94 research outputs found

    Contemporary British experimental theatre and its relation to postmodern cultural theory

    Get PDF
    This thesis examines contemporary British experimental theatre of the 1990s and its relation to postmodern cultural theory. The practitioners discussed include Forced Entertainment, Third Angel, Stan’s Cafe, Blast Theory and Desperate Optimists, who were all practising during the 1990s in Britain, the period during which the examples used in the thesis were produced. The thesis argues that the group of practitioners selected represents a British postmodern theatrical tradition. The contribution to the field of knowledge made by the thesis is the identification of a British postmodern theatrical tradition through the analysis of stylistic features of relevant performances and the relation of the practitioners and their work to postmodern cultural theory. The thesis employs interview material with the relevant practitioners in order to support this argument and draws principally on cultural theorists Gilles Deleuze and Felix Guattari, and Jean Francois Lyotard to construct a definition of postmodernism and a theoretical framework for the analysis of the practitioners. The thesis argues that what characterises British Postmodern theatre is its reflexive relationship with postmodern cultural theory, evidenced by numerous examples of the cross-contamination of theory and practice and its self-conscious critique of contemporary theatrical conventions. The thesis examines the challenge to and deconstruction of contemporary theatrical conventions presented by the selected practitioners, including the deconstruction of theatricality, the tendency towards interdisciplinarity and hybridity, the rejection of narrative and the use of the real. Moreover, the thesis examines the rejection of acting and character by British postmodern theatre practitioners and its subsequent reappraisal of these terms within a postmodern framework. Following on from this, the thesis discusses the use of time and space in performance and how the notion of liveness is central to the practice of postmodern practitioners

    Enrichment of Clinically Relevant Organisms in Spontaneous Preterm-Delivered Placentas and Reagent Contamination across All Clinical Groups in a Large Pregnancy Cohort in the United Kingdom.

    Get PDF
    In this study, differences in the placental microbiota from term and preterm deliveries in a large pregnancy cohort in the United Kingdom were studied by using 16S-targeted amplicon sequencing. The impacts of contamination from DNA extraction, PCR reagents, and the delivery itself were also examined. A total of 400 placental samples from 256 singleton pregnancies were analyzed, and differences between spontaneous preterm-, nonspontaneous preterm-, and term-delivered placentas were investigated. DNA from recently delivered placentas was extracted, and screening for bacterial DNA was carried out by using targeted sequencing of the 16S rRNA gene on the Illumina MiSeq platform. Sequenced reads were analyzed for the presence of contaminating operational taxonomic units (OTUs) identified via sequencing of negative extraction and PCR-blank samples. Differential abundances and between-sample (beta) diversity metrics were then compared. A large proportion of the reads sequenced from the extracted placental samples mapped to OTUs that were also found for negative extractions. Striking differences in the compositions of samples were also observed, according to whether the placenta was delivered abdominally or vaginally, providing strong circumstantial evidence for delivery contamination as an important contributor to observed microbial profiles. When OTU- and genus-level abundances were compared between the groups of interest, a number of organisms were enriched in the spontaneous preterm-delivery cohort, including organisms that have been associated previously with adverse pregnancy outcomes, specifically Mycoplasma spp. and Ureaplasma spp. However, analyses of the overall community structure did not reveal convincing evidence for the existence of a reproducible "preterm placental microbiome."IMPORTANCE Preterm birth is associated with both psychological and physical disabilities and is the leading cause of infant morbidity and mortality worldwide. Infection is known to be an important cause of spontaneous preterm birth, and recent research has implicated variation in the "placental microbiome" in the risk of preterm birth. Consistent with data from previous studies, the abundances of certain clinically relevant species differed between spontaneous preterm- and nonspontaneous preterm- or term-delivered placentas. These results support the view that a proportion of spontaneous preterm births have an intrauterine-infection component. However, an additional observation from this study was that a substantial proportion of sequenced reads were contaminating reads rather than DNA from endogenous, clinically relevant species. This observation warrants caution in the interpretation of sequencing outputs from low-biomass samples such as the placenta

    Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood

    Get PDF
    Background: Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults. Methodology/Principal Findings: We investigated quantitative expression of 36 imprinted genes in adult human peripheral blood leukocytes obtained from healthy individuals. Allelic expression was also investigated in B and T lymphocytes and myeloid cells. We found that 21 genes were essentially undetectable in adult blood. Only six genes were demonstrably monoallelic, and most importantly, we found that nine genes were either biallelic or showed variable expression in different individuals. Separated leukocyte populations showed the same expression patterns as whole blood. Differential methylation at each of the imprinting control loci analysed was maintained, including regions that contained biallelically expressed genes. This suggests in some cases methylation has become uncoupled from its role in regulating gene expression. Conclusions/Significance: We conclude that only a limited set of imprinted genes, including IGF2 and SNRPN, may be useful for LOI cancer biomarker studies. In addition, blood is not a good tissue to use for the discovery of new imprinted genes. Finally, lymphocyte DNA methylation status in the adult may not always be a reliable indicator of monoallelic gene expression

    High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta.

