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Abstract

The paper deals with evaluation of the influence of finite element mesh density on the resulting extreme stresses
in models of abdominal aortic aneurysms. In most patient-specific computational models published recently, a free
mesh of tetrahedrons is used and any information on density of the applied mesh is often missing. In this study a
comparison of different mesh densities has been realized with four patient-specific model geometries, all based on a
numerical reconstruction of the unloaded geometry of the aneurysm, and with two different Yeoh-type constitutive
models. It has been shown that resulting maximum stresses are not mesh independent; due to a better description of
the stress gradient in the critical location, the maximum wall stress increases with increasing number of elements
throughout the wall thickness, especially in models without residual stresses. This effect is more pronounced when
using Vande Geest constitutive model with higher strain stiffening than for Raghavan-Vorp material parameters.
Although the mesh density requirements were not so high when the stress gradient was reduced by taking residual
stresses into consideration, even in this case low numbers of elements throughout the wall thickness may give mesh
dependent results. Although for a rigorous recommendation of the mesh density more analyses are needed, it was
shown that the time consuming procedure of taking residual stresses into consideration cannot be replaced by a
simpler model with rough mesh.
c© 2016 University of West Bohemia. All rights reserved.
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1. Introduction

Abdominal aortic aneurysm (AAA) is defined as a dilatation of aortic diameter by more than
50 % against normal aorta [44]. In clinical practise, AAAs larger than 5.5 cm or growing by
more than 0.5 cm/year [22, 23, 34] and [27] are assessed as severe and indicated for treatment,
either to traditional open surgery or endovascular aneurysm repair (EVAR) [42]. Although in
some trials EVAR has demonstrated an improved perioperative mortality and major morbidity
when compared with the surgical open repair, some potential disadvantages exist — the risk of
incomplete AAA sealing with subsequent development of continuous refilling of the aneurysm
sac (depends on morphology of the AAA and pelvic arteries), increased radiation exposure
during the treatment and the follow-up and, according to some studies (e.g. [26]), worse long-
term results with more frequent re-interventions.

However, the major problem in AAA treatment is that even smaller AAAs may rupture and
on the contrary, some AAAs grow up to 10 cm without rupture, when no treatment is applied.
The above criterion of maximum diameter and growth speed is evidently not very reliable. It was
shown [7,20,21] that computational models may give better prediction of rupture risk and help
surgeons to avoid unnecessary surgeries. In last few years, finite element (FE) models based on
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real patient-specific AAA geometry have been widely applied in evaluation of peak wall stress
(PWS) and peak wall rupture risk (PWRR) [6,8,10,13,24,29,39,45,49]. These quantities have
been shown to predict the rupture risk better than the above geometrical criteria.

In creation of FE models, many authors use either shell elements [36], linear tetrahedral free
mesh [19] with typically three or less elements across the wall, or hexahedral dominant mesh
with one [1] or two [24, 39] elements throughout the wall thickness; in our group we use pure
hexahedral mesh [30] with four elements across the wall. On the contrary, authors who analyse
idealized geometries of AAAs use much finer meshes with some 4–10 elements across the
wall [42,48]. Moreover, most of the authors do not specify how did they assess sufficiency of the
mesh density [16,40,46]; sometimes they have only somehow increased the number of elements
compared to the previous refinement step without an exact specification [41]. The reason is that
rigorous approaches like reducing the element size to half or increasing the number of elements
across the thickness would increase the number of elements dramatically; since isotropic meshes
are mostly used in literature [19,43], it would become impossible for most computers to perform
more than one such refinement. Unfortunately such refinement of a free mesh is done mostly
along the surface and does not increase the number of elements in radial direction.

Clearly, the mesh density in the critical locations may be decisive for the accuracy of
the resulting values and a too rough mesh can underestimate the extreme values substantially,
especially in locations with high stress gradients. Therefore analysis of the required mesh density
becomes necessary; to our best knowledge, however, there is no publication dealing with the
impact of the number of elements throughout the wall thickness on the accuracy of the numerical
results of AAA stress-strain analyses. Therefore we have decided to investigate this problem
and to estimate how fine the mesh needs to be to provide stresses independent on its density.

