidence intervals for strength and failure stretch were 5.27-9.48 MPa and 2.18-2.86, respectively, and were not affected either by immersion time or by physical aging. The median diffusion coefficient was 3.8.10(-12) m2/s. The immersion time has a significant effect only on stiffness, while oxidative aging has an inverse effect on the mechanical properties compared to water immersion. The transition process is completed within 24 h after immersion.Web of Science1424art. no. 549

    Sources of inconsistency in mean mechanical response of abdominal aortic aneurysm tissue

    No full text
    Introduction: There is a striking difference in the reported mean response of abdominal aortic aneurysm tissue in academic literature depending on the type of tests (uniaxial vs biaxial) performed. In this paper, the hypothesis variability caused by differences in experimental protocols is explored using porcine aortic tissue as a substitute for aneurysmal tissue. Methods: Nine samples of porcine aorta were created and both uniaxial and biaxial tests were performed. Three effects were investigated. (i) Effect of sample (non) preconditioning, (ii) effect of objective function used (normalised vs non-normalised), and (iii) effect of chosen procedure used for mean response calculation: constant averaging (CA) vs fit to averaged response (FAR) vs fit to all data (FAD). Both the overall shape of mean curve and mean initial stiffness were compared. Results: (i) Non-preconditioning led to a much stiffer response, and initial stiffness was about three times higher for a non-preconditioned response based on uniaxial data compared to a preconditioned biaxial response. (ii) CA led to a much stiffer response compared to FAR and FAD procedures which gave similar results. (iii) Normalised objective function produced a mean response with six times lower initial stiffness and more pronounced nonlinearity compared to non-normalised objective function. Discussion: It is possible to reproduce a mechanically inconsistent response purely by using the chosen experimental protocol. Non-preconditioned data from failure tests should be used for FE simulation of the elastic response of aneurysms. CA should not be used to obtain a mean response.Web of Science115art. no. 10427

    Influence of mesh density on calculated extreme stresses in aortic aneurysms

    Get PDF
    The paper deals with evaluation of the influence of finite element mesh density on the resulting extreme stresses in models of abdominal aortic aneurysms. In most patient-specific computationalmodels published recently, a free mesh of tetrahedrons is used and any information on density of the applied mesh is often missing. In this study a comparison of differentmesh densities has been realized with four patient-specificmodel geometries, all based on a numerical reconstruction of the unloaded geometry of the aneurysm, and with two different Yeoh-type constitutive models. It has been shown that resulting maximumstresses are not mesh independent; due to a better description of the stress gradient in the critical location, the maximum wall stress increases with increasing number of elements throughout the wall thickness, especially in models without residual stresses. This effect is more pronouncedwhen using Vande Geest constitutive model with higher strain stiffening than for Raghavan-Vorp material parameters. Although the mesh density requirements were not so high when the stress gradient was reduced by taking residual stresses into consideration, even in this case low numbers of elements throughout the wall thickness may givemesh dependent results. Although for a rigorous recommendation of the mesh density more analyses are needed, it was shown that the time consuming procedure of taking residual stresses into consideration cannot be replaced by a simpler model with rough mesh

    Moderate thickness of lipid core in shoulder region of atherosclerotic plaque determines vulnerable plaque - A parametric study

    No full text
    Peak stress in the fibrous cap of atherosclerotic plaque is largely determined by the cap thickness which cannot be accurately estimated in vivo. This parametric study investigates idealized atherosclerotic plaque geometries. Finite element modeling is applied to search for larger morphological features associated with high cap stresses. By varying seven geometrical and two loading parameters, 100 3D model geometries of atherosclerotic plaques in common iliac artery were generated. In each model peak cap stress was calculated, and statistical comparison of the geometries generating the highest and lowest peak cap stresses was performed. The analysis showed that, compared to geometries generating the lowest stresses, those with high peak cap stress had a significantly lower cap thickness, higher stenosis ratio, lower relative lipid core volume, and cap shoulder radius larger than lipid core radius. High cap stress was observed for cap thicknesses up to 0.13 mm. It can be concluded that vulnerable plaques contain thin fibrous cap, large stenosis ratio and only moderate small-radius lipid core which reaches the shoulder region of the fibrous cap.Web of Science6914614

    Effect of aortic bifurcation geometry on pressure and peak wall stress in abdominal aorta: Fluid-structure interaction study

    No full text
    Background and Objective Geometry of aorto-iliac bifurcation may affect pressure and wall stress in aorta and thus potentially serve as a predictor of abdominal aortic aneurysm (AAA), similarly to hypertension. Methods Effect of aorto-iliac bifurcation geometry was investigated via parametric analysis based on two-way weakly coupled fluid-structure interaction simulations. The arterial wall was modelled as isotropic hyperelastic monolayer, and non-Newtonian behaviour was introduced for the fluid. Realistic boundary conditions of the pulsatile blood flow were used on the basis of experiments in literature and their time shift was tailored to the pulse wave velocity in the model to obtain physiological wave shapes. Eighteen idealized and one patient-specific geometries of human aortic tree with common iliac and renal arteries were considered with different angles between abdominal aorta (AA) and both iliac arteries and different area ratios (AR) of iliac and aortic luminal cross sections. Results Peak wall stress (PWS) and systolic blood pressure (SBP) were insensitive to the aorto-iliac angles but sensitive to the AR: when AR decreased by 50%, the PWS and SBP increased by up to 18.4% and 18.8%, respectively. Conclusions Lower AR (as a result of the iliac stenosis or aging), rather than the aorto-iliac angles increases the BP in the AA and may be thus a risk factor for the AAA development.Web of Science118art. no. 10401

    A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments

    Get PDF
    Abdominal aortic aneurysm (AAA) disease, the local enlargement of the infrarenal aorta, is a serious condition that causes many deaths, especially in men exceeding 65 years of age. Over the past quarter of a century, computational biomechanical models have been developed towards the assessment of AAA risk of rupture, technology that is now on the verge of being integrated within the clinical decision-making process. The modeling of AAA requires a holistic understanding of the clinical problem, in order to set appropriate modeling assumptions and to draw sound conclusions from the simulation results. In this article we summarize and critically discuss the proposed modeling approaches and report the outcome of clinical validation studies for a number of biomechanics-based rupture risk indices. Whilst most of the aspects concerning computational mechanics have already been settled, it is the exploration of the failure properties of the AAA wall and the acquisition of robust input data for simulations that has the greatest potential for the further improvement of this technology.Web of Scienceart. no. e358
    corecore