    Get PDF
    BACKGROUND: Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. RESULTS: Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). CONCLUSIONS: Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term placenta. ZNF331 is imprinted in human term placenta and might be a new ubiquitously imprinted gene, part of a primate-specific locus. Demonstration of partial imprinting of PHACTR2 calls for re-evaluation of the allelic pattern of expression for the PHACTR2-PLAGL1 locus. ASE was common in human term placenta.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Fat dads must not be blamed for their children's health problems

    Get PDF
    The relationship between the parental genomes in terms of the future growth and development of their offspring is not critical. For the majority of the genome the tissue-specific gene expression and epigenetic status is shared between the parents equally, with both alleles contributing without parental bias. For a very small number of genes the rules change and control of expression is restricted to a specific, parentally derived allele, a phenomenon known as genomic imprinting. The insulin-like growth factor 2 (Igf2/IGF2) is a robustly imprinted gene, important for fetal growth in both mice and humans. In utero IGF2 exhibits paternal expression, which is controlled by several mechanisms, including the maternally expressing untranslated H19 gene. In the study by Soubry et al., a correlation is drawn between the IGF2 methylation status in fetal cord blood leucocytes, and the obesity status of the father from whom the active IGF2 allele is derived through his sperm. These data imply that paternal obesity affects the normal IGF2 methylation in the sperm and this in turn alters the expression of IGF2 in the baby

    Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate

    Get PDF
    Aim: To determine if nonsyndromic cleft lip with or without cleft palate (nsCL/P) genetic risk variants influence liability to nsCL/P through gene regulation pathways, such as those involving DNA methylation. Materials & methods: nsCL/P genetic summary data and methylation data from four studies were used in conjunction with Mendelian randomization and joint likelihood mapping to investigate potential mediation of nsCL/P genetic variants. Results & conclusion: Evidence was found at VAX1 (10q25.3), LOC146880 (17q23.3) and NTN1 (17p13.1), that liability to nsCL/P and variation in DNA methylation might be driven by the same genetic variant, suggesting that genetic variation at these loci may increase liability to nsCL/P by influencing DNA methylation. Follow-up analyses using different tissues and gene expression data provided further insight into possible biological mechanisms

    Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis

    Get PDF
    TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages

    Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood

    Get PDF
    Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults

    Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models

    Get PDF
    Background Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood. Results Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects. Conclusions These data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning

    Long-term trends in submicron particle concentrations in a metropolitan area of the northeastern United States

    Get PDF
    Significant changes in emission sources have occurred in the northeastern United States over the past decade, due in part to the implementation of emissions standards, the introduction and addition of abatement technologies for road transport, changes in fuel sulfur content for road and non-road transport, as well as economic impacts of a major recession and differential fuel prices. These changes in emission scenarios likely affected the concentrations of airborne submicron particles. This study investigated the characteristics of 11–500 nm particle number concentrations and their size spectra in Rochester, NY during the past 15 years (2002 to 2016). The modal structure, diurnal, weekly and monthly patterns of particle number concentrations are analyzed. Long-term trends are quantified using seasonal-trend decomposition procedures based on “Loess”, Mann-Kendall regression with Theil-Sen slope and piecewise regression. Particle concentrations underwent significant (p < 0.05) downward trends. An annual decrease of −323 particles/cm3/y (−4.6%/y) was estimated for the total particle number concentration using Theil-Sen analysis. The trends were driven mainly by the decrease in particles in the 11–50 nm range (−181 particles/cm3/y; −4.7%/y). Slope changes were investigated annually and seasonally. Piecewise regression found different slopes for different portions of the overall period with the strongest declines between 2005 and 2011/2013, followed by small upward trends between 2013 and 2016 for most size bins, possibly representing increased vehicular traffic after the recovery from the 2008 recession
    corecore