2. Materials and methods

2.1. Geometry of AAA

The geometries of four AAAs (n = 4) were obtained from the CT-A scans of the aorta of patients
indicated for elective repair at St. Anne’s University Hospital, Brno, Czech Republic. We used
commercial software (A4research vers. 3.0, VASCOPS GmbH, Austria) to reconstruct the 3D
geometry and to acquire STL data of the wall and intraluminal thrombus (ILT). The approach
applied by this software and its accuracy was described in [1, 18]. It is based on application
of a virtual balloon to obtain a very accurate model of the inner surface of AAA without any
artefacts which could induce non-realistic stress concentrations in the model; this is one of the
reasons why stress gradients in tangential directions are relatively small and the mesh density is
tested in radial direction only. The wall thickness is assumed to be constant (1.5 mm) because
its value cannot be determined from the CT scans. The STL data were further processed in
ICEM ver. 14.5 (ANSYS Inc., PA, USA) which allowed us to create a pure hexahedral mesh on
the patient-specific geometries. This choice is motivated by the possibility of easy changing the
number of elements (from two to six) in radial direction which does not affect the number of
elements in other directions and thus the total number of elements increases only linearly during
refinement. A pure hexahedral mesh, however, requires to be created manually with irregular
geometries; creation of a mesh on a patient-specific AAA geometry took approximately 6 hours
of operator’s work. Till now, this approach has been applied only by our group [30]. In our
models the linear hexahedral FEs were applied for the AAA wall, while the ILT was meshed
by linear tetrahedral elements with element size of 3 mm (mixed formulation element of the
type solid 285 according to ANSYS terminology, suitable for modelling of incompressible
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Fig. 1. FE meshes of the investigated AAAs. These meshes had following numbers of elements (when
2 elements across the wall were considered: Pat. 1. Wall-13.5k, ILT 29.7k; Pat. 2. Wall 18.5k, ILT 76k;
Pat. 3. Wall 13.5k, ILT 31.6k; Pat. 4. Wall 7.6k, ILT 3.7k

materials [28]). Mesh convergence for ILT was not investigated although our previous analyses
have shown that the results still slightly depend on the mesh with this element size. However,
we evaluate stresses in the AAA wall only and the same ILT mesh was used for all gradually
refined wall meshes thus it should not affect our conclusions. FE models of the investigated
AAAs are shown in Fig. 1.

2.2. Constitutive models

2.2.1. AAA wall model

Mechanical properties of the wall reported in literature vary significantly [14, 37], and we have
previously shown that the shape of the stress-strain curve heavily affects the stress distribution
across the wall even for an ideal tube [31]. Therefore we have analysed two fundamentally
different types of material models; similarly to [39], both of them are isotropic due to lack of
information on distribution of directions of collagen fibres in AAA wall. The former is the so
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called Raghavan Vorp model (RV) based on uniaxial tensile tests of AAA wall tissue [37] which
applies a hyperelastic fully incompressible isotropic 2nd order Yeoh constitutive model with
strain energy density function ψ formulated as follows:

ψ =
2∑

i=1

ci0(I1 − 3)i. (1)

Here ci0 represent stress-like material constants, I1 is the first invariant of Cauchy-Green
deformation tensor. For this model the parameters were specified as c10 = 177 kPa and
c20 = 1 881 kPa which reflect mean population data for AAAs [37].

The latter considered material model is the so called Vande Geest model (VG). Specifically,
5th order Yeoh model was applied with a similar strain energy density function [31]:

ψ =
5∑

i=1

ci0(I1 − 3)i. (2)

Specific material constants of this model were based on experiments by Vande Geest et
al. [14]. However, they fitted the results of AAA tissue testing with the anisotropic constitutive
model proposed by Choi and Vito [4] while we use an isotropic one in this study. Moreover,
they have fitted the experimental curves separately for all of the 26 patients and then the
average material parameters were obtained as average of all the calculated material parameters.
As the same or very similar experimental results can be fitted with different sets of material
parameters of the same constitutive model (this holds especially for phenomenological models),
we consider this approach disputable. Therefore we carried out numerical simulations of all of
the equibiaxial and proportional tensile tests of 26 patients with their patient-specific material
parameters published in [14]; all these simulated tests together were then fitted with the above
model (Eq. (2)), and the following set of constants was obtained: c10 = 0.5 kPa, c20 = 0 kPa,
c30 = 0 kPa, c40 = 2 200 kPa, c50 = 13 741 kPa. Both constitutive models were applied in
mixed formulation as fully incompressible, their comparison is shown in Fig. 2.

Fig. 2. Comparison of both applied strain energy density functions representing mean population data at
equi-biaxial stretches of the abdominal aortic aneurysm (AAA) wall
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2.2.2. ILT model

Despite its porous nature, ILT was modelled as a single phase isotropic hyperelastic fully
incompressible (mixed formulation) material because it was previously shown this simplification
does not affect wall stresses in AAA [32]. ILT exhibits nearly linear behaviour, which can be
described by the following one-parameter Ogden-like strain energy function:

ψ = c

3∑

i=1

(λ4i − 1), (3)

where the material parameter c must be identified experimentally, and λi denotes the i-th principal
stretch. According to [11] we used values of the material parameter varying throughout the ILT
thickness, namely c = 2.62 kPa at the luminal side and c = 1.73 kPa at the abluminal side (or
for areas more distant than 30 mm from the lumen).

2.3. Finite element analyses

It is well known that the geometries reconstructed from the CT scans describe in vivo (loaded)
conditions while for FE analysis a stress-free geometry is required. Respecting of unloaded
geometry is consistently shown as an important feature of FEA of AAAs [5]. Several methods
for reconstruction of the unloaded geometry have been recently created [12, 30, 31, 41]; one of
them is applied in our models [30]. Briefly, it is assumed that each AAA was loaded by the mean
blood pressure of 13 kPa at the time of scanning. To find the unloaded geometry an iterative
algorithm is applied where in the first iteration the original geometry is loaded by the mean
blood pressure and the obtained displacements are then subtracted from the original geometry
which generates a new reconstructed unloaded geometry. This geometry is then loaded by the
same pressure and its deviation from the original geometry is evaluated. Then next iterations are
performed unless the deviation is below a chosen limit or the maximum number of iterations is
reached.

Each aneurysm with the reconstructed unloaded patient-specific geometry was constrained
in all directions at the proximal and distal ends. A rigid contact was considered between the wall
and ILT, the effect of the surrounding tissue was neglected. The blood pressure of 13 kPa was
applied at the inner surface of the AAA wall.

Then the mesh sensitivity was tested by comparing PWS for meshes with various numbers
of elements in radial direction. Due to possible stress singularities, the regions of AAA edges
and bifurcation were excluded from the analyses. The PWS was extracted as von Mises stress of
the nodal solution, i.e. average value from all the neighbouring elements of the respective node.
In this way we have analysed two sets of FE models for each considered material model. First,
only unloaded geometry was respected as described above. The second computational model
assessed the mesh sensitivity when algorithm for incorporating residual stresses (RS) [29] was
executed after having found the unloaded geometry. RS exist in arteries and they decrease stress
gradients across the wall [9] thus it is expected their presence will also influence the required
mesh size. We used volumetric growth method [29] which is currently the only approach which
was verified to work with irregular AAA geometries.

We started the analyses with 2 elements across the AAA wall and then increased this number
gradually. The acceptability of the results for a specific mesh density was assessed on the basis
of percentual deviation of the von Mises PWS from the value obtained with the closest lower
number of elements throughout the wall; if this deviation was less than 5 %, the mesh was
assessed as acceptable and the increase of mesh density was not more continued.
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Finally, some authors use radially rough mesh on purpose [10] to reduce stress gradients
and thus avoid the necessity of using time consuming algorithms for RS. Therefore we have
also compared PWS calculated in the roughest mesh models (with 2 elements across the wall
thickness) without RS with those obtained in the models with RS and the finest mesh.

3. Results and discussion

All the analyses were carried out with PC 4 CPU, 12 GB RAM. As the computation of the
unloaded geometry as well as the RS algorithm are iterative, requirements on computer time were
rather high and computations took about 20 hours per case. For each patient up to 15 simulations
were carried out, differing from each other not only by the number of elements but also by the
constitutive model applied, and whether the residual stresses were taken into account or not.

3.1. Constitutive model RV

The unloaded geometry was found accurately enough in all cases. The maximum deviation
from the original geometry was below 0.5 mm (less than CT resolution), in 90 % of nodes the
deviation was less than 0.15mm. An example of results is shown in Fig. 3. The outputs from the
FEA using the RV material model are shown in Table 1 (for models without RS) and in Table 2

Table 1. Unloaded geometry without residual stresses, model Raghavan-Vorp. Maximum von Mises
stresses (kPa) and their percentual deviations for the individual FE models of AAAs with varying mesh
density

Patient no. No. of elements
2 3 4 5

1
von Mises stress (kPa) 178 208 209 –
percentual deviation (%) – 17 0.3 –

2
von Mises stress (kPa) 179 194 202 –
percentual deviation (%) – 8.2 4.2 –

3
von Mises stress (kPa) 161 202 303 311
percentual deviation (%) – 25.6 49.5 2.9

4
von Mises stress (kPa) 246 287 295 –
percentual deviation (%) – 16.6 2.9 –

Table 2. Unloaded geometry with residual stresses, model Raghavan-Vorp. Maximum von Mises stres-
ses (kPa) and their percentual deviations for the individual FE models of AAAs with varying mesh
density

Patient no. No. of elements
2 3 4 5

1
von Mises stress (kPa) 154 161 – –
percentual deviation (%) – 4 – –

2
von Mises stress (kPa) 137 138 – –
percentual deviation (%) – 0.7 – –

3
von Mises stress (kPa) 197 204 – –
percentual deviation (%) – 3.5 – –

4
von Mises stress (kPa) 168 214 170 165
percentual deviation (%) – 27 26 3
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Fig. 3. Contour plots of the PWS stresses in the aneurysm wall for different numbers of elements
throughout the wall thickness for patient 4, RV model, RS neglected. ILT is not shown

(for models with RS). It is noted that due to the influence of boundary conditions, the vicinity
of both ends of AAAs was excluded from the analyses, as well as the region of bifurcation.
Table 1 shows that 5 elements across the wall are needed to capture the stresses with the required
accuracy in all cases.
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3.2. Constitutive model VG

Results of the models without residual stresses are presented in Table 3. For this constitutive
model the maximum number of 6 elements in transmural direction still was not sufficient to
obtain an error below 5 % for three of the patients. When RS was included the mesh with
4 elements across the wall became sufficient in all cases, as shown in Table 4.

The comparison of rough mesh without RS and the finest mesh with RS gave deviations in
PWS of 36 %, 71 %, 55 % and 103 % for the individual cases, respectively.

Table 3. Unloaded geometry without residual stresses, model Vande Geest. Maximum von Mises stres-
ses (kPa) and their percentual deviations for the individual FE models of AAAs with varying mesh
density

Patient no. No. of elements
2 3 4 5 6

1
von Mises stress (kPa) 329 415 516 475 516
percentual deviation (%) – 26.3 24.3 7.9 8.7

2
von Mises stress (kPa) 200 244 276 300 319
percentual deviation (%) – 21.9 13.1 8.7 6.5

3
von Mises stress (kPa) 383 496 588 633 669
percentual deviation (%) – 29.5 18.5 7.7 5.7

4
von Mises stress (kPa) 426 508 581 638 682
percentual deviation (%) – 19.4 14.4 9.6 7

Table 4. Unloaded geometry with residual stresses, model Vande Geest. Maximum von Mises stres-
ses (kPa) and their percentual deviations for the individual FE models of AAAs with varying mesh
density

Patient no. No. of elements
2 3 4 5

1
von Mises stress (kPa) 176 205 232 242
percentual deviation (%) – 16.4 13.2 4.3

2
von Mises stress (kPa) 116 117 – –
percentual deviation (%) – 0.9 – –

3
von Mises stress (kPa) 204 240 247 –
percentual deviation (%) 17.6 2.9 –

4
von Mises stress (kPa) 184 202 210 –
percentual deviation (%) – 9.8 4 –
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3.3. Discussion

FEA represents a hopeful approach in assessment of the patient-specific PWS eventually PWRR.
To assess the accuracy of the results, the authors of this study used FE models with increasing
number of elements throughout the wall thickness, and the impact of this number of elements
on the calculated extreme stresses was evaluated. When using RV model the necessary number
of elements across the wall thickness was between 3 and 5 to obtain the stresses independent
of the mesh. This is a surprisingly high number since most studies analysing real AAAs do not
use such a fine mesh [24, 39]. On the other hand it justifies the mesh choice in studies where
idealized geometries were analysed [42, 48] and highlights the need of using finer meshes in
FEA of patient specific geometries of AAA.

The situation is even worse when VG model is used because omitting of RS may cause that
more than 6 elements in radial direction are required to capture the wall stress with sufficient
accuracy. We did not further increase the number of elements in radial direction because we
experienced convergence problems due to worse and worse aspect ratio of the finite elements
which made them inclinable to excessive distortion during deformation. This could be solved by
complete recreation of the mesh which would be, however, too time consuming. Moreover we
are not aware of any study where 6 elements across the wall would be used for patient-specific
geometries, thus our results are sufficient to show unacceptability of such models. Based on
our results we can hypothesize the mesh independent results could be obtained for 7 radial
elements. This information is however not that important since the importance of RS is widely
accepted nowadays [2,3,17,35]. Without taking them into consideration the calculated stresses
may even exceed the strength of the AAA tissues (cf. [50] and [42]). Also for some patients
in our study the stresses calculated with neglecting residual stresses (see Table 3 do exceed the
strength values of AAA tissue which corresponds to 600 ± 150 kPa according to [50]. As all
the patients were CT-scanned without any symptoms of rupture, it is evident that the calculated
stress values exceeding the tissue strength are incorrect. On the contrary, results taking RS
into consideration show much lower PWS and suggest (see Table 4) that four elements across
the wall should be sufficient in most cases which retroactively validates the meshes we used
previously [30].

Another interesting result of our analysis reveals that we cannot confirm the hypothesis
adopted by some authors [10, 30] stating it is possible to omit RS and still obtain accurate
stresses when using rough mesh with only one or two elements across the wall. We have clearly
shown that difference between both approaches for RV and VG model can be up to 49 % and
103 %, respectively. Although this was obtained on a cohort of patients being very small for
verification of the hypothesis, its size is sufficient for its falsification when the deviation is as
large in most cases; including more patients would likely reveal even larger differences. This
hypothesis can be rejected on the basis of the presented results and use of RS algorithm together
with a sufficiently fine mesh is recommended instead.

Our results have also shown that a rougher mesh is sufficient when residual stresses are inclu-
ded compared to the model without RS. This conclusion is in accordance with our expectations
based on substantial reduction of stress gradients by considering RS and reduce spatially the
increase of computational time due to inclusion of the RS algorithm.

Any results must be viewed with respect to their limitations. One limitation of this study is
absence of patient-specific values of blood pressure. The reconstructed geometry depends on the
actual blood pressure under which the CT scans were recorded which, moreover, changes slightly
with location in the arterial tree [25]. For hypertensive patients this value may be influenced by the
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foregoing (e.g. antihypertensive) medication having been applied to decelerate the AAA growth.
Of course, the patient-specific blood pressure is crucial when AAA rupture risk assessment is
performed [10,30]. Nevertheless, our approach using the same mean population value of blood
pressure is fully applicable for comparison of results with different mesh densities although the
stresses might be slightly different even for the models with RS if patient-specific pressure was
applied.

The very low cohort of investigated geometries represents another limitation. This was
caused by large number of FEA performed on each AAA (52 FEAs in total) which makes
the computations very time consuming. However, even within this small number of patients
there were analyses in which low numbers of elements across the wall thickness gave severe
deviations in resulting stresses. Consequently analyses with low numbers of elements across
the wall thickness lose their credibility. Naturally, for a quantitative recommendation for mesh
density more analyses are needed.

Another limitation is in applying isotropic approximation of VG constitutive models.
However we do not consider this as a severe limitation because inter-patient variability of
aneurysmal wall mechanical properties is much higher than the reported level of its anisot-
ropy [18]. It was also shown that anisotropy of AAA wall is much lower than that of healthy
aortic wall [14], that interpatient variability is much higher than inter-direction variability due
to anisotropy [38, 39, 47], and that differences based on application of anisotropic model are
statistically insignificant [15]. Thus the mean population response can be captured by isotropic
or anisotropic models with a similar accuracy. Moreover, for correct application of anisotropic
models it is necessary to know the local orientation of principal material directions in the AAA
wall which is currently unknown and quite not easy to be defined for complex shapes of AAAs.

Also tetrahedral mesh for the ILT and its density might be disputable; however, creation of
a hexahedral mesh also for the ILT is even much more difficult (if even possible) than it was
for the AAA wall. The stresses in the ILT are not evaluated in this study and their accuracy
cannot influence the PWS substantially [33]. Moreover, the individual models of each patient
had always the same ILT mesh therefore its impact on the wall stress is the same. Consequently,
it cannot alter the conclusions drafted here on the basis of comparing the models. Moreover, a
further refinement of the ILT mesh would cause that the data for FEA would not fit to RAM
memory of our PC which would increase computational time several times. That is why we used
3 mm elements in the ILT mesh.

4. Conclusions

The presented analyses confirmed that the influence of mesh density is substantial in FE mo-
delling of AAAs although their geometry meets the conditions of membrane shells with nearly
constant stresses throughout the wall thickness. The higher is the strain stiffening of the material,
the higher are the stress gradients across the wall and consequently the impact of mesh density
on the resulting stresses in the models neglecting residual stresses. For some of these models
no mesh independent results were obtained in the investigated range of mesh densities despite
we used finer mesh than any previous study investigating patient specific geometries of AAA.
This highlights the necessity of using even finer mesh when substantial stress gradients across
the wall should be captured.

For the models comprehending RS, the stress gradients across the wall are much lower.
Consequently the influence of mesh density was less pronounced and a reasonable number of
elements across the AAA wall (5 or less) was sufficient to capture the PWS with acceptable
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accuracy in all of the investigated cases. However, for a general quantitative recommendation
of this number of elements a larger study is needed.

By comparison of the results it was clearly shown that the time consuming procedure of
reducing stress gradients across the wall thickness by taking RS into consideration cannot be
replaced by a much faster model with a rough mesh and without RS. Although both of these
approaches may give similarly low stress gradients across the wall, the simple model with rough
mesh without RS cannot give correct values of peak wall stresses.

Acknowledgements

This work is an output of project NETME CENTRE PLUS (LO1202), created with financial
support from the Ministry of Education, Youth and Sports under the National Sustainability
Programme I.

References

[1] Auer, M., Gasser, T., Reconstruction and finite element mesh generation of abdominal aortic
aneurysms from computerized tomography angiography data with minimal user interactions, IEEE
Transactions on Medical Imaging 29 (4) (2010) 1022–1028.
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deriving parameters of AAA rupture risk from patient-specific 3D finite element models, Journal
of Endovascular Therapy 18 (3) (2011) 289–298.

[19] Joldes, G. R., Miller, K., Wittek, A., Doyle, B., A simple, effective and clinically applicable
method to compute abdominal aortic aneurysm wall stress, Journal of the Mechanical Behavior of
Biomedical Materials 58 (2016) 139–148.

[20] Khosla, S., Morris, D. R., Moxon, J. V., Walker, P. J., Gasser, T. C., Golledge, J., Meta-analysis of
peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms, British Journal
of Surgery 101 (11) (2014) 1350–1357.

[21] Kleinstreuer, C., Li, Z., Analysis and computer program for rupture-risk prediction of abdominal
aortic aneurysms, BioMedical Engineering OnLine 5 (1) (2006) 19–32.

[22] Lederle, F., Wilson, S., Johnson, G., Reinke, D., Littooy, F., Acher, C., Ballard, D., Messina, L.,
Gordon, I., Chute, E., Krupski, W., Busuttil, S., Barone, G., Sparks, S., Graham, L., Rapp, J.,
Makaroun, M., Moneta, G., Cambria, R., Makhoul, R., Eton, D., Ansel, H., Freischlag, J., Ban-
dyk, D., Immediate repair compared with surveillance of small abdominal aortic aneurysms, New
England Journal of Medicine 346 (19) (2002) 1437–1444.

[23] Lederle, F., The aneurysm detection and management study screening program validation cohort
and final results, Archives of Internal Medicine 160 (10) (2000) 1425–1430.

[24] Maier, A., Gee, M., Reeps, C., Pongratz, J., Eckstein, H., Wall, W., A comparison of diameter, wall
stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction, Annals
of Biomedical Engineering 38 (10) (2010) 3124–3134.
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[42] Rodrı́guez, J., Ruiz, C., Doblareé, M., Holzapfel, G., Mechanical stresses in abdominal aortic
aneurysms: Influence of diameter, asymmetry, and material anisotropy, Journal of Biomechanical
Engineering 130 (2) (2008) No. 021023, doi: 10.1115/1.2898830.